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Graph Neural Network (GNN)

Ø GNNs are designed for learning from graph-structured data.
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Ø GNN has been used for vertex/graph classification, edge prediction in many domains.

Recommendation Systems Social Networks Analysis Drug Discovery

* Image Source: Internet



Graph Neural Network (GNN) Training

Ø Sampling-based GNN training is a standard approach for large-graph training.
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Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.
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Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.
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Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.
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Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.
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Distributed GNN Training

Ø Distributed sampling-based GNN training on multiple servers.
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Bottleneck of Distributed GNN Training
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Remote vertex feature gathering
causes the communication 

bottleneck! (44%~83%)
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Existing Methods
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Ø  Sampling Optimization

Ø  Partitioning Optimization

Ø  Cache Optimization

GNN-aware graph partitioning to reduce cross-server feature 
transmission. [DistDGL-IA320, ROC-MLSys20, ByteDance-VLDB22, BGL-NSDI23]

Locality-aware sampling to reduce the probability of being sampled 
for remote vertices. [Pagraph-SoCC20, DistGNN-SC21, LAS-ICS24]

Cache hot features in GPU to reduce the redundant feature 
gathering. [PaGraph-SoCC20, GNNLab-EuroSys22, BGL-NSDI23, Legion-ATC23]

Insufficient due to dynamic and 
random nature of sampling.

Compromise model accuracy.

Limited by the cache size.

Ø  New Training Schema
Combine model parallelism and data parallelism to avoid original 
feature transfers. [P3-OSDI21]

Introduce additional 
intermediate feature transfer.

Limitations

We name these methods as “model-centric” methods.



Outline

Ø Background & Related work

Ø New observation

Ø Our naïve method & Challenges

Ø Design

Ø Experimental Results
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New Observation
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Ø The amount of data transferred for vertex feature gathering is significantly larger 
than the GNN model size.

𝛼 =
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑑𝑎𝑡𝑎	𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑠𝑒𝑟𝑣𝑒𝑟𝑠	

𝑚𝑜𝑑𝑒𝑙	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟	𝑠𝑖𝑧𝑒
	

Move the model to the servers where 
the vertex features are located, 
rather than fetching the features from 
the remote servers.

Feature-centric method.

(Denoted as Naïve model migration method)



Naïve Model Migration
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Naïve Model Migration
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Naïve Model Migration
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Naïve Model Migration
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Naïve Model Migration

16

5 0

6 1
4 7 50

1 3
3 0 24

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

6 3

5 7
1 7 56

4 2
3 6 30

5 0

6 1
4 7 50

1 3
3 0 24

Time step 0 Time step 1 Time step 2

6 3

5 7
1 7 56

4 2
3 6 30

Subgraph 0Subgraph 0

Update model
Parameters

Model 0
Layer 1

6 3

5 7
1 7 56

4 2
3 6 30

Server 0

Server 1

MB 0

MB 1
5 0

6 3 6 3

5 0

Layer 1

Layer 2 Layer 2

Subgraph 1 Model 1 Subgraph 0 Model 0

Subgraph 1Subgraph 1

Update model
Parameters

Model 1
Layer 1 Layer 1

Layer 2 Layer 2

Subgraph 0 Model 0 Subgraph 1 Model 1

Gradients
sync

Sampling Local features gather

Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Forward compute
Backward compute

Vertex which has gathered its features Vertex features

❶	

	❷

❸ ❹
Layer 1

Layer 2

Layer 1

Layer 2



Naïve Model Migration
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ü Compared to existing model-centric GNN training
       
      Totally eliminate cross-machine features transmission by 
model migration.
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Challenges in our naïve solution
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Sometimes naïve method is advantageous, but may 
incur up to 2.6×model-centric data transmission.

l partial aggregation results
l intermediate data for backward

Avoid feature transfer, but incur other data transmission.



Locality of Micrograph
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Ø Micrograph
Definition. A micrograph G′ is a computation graph 
derived from a single mini-batch vertex v via k-hop 
sampling in the original graph G. 

Ø Data locality in micrographs
Most fanout neighbors are located within the same 
partition (server) as the root vertex.

• #S: the number of distribute servers
• xL: the number of sampling layers is x
• Rsub: the locality of subgraph



Micrograph-Based GNN Training
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Micrograph-Based GNN Training
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ü Model accuracy fidelity.
      It does not compromise model accuracy as keep the randomly assigned training data unchanged.



Further Optimization 1

22

Ø Vertex Feature Pre-Gathering
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l Problem 
       Redundant vertex transmission across time steps.

l Solution 
      Pre-gathering vertex features in the subsequent few 
time steps.
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Further Optimization 2
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Ø Micrograph Merging in GNN Training

l Problem 
      Time overhead increases with more distributed servers (N servers means N time steps in one iteration).

l Solution 
     Merge micrographs, thus reducing the number of time steps.
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m1 m2 m0
m2 m0 m1

t0  t1  t2 ts

m0 m2
m1 m0
m2 m1
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Merging
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• Which micrograph should be merged? 
• How many micrograph should be merged?

More details: please checkout our paper. 
Initial model 

migration path
Migration path
after merging

One iteration training before (a) and 
after (b) micrograph merging.

(a) (b)



Experimental Setup

Ø System configuration
• 4 GPU Servers, each equipped with:
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DGL [IA3’20] Fetches all the required features locally or remotely

P3 [OSDI’21] Combined model-parallel and data-parallel

NeutronStar [SIGMOD’22] Balance the redundant computation and communication time

Naïve Naïve model migration methods

CPU 2×Intel(R) Xeon(R) 
Gold 5318Y CPUs (48 cores)

Memory 128 GB CPU memory

GPU One NVIDIA A100 GPