LeapGNN: Accelerating Distributed GNN Training Leveraging Feature-Centric Model Migration

Weijian Chen, Shuibing He, Haoyang Qu, Xuechen Zhang[#]

浙江大学 Zhejiang University

USENIX FAST 2025

Graph Neural Network (GNN)

➢ GNNs are designed for learning from graph-structured data.

> GNN has been used for vertex/graph classification, edge prediction in many domains.

* Image Source: Internet

Graph Neural Network (GNN) Training

> Sampling-based GNN training is a standard approach for large-graph training.

> Distributed sampling-based GNN training on multiple servers.

Graph & features are partitioned

> Distributed sampling-based GNN training on multiple servers.

> Distributed sampling-based GNN training on multiple servers.

Distributed sampling-based GNN training on multiple servers.

> Distributed sampling-based GNN training on multiple servers.

Bottleneck of Distributed GNN Training

Remote vertex feature gathering causes the communication bottleneck! (44%~83%)

Existing Methods

Partitioning Optimization

GNN-aware graph partitioning to reduce cross-server feature transmission. [DistDGL-IA320, ROC-MLSys20, ByteDance-VLDB22, BGL-NSDI23]

Sampling Optimization

Locality-aware sampling to reduce the probability of being sampled for remote vertices. [Pagraph-SoCC20, DistGNN-SC21, LAS-ICS24]

Cache Optimization

Cache hot features in GPU to reduce the redundant feature gathering. [PaGraph-SoCC20, GNNLab-EuroSys22, BGL-NSDI23, Legion-ATC23]

New Training Schema

Combine model parallelism and data parallelism to avoid original feature transfers. [P3-OSDI21]

Limitations

Insufficient due to dynamic and random nature of sampling.

Compromise model accuracy.

Limited by the cache size.

Introduce additional intermediate feature transfer.

We name these methods as "model-centric" methods.

Outline

> Background & Related work

New observation

> Our naïve method & Challenges

Design

> Experimental Results

New Observation

The amount of data transferred for vertex feature gathering is significantly larger than the GNN model size.

 $\alpha = \frac{training \ data \ transfer \ between \ servers}{model \ parameter \ size}$

Move the model to the servers where the vertex features are located, rather than fetching the features from the remote servers.

(Denoted as *Naïve model migration* method)

---->Sampling

(a) Existing model-centric GNN training

(b) Our preliminary solution: Naïve model migration

✓ Compared to existing model-centric GNN training

Totally eliminate cross-machine features transmission by model migration.

Challenges in our naïve solution

Sometimes naïve method is advantageous, but may incur up to 2.6× model-centric data transmission.

Avoid feature transfer, but incur other data transmission.

- partial aggregation results
- intermediate data for backward

Locality of Micrograph

> Micrograph

Definition. A micrograph G' is a computation graph derived from a single mini-batch vertex v via k-hop sampling in the original graph G.

Data locality in micrographs

Most fanout neighbors are located within the same partition (server) as the root vertex.

Som	#S	METIS (%)			Heuristic (%)					
sam-		Arxiv		Products		Papers		IT		$R_{sub}(\%)$
pning		2L	10L	2L	10L	2L	10L	2L	10L	
	2	75	73	95	88	93	61	66	64	50
Node-	4	66	45	92	79	89	43	54	46	25
wise	8	59	27	88	68	84	35	48	36	12
	16	63	35	86	61	84	30	46	32	6
	2	79	54	55	52	85	58	80	53	50
Layer-	4	70	30	34	28	77	31	67	30	25
wise	8	65	18	25	14	56	24	63	18	12
	16	61	12	21	9	57	12	61	12	6

- #S: the number of distribute servers
- xL: the number of sampling layers is x
- R_{sub}: the locality of subgraph

Micrograph-Based GNN Training

20

Micrograph-Based GNN Training

✓ Model accuracy fidelity.

It does not compromise model accuracy as keep the randomly assigned training data unchanged.

Further Optimization 1

Vertex Feature Pre-Gathering

• Problem

Redundant vertex transmission across time steps.

(a) without Pre-Gathering

• Solution

Pre-gathering vertex features in the subsequent few time steps.

(b) with Pre-Gathering

Further Optimization 2

Micrograph Merging in GNN Training

• Problem

Time overhead increases with more distributed servers (N servers means N time steps in one iteration).

• Solution

Merge micrographs, thus reducing the number of time steps.

- Which micrograph should be merged?
- How many micrograph should be merged?

More details: please checkout our paper.

One iteration training before (a) and after (b) micrograph merging.

Experimental Setup

System configuration

• 4 GPU Servers, each equipped with:

CPU	2×Intel(R) Xeon(R) Gold 5318Y CPUs (48 cores)			
Memory	128 GB CPU memory			
GPU	One NVIDIA A100 GPU (40 GB)			
Network	10Gb/s Ethernet			

Models and datasets

- Shallow models: GCN, GraphSAGE, GAT with hidden sizes of 16 and 128
- Deep models: DeepGCN (7), GNN-FiLM (10)

Dataset	#Vertex	#Edge	Dim.	Vol _G	Vol _F
Arxiv	169K	1.17M	128	3.3 MB	85 MB
Products	2.45M	61.9M	100	464 MB	980 MB
UK	1M	41.2M	600	12 MB	2.3 GB
IN	1.38M	16.9M	600	8.2 MB	3.2 GB
IT	41.3M	1.15B	600	363MB	92.3 GB

Compared systems

DGL [IA3'20]	Fetches all the required features locally or remotely
P ³ [OSDI'21]	Combined model-parallel and data-parallel
NeutronStar [SIGMOD'22]	Balance the redundant computation and communication time
Naïve	Naïve model migration methods

Overall Training Time

LeapGNN achieves 1.3-3.1x over DGL, 1.2-4.2x over P³, 1.1-4.8x over Naïve, and 1.1-1.8x over NeutronStar.

Impact of Individual Techniques

- +MG denotes the version where micrograph-based GNN training is turned on.
- +PG denotes the version where pre-gathering is added based on +MG.
- All means the micrograph merging is also enabled.

Each technique enhances performance. The most impactful technique varies across scenarios.

Impact of Individual Techniques

		Miss Rate
Arviv	DGL	74%
	+MG	43%
Products	DGL	77%
Troducts	+MG	22%
IIK	DGL	78%
UK	+MG	19%
IN	DGL	77%
111	+MG	9.2%

+MG decreases the cache miss rate across four datasets. +PG decreases the number of request vertex and local missed vertex.

LeapGNN automatically adjusts the number of time steps to 3 which shows the best performance.

Sensitivity Analysis

LeapGNN consistently outperforms the comparisons under various conditions.

More evaluations: checkout our paper.

Summary & Conclusion

Problem

• Feature transmission becomes the bottleneck in distributed GNN training.

≻ Key idea

• Introduce feature-centric model migration to reduce features transmission.

≻Challenges

• Naïve model migration avoids feature transfer, but incurs intermediate data transmission.

Techniques in LeapGNN

- Micrograph-Based GNN Training
- Vertex Feature Pre-Gathering
- Micrograph Merging in GNN Training

➢ Results

• LeapGNN achieves up to $4.2 \times$ speedup compared to the state-of-the-art counterpart P³.

Thanks & QA

LeapGNN: Accelerating Distributed GNN Training Leveraging Feature-Centric Model Migration

Source Code: <u>https://github.com/ISCS-ZJU/LeapGNN-AE</u>
Contact Email: weijianchen@zju.edu.cn

ISCS Lab: <u>https://shuibing9420.github.io</u>

