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Graph Neural Network (GNN)

» GNNs are designed for learning from graph-structured data.

- Convolution Neural N LSTM, ' - Graph Neural
A Network (CNN) Transformer : Network (GNN)

Image Text Graph

» GNN has been used for vertex/graph classification, edge prediction in many domains.

Recommendation Systems Social Networks Analysis Drug Discovery



Graph Neural Network (GNN) Training

» Sampling-based GNN training is a standard approach for large-graph training.
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Distributed GNN Training

> Distributed sampling-based GNN training on multiple servers.
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Distributed GNN Training

> Distributed sampling-based GNN training on multiple servers.
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Distributed GNN Training

> Distributed sampling-based GNN training on multiple servers.
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Distributed GNN Training

» Distributed sampling-based GNN training on multiple servers.

— Sampling UHVertex features =P Local features gather
OVertex which has gathered its features ==» Remote features gather
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Distributed GNN Training

» Distributed sampling-based GNN training on multiple servers.

— Sampling UHVertex features =P Local features gather
OVertex which has gathered its features ==» Remote features gather

Forward compute

Backward compute
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Bottleneck of Distributed GNN Training

Sampling D D\/ertex features == Local features gather Forward compute
Vertex which has gathered its features = Remote features gather Backward compute
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Existing Methods

>

Partitioning Optimization
GNN-aware graph partitioning to reduce cross-server feature
transmission. [DistDGL-IA320, ROC-MLSys20, ByteDance-VLDB22, BGL-NSDI23]

Sampling Optimization
Locality-aware sampling to reduce the probability of being sampled
for remote vertices. [Pagraph-SoCC20, DistGNN-SC21, LAS-1CS24]

Cache Optimization

Cache hot features in GPU to reduce the redundant feature
gathering. [PaGraph-SoCC20, GNNLab-EuroSys22, BGL-NSDI23, Legion-ATC23]

New Training Schema

Combine model parallelism and data parallelism to avoid original
feature transfers. [P3-0SDI21]

Limitations

Insufficient due to dynamic and
random nature of sampling.

Compromise model accuracy.

Limited by the cache size.

Introduce additional
intermediate feature transfer.

We name these methods as “model-centric” methods.



» Background & Related work

» New observation
» Our naive method & Challenges
» Design

» Experimental Results
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New Observation

» The amount of data transferred for vertex feature gathering is significantly larger
than the GNN model size.

training data transfer between servers
a =

model parameter size

Feature-centric method.

Move the model to the servers where
i 1 the vertex features are located,
rather than fetching the features from
the remote servers.
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Naive Model Migration
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Naive Model Migration

— Sampling === Local features gather O Vertex which has gathered its features U UVertex features Forward compute
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Naive Model Migration

— Sampling === Local features gather O Vertex which has gathered its features Vertex features Forward compute

== Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Time step 0 : Time step 1
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Naive Model Migration

— Sampling === Local features gather

== Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

O Vertex which has gathered its features

Vertex features Forward compute

Backward compute

Time step 0 : Time step 1 : Time step 2
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Naive Model Migration

— Sampling === Local features gather O Vertex which has gathered its features U UVerteX features
== Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Time step 0 Time step 1 | Time step 2
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Naive Model Migration

Sampling DD\mcx features Local features gather Forward compute

Vertex which has gathered its features Remote features gather Backward compute

v' Compared to existing model-centric GNN training
(a) Existing model-centric GNN training

Totally eliminate cross-machine features transmission by
model migration.

Sampling Local features gather Vertex which has gathered its features D\mm features Forward compute

Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration Backward compute
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(b) Our preliminary solution: Naive model migration
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Challenges in our naive solution

Sampling Local features gather Vertex which has gathered its features HH\’ertex features Forward compute 1 Model-centric ] Naive feature-centric
Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration Backward compute 8
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Sometimes naive method is advantageous, but may
incur up to 2.6 x model-centric data transmission.

Avoid feature transfer, but incur other data transmission.

® partial aggregation results
® intermediate data for backward
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Locality of Micrograph

» Micrograph » Data locality in micrographs
Definition. A micrograph G'is a computation graph Most fanout neighbors are located within the same
derived from a single mini-batch vertex v via k-hop partition (server) as the root vertex.

sampling in the original graph G.

