
LeapGNN: Accelerating Distributed GNN Training

Leveraging Feature-Centric Model Migration

Weijian Chen, Shuibing He, Haoyang Qu, Xuechen Zhang#

#

USENIX FAST 2025

Graph Neural Network (GNN)

Ø GNNs are designed for learning from graph-structured data.

1

Image

Convolution Neural
Network (CNN)

LSTM,
Transformer

Graph Neural
Network (GNN)

Text Graph

Ø GNN has been used for vertex/graph classification, edge prediction in many domains.

Recommendation Systems Social Networks Analysis Drug Discovery

* Image Source: Internet

Graph Neural Network (GNN) Training

Ø Sampling-based GNN training is a standard approach for large-graph training.

2

① Sampling

SubgraphGraph topology

Vertex features ② Gathering
5
6
3

…
Gathered features

Predicted
Labels

Layer 2

③Computation

GNN

Classifi-
cation

Layer 1

L-0

L-?

L-4L-2

L-9

L-?

L-?

L-0

01

23
4

5
6

7

0
1
2
3
4
5
6
7

5

6 1

7 4 3 5

GNN training data GNN training process

④ Backward
& update GNN

training
vertex 5

Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.

3

Graph & features are partitioned

01

23
4

5
6
7

Partitioned topology

Partitioned features

4-7

0-3

Memory

Server 0

Memory

Server 1

015

234

5
6 4

7 3

1
4

01

23

Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.

4

Vertex Color Server ID

red 0

blue 1

Server 0

Server 1

Training
vertices

Mini-batch 0

Mini-batch 1
5 0

6 3
6 3

5 0

Sampling Local features gather
Remote features gather

Forward compute
Backward computeVertex which has gathered its features

Vertex features

Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.

5

Vertex Color Server ID

red 0

blue 1

Server 0

Server 1

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Subgraph 0

Training
vertices

Mini-batch 0

Mini-batch 1
5 0

6 3
6 3

5 0

Subgraph 1

Layer 1

Layer 2

❶	
Layer 1

Layer 2

Sampling Local features gather
Remote features gather

Forward compute
Backward computeVertex which has gathered its features

Vertex features

Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.

6

Vertex Color Server ID

red 0

blue 1

Server 0

Server 1

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Subgraph 0Subgraph 0

Training
vertices

Mini-batch 0

Mini-batch 1
5 0

6 3
6 3

5 0

Subgraph 1Subgraph 1

Layer 1

Layer 2

❶	 ❷

❷

Layer 1

Layer 2

Sampling Local features gather
Remote features gather

Forward compute
Backward computeVertex which has gathered its features

Vertex features

Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.

7

Server 0

Server 1

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Subgraph 0Subgraph 0

Update model
Parameters

Model 0

Gradients
sync

Training
vertices

Mini-batch 0

Mini-batch 1
5 0

6 3
6 3

5 0

Layer 1

Layer 2

Subgraph 1Subgraph 1

Update model
Parameters

Model 1
Layer 1

Layer 2

Layer 1

Layer 2

❶	 ❷

❷

❸

Layer 1

Layer 2 ❹

Sampling Local features gather
Remote features gather

Forward compute
Backward computeVertex which has gathered its features

Vertex features

Vertex Color Server ID

red 0

blue 1

Bottleneck of Distributed GNN Training

8

Remote vertex feature gathering
causes the communication

bottleneck! (44%~83%)

Server 0

Server 1

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Subgraph 0Subgraph 0

Update model
Parameters

Model 0

Gradients
sync

Training
vertices

Mini-batch 0

Mini-batch 1
5 0

6 3
6 3

5 0

Layer 1

Layer 2

Subgraph 1Subgraph 1

Update model
Parameters

Model 1
Layer 1

Layer 2

Layer 1

Layer 2

❶	 ❷

❷

❸

Layer 1

Layer 2 ❹

Sampling Local features gather
Remote features gather

Forward compute
Backward computeVertex which has gathered its features

Vertex features

Existing Methods

9

Ø Sampling Optimization

Ø Partitioning Optimization

Ø Cache Optimization

GNN-aware graph partitioning to reduce cross-server feature
transmission. [DistDGL-IA320, ROC-MLSys20, ByteDance-VLDB22, BGL-NSDI23]

Locality-aware sampling to reduce the probability of being sampled
for remote vertices. [Pagraph-SoCC20, DistGNN-SC21, LAS-ICS24]

Cache hot features in GPU to reduce the redundant feature
gathering. [PaGraph-SoCC20, GNNLab-EuroSys22, BGL-NSDI23, Legion-ATC23]

Insufficient due to dynamic and
random nature of sampling.

Compromise model accuracy.

Limited by the cache size.

Ø New Training Schema
Combine model parallelism and data parallelism to avoid original
feature transfers. [P3-OSDI21]

Introduce additional
intermediate feature transfer.

Limitations

We name these methods as “model-centric” methods.

Outline

Ø Background & Related work

Ø New observation

Ø Our naïve method & Challenges

Ø Design

Ø Experimental Results

10

New Observation

11

Ø The amount of data transferred for vertex feature gathering is significantly larger
than the GNN model size.

𝛼 =
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑑𝑎𝑡𝑎	𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑠𝑒𝑟𝑣𝑒𝑟𝑠	

𝑚𝑜𝑑𝑒𝑙	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑠𝑖𝑧𝑒
	

Move the model to the servers where
the vertex features are located,
rather than fetching the features from
the remote servers.

Feature-centric method.

(Denoted as Naïve model migration method)

Naïve Model Migration

12

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

Subgraph 0

Server 0

Server 1

MB 0

MB 1
5 0

6 3 6 3

5 0

Subgraph 1

Sampling

Layer 1

Layer 2

Layer 1

Layer 2

Naïve Model Migration

13

5 0

6 1
4 7 50

1 3
3 0 24

5 0

6 1
4 7 50

1 3
3 0 24

Time step 0

6 3

5 7
1 7 56

4 2
3 6 30

Subgraph 0Subgraph 0 Model 0
Layer 1

6 3

5 7
1 7 56

4 2
3 6 30

Server 0

Server 1

MB 0

MB 1
5 0

6 3 6 3

5 0

Subgraph 1Subgraph 1 Model 1
Layer 1

Sampling Local features gather Forward computeVertex which has gathered its features Vertex features

❶	

Layer 1

Layer 2

Layer 1

Layer 2

Naïve Model Migration

14

5 0

6 1
4 7 50

1 3
3 0 24

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Time step 0 Time step 1

6 3

5 7
1 7 56

4 2
3 6 30

Subgraph 0Subgraph 0 Model 0
Layer 1

6 3

5 7
1 7 56

4 2
3 6 30

Server 0

Server 1

MB 0

MB 1
5 0

6 3 6 3

5 0

Layer 1

Layer 2

Subgraph 1 Model 1

Subgraph 1Subgraph 1 Model 1
Layer 1 Layer 1

Layer 2

Subgraph 0 Model 0

Sampling Local features gather

Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Forward computeVertex which has gathered its features Vertex features

❶	

	❷

Layer 1

Layer 2

Layer 1

Layer 2

Naïve Model Migration

15

5 0

6 1
4 7 50

1 3
3 0 24

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Time step 0 Time step 1 Time step 2

6 3

5 7
1 7 56

4 2
3 6 30

Subgraph 0Subgraph 0

Update model
Parameters

Model 0
Layer 1

6 3

5 7
1 7 56

4 2
3 6 30

Server 0

Server 1

MB 0

MB 1
5 0

6 3 6 3

5 0

Layer 1

Layer 2 Layer 2

Subgraph 1 Model 1 Subgraph 0 Model 0

Subgraph 1Subgraph 1

Update model
Parameters

Model 1
Layer 1 Layer 1

Layer 2 Layer 2

Subgraph 0 Model 0 Subgraph 1 Model 1

Gradients
sync

Sampling Local features gather

Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Forward compute
Backward compute

Vertex which has gathered its features Vertex features

❶	

	❷

❸ ❹
Layer 1

Layer 2

Layer 1

Layer 2

Naïve Model Migration

16

5 0

6 1
4 7 50

1 3
3 0 24

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Time step 0 Time step 1 Time step 2

6 3

5 7
1 7 56

4 2
3 6 30

Subgraph 0Subgraph 0

Update model
Parameters

Model 0
Layer 1

6 3

5 7
1 7 56

4 2
3 6 30

Server 0

Server 1

MB 0

MB 1
5 0

6 3 6 3

5 0

Layer 1

Layer 2 Layer 2

Subgraph 1 Model 1 Subgraph 0 Model 0

Subgraph 1Subgraph 1

Update model
Parameters

Model 1
Layer 1 Layer 1

Layer 2 Layer 2

Subgraph 0 Model 0 Subgraph 1 Model 1

Gradients
sync

Sampling Local features gather

Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Forward compute
Backward compute

Vertex which has gathered its features Vertex features

❶	

	❷

❸ ❹
Layer 1

Layer 2

Layer 1

Layer 2

Naïve Model Migration

17

ü Compared to existing model-centric GNN training

 Totally eliminate cross-machine features transmission by
model migration.