S METIS (%) Heuristic (%)
Subgraph 0 lin #S Arxiv Products Papers IT Ry (%)
i e e 2L [ 10L | 2L | 10L | 2L | 10L | 2L | 10L
| ORIO | 2 [75] 73 [ 95| 88 | 93] 61 | 66 | 64 50
| K : Node- | 4 | 66 | 45 | 92 | 79 | 89 | 43 | 54 | 46 25
I | s
, , wise | 8 | 59 | 27 | 88 | 68 | 84 | 35 | 48 | 36 12
| S @ | @ Q2 | 16 | 63 | 35 | 86 | 61 | 84 | 30 | 46 | 32 6
! L ! 2 [79] 54 | 55| 52 |85 | 58 | 80 | 53 50
| I
: 0 0 @ 6 | } 9 @ (D 9 | Layer- | 4 | 70 | 30 |34 | 28 | 77 | 31 | 67 | 30 25
| Micrograph 6! |Micrograph 3! wise [ 8 | 65 | 18 | 25 | 14 | 56 | 24 | 63 | 18 12
———————————————————— 16| 61 | 12 |21 | 9% 57 | 12 | 61 | 12 6

* #S: the number of distribute servers
* xL: the number of sampling layers is x
*  Rsup: the locality of subgraph
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Micrograph-Based GNN Training

— Sampling Vertex features OVertices gathered features === [ ocal features gather — Forward compute
==P Model parameters and accumulated gradients migration =—3p» Remote features gather < Backward compute
Time step 0 Time step 1

©)
& @
OO

Server 0 e Micrograph 6

Mini-batch 0

Training s
vertices Y AN ¢) B | T
1
4
Server 1 a ! é .
e?@c?@ | -rLaer 1
Micrograph 3 ' Wicrograph 3 Model
[]

Model migration + Locality of micrograph

20



Micrograph-Based GNN Training

— Sampling Vertex features OVertices gathered features ===p L ocal features gather Forward compute
==P Model parameters and accumulated gradients migration =) Remote features gather Backward compute
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It does not compromise model accuracy as keep the randomly assigned training data unchanged.
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Further Optimization 1

» Vertex Feature Pre-Gathering

® Problem ® Solution
Redundant vertex transmission across time steps. Pre-gathering vertex features in the subsequent few
time steps.
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Further Optimization 2

» Micrograph Merging in GNN Training

® Problem

Time overhead increases with more distributed servers (N servers means N time steps in one iteration).

® Solution
Merge micrographs, thus reducing the number of time steps.
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Server 1
*  Which micrograph should be merged? Server 2
* How many micrograph should be merged?
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One iteration training before (a) and

after (b) micrograph merging.
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Experimental Setup

» System configuration
* 4 GPU Servers, each equipped with:

CPU

2xIntel(R) Xeon(R)
Gold 5318Y CPUs (48 cores)

Memory

128 GB CPU memory

» Models and datasets

* Shallow models: GCN, GraphSAGE, GAT
with hidden sizes of 16 and 128

* Deep models: DeepGCN (7), GNN-FiLM (10)

GPU

One NVIDIA A100 GPU (40 GB)

Network

10Gb/s Ethernet

» Compared systems

Dataset | #Vertex | #Edge | Dim. Vol Vol
Arxiv 169K 1.17M | 128 3.3MB 85 MB
Products | 2.45M | 61.9M | 100 | 464 MB | 980 MB
UK IM 41.2M | 600 12 MB 2.3GB
IN 1.38M | 169M | 600 | 82MB | 3.2GB
IT 41.3M 1.15B | 600 | 363MB | 92.3 GB

DGL [IA3’20]

Fetches all the required features locally or remotely

P3[OSDI’21]

Combined model-parallel and data-parallel

NeutronStar [SIGMOD’22]

Balance the redundant computation and communication time

Naive

Naive model migration methods




Overall Training Time

Mini-batch training with shallow models
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LeapGNN achieves 1.3-3.1x over DGL, 1.2-4.2x over P3,
1.1-4.8x over Naive, and 1.1-1.8x over NeutronStar.



Impact of Individual Techniques
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* +MG denotes the version where micrograph-based GNN training is turned on.
* +PG denotes the version where pre-gathering is added based on +MG.
* Allmeans the micrograph merging is also enabled.

Each technique enhances performance.
The most impactful technique varies across scenarios.



Impact of Individual Techniques
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+MG decreases the +PG decreases the number LeapGNN automatically adjusts the
cache miss rate of request vertex and number of time steps to 3 which

across four datasets. local missed vertex. shows the best performance.



Sensitivity Analysis

[ DGL-gather [ DGL-others
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LeapGNN consistently outperforms the comparisons under various conditions.



Summary & Conclusion

» Problem

* Feature transmission becomes the bottleneck in distributed GNN training.
> Key idea

* Introduce feature-centric model migration to reduce features transmission.
»Challenges

* Naive model migration avoids feature transfer, but incurs intermediate data transmission.

» Techniques in LeapGNN

* Micrograph-Based GNN Training

* Vertex Feature Pre-Gathering

* Micrograph Merging in GNN Training
> Results

* LeapGNN achieves up to 4.2x speedup compared to the state-of-the-art counterpart P3.
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