5 0

6 1
4 7 50

1 3
3 0 24

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Time step 0 Time step 1 Time step 2

6 3

5 7
1 7 56

4 2
3 6 30

Subgraph 0Subgraph 0

Update model
Parameters

Model 0
Layer 1

6 3

5 7
1 7 56

4 2
3 6 30

Server 0

Server 1

MB 0

MB 1
5 0

6 3 6 3

5 0

Layer 1

Layer 2 Layer 2

Subgraph 1 Model 1 Subgraph 0 Model 0

Subgraph 1Subgraph 1

Update model
Parameters

Model 1
Layer 1 Layer 1

Layer 2 Layer 2

Subgraph 0 Model 0 Subgraph 1 Model 1

Gradients
sync

Sampling Local features gather

Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Forward compute
Backward compute

Vertex which has gathered its features Vertex features

❶	

	❷

❸ ❹
Layer 1

Layer 2

Layer 1

Layer 2

(b) Our preliminary solution: Naïve model migration

(a) Existing model-centric GNN training

Server 0

Server 1

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Subgraph 0Subgraph 0

Update model
Parameters

Model 0

Gradients
sync

Training
vertices

Mini-batch 0

Mini-batch 1
5 0

6 3
6 3

5 0

Layer 1

Layer 2

Subgraph 1Subgraph 1

Update model
Parameters

Model 1
Layer 1

Layer 2

Layer 1

Layer 2

❶	 ❷

❷

❸

Layer 1

Layer 2 ❹

Sampling Local features gather
Remote features gather

Forward compute
Backward computeVertex which has gathered its features

Vertex features

Challenges in our naïve solution

18

5 0

6 1
4 7 50

1 3
3 0 24

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Time step 0 Time step 1 Time step 2

6 3

5 7
1 7 56

4 2
3 6 30

Subgraph 0Subgraph 0

Update model
Parameters

Model 0
Layer 1

6 3

5 7
1 7 56

4 2
3 6 30

Server 0

Server 1

MB 0

MB 1
5 0

6 3 6 3

5 0

Layer 1

Layer 2 Layer 2

Subgraph 1 Model 1 Subgraph 0 Model 0

Subgraph 1Subgraph 1

Update model
Parameters

Model 1
Layer 1 Layer 1

Layer 2 Layer 2

Subgraph 0 Model 0 Subgraph 1 Model 1

Gradients
sync

Sampling Local features gather

Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Forward compute
Backward compute

Vertex which has gathered its features Vertex features

❶	

	❷

❸ ❹
Layer 1

Layer 2

Layer 1

Layer 2

(y-values are log2 scaled)

Sometimes naïve method is advantageous, but may
incur up to 2.6×model-centric data transmission.

l partial aggregation results
l intermediate data for backward

Avoid feature transfer, but incur other data transmission.

Locality of Micrograph

19

Ø Micrograph
Definition. A micrograph G′ is a computation graph
derived from a single mini-batch vertex v via k-hop
sampling in the original graph G.

Ø Data locality in micrographs
Most fanout neighbors are located within the same
partition (server) as the root vertex.

• #S: the number of distribute servers
• xL: the number of sampling layers is x
• Rsub: the locality of subgraph

Micrograph-Based GNN Training

20

Server 0

Server 1

Micrograph 5

Update model
Parameters

Model 0

Sampling Local features gather
Remote features gather

Forward compute
Backward compute

Training
vertices

Mini-batch 0

Mini-batch 1
5 0

6 3

Vertices gathered featuresVertex features

❸

❶	Redistribution

6 5

3 0

6
5 7
1 7 56

5
6 1
4 7 50

6
5 7
1 7 56

5
6 1
4 7 50

Micrograph 6❷

Micrograph 6 Model 1

❹

Time step 0 Time step 1

Micrograph 5

Micrograph 3

Update model
Parameters

Model 1

3
4 2
3 6 30

0
1 3
3 0 24

0
1 3
3 0 24

3
4 2
3 6 30

Micrograph 0

Micrograph 0 Model 0Micrograph 3

Gradients
sync

Model parameters and accumulated gradients migration

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

Model migration + Locality of micrograph

Micrograph-Based GNN Training

21

Server 0

Server 1

Micrograph 5

Update model
Parameters

Model 0

Sampling Local features gather
Remote features gather

Forward compute
Backward compute

Training
vertices

Mini-batch 0

Mini-batch 1
5 0

6 3

Vertices gathered featuresVertex features

❸

❶	Redistribution

6 5

3 0

6
5 7
1 7 56

5
6 1
4 7 50

6
5 7
1 7 56

5
6 1
4 7 50

Micrograph 6❷

Micrograph 6 Model 1

❹

Time step 0 Time step 1

Micrograph 5

Micrograph 3

Update model
Parameters

Model 1

3
4 2
3 6 30

0
1 3
3 0 24

0
1 3
3 0 24

3
4 2
3 6 30

Micrograph 0

Micrograph 0 Model 0Micrograph 3

Gradients
sync

Model parameters and accumulated gradients migration

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

Layer 1

Layer 2

ü Model accuracy fidelity.
 It does not compromise model accuracy as keep the randomly assigned training data unchanged.

Further Optimization 1

22

Ø Vertex Feature Pre-Gathering

6
5 7
1 7 56

5
6 1
4 7 50

Time step 0

3
4 2
3 6 30

0
1 3
3 0 24

Time step 1

l Problem
 Redundant vertex transmission across time steps.

l Solution
 Pre-gathering vertex features in the subsequent few
time steps.

Server 0

Server 1

1 0, 14 4, 6

6
5 7
1 7 56

5
6 1
4 7 50

Time step 0

3
4 2
3 6 30

0
1 3
3 0 24

Time step 1

Server 0

Server 1

4, 6

(a) without Pre-Gathering (b) with Pre-Gathering

0, 1

Further Optimization 2

23

Ø Micrograph Merging in GNN Training

l Problem
 Time overhead increases with more distributed servers (N servers means N time steps in one iteration).

l Solution
 Merge micrographs, thus reducing the number of time steps.

m0 m1 m2
m1 m2 m0
m2 m0 m1

t0 t1 t2 ts

m0 m2
m1 m0
m2 m1

t0’ t1’ ts
Merging

Server 1
Server 2

Server 0

• Which micrograph should be merged?
• How many micrograph should be merged?

More details: please checkout our paper.
Initial model

migration path
Migration path
after merging

One iteration training before (a) and
after (b) micrograph merging.

(a) (b)

Experimental Setup

Ø System configuration
• 4 GPU Servers, each equipped with:

24

DGL [IA3’20] Fetches all the required features locally or remotely

P3 [OSDI’21] Combined model-parallel and data-parallel

NeutronStar [SIGMOD’22] Balance the redundant computation and communication time

Naïve Naïve model migration methods

CPU 2×Intel(R) Xeon(R)
Gold 5318Y CPUs (48 cores)

Memory 128 GB CPU memory

GPU One NVIDIA A100 GPU (40 GB)

Network 10Gb/s Ethernet

Ø Models and datasets
• Shallow models: GCN, GraphSAGE, GAT

with hidden sizes of 16 and 128
• Deep models: DeepGCN (7), GNN-FiLM (10)

Ø Compared systems

Overall Training Time

25

LeapGNN achieves 1.3-3.1x over DGL, 1.2-4.2x over P3,
1.1-4.8x over Naïve, and 1.1-1.8x over NeutronStar.

Mini-batch training with shallow models

Mini-batch training with deep models Full-batch training

Impact of Individual Techniques

26

Each technique enhances performance.
The most impactful technique varies across scenarios.

• +MG denotes the version where micrograph-based GNN training is turned on.
• +PG denotes the version where pre-gathering is added based on +MG.
• All means the micrograph merging is also enabled.

Impact of Individual Techniques

27

+MG decreases the
cache miss rate

across four datasets.

+PG decreases the number
of request vertex and
local missed vertex.

LeapGNN automatically adjusts the
number of time steps to 3 which

shows the best performance.

Sensitivity Analysis

28

LeapGNN consistently outperforms the comparisons under various conditions.

(a) Feature dimension (d) Number of servers(b) Batch size (c) Fanout size

More evaluations: checkout our paper.

Summary & Conclusion

Ø Problem
• Feature transmission becomes the bottleneck in distributed GNN training.

Ø Key idea
• Introduce feature-centric model migration to reduce features transmission.

ØChallenges
• Naïve model migration avoids feature transfer, but incurs intermediate data transmission.

Ø Techniques in LeapGNN
• Micrograph-Based GNN Training
• Vertex Feature Pre-Gathering
• Micrograph Merging in GNN Training

Ø Results
• LeapGNN achieves up to 4.2× speedup compared to the state-of-the-art counterpart P3.

29

Thanks & QA

30

LeapGNN: Accelerating Distributed GNN Training

Leveraging Feature-Centric Model Migration

Source Code: https://github.com/ISCS-ZJU/LeapGNN-AE

Contact Email: weijianchen@zju.edu.cn

ISCS Lab: https://shuibing9420.github.io

mailto:weijianchen@zju.edu.cn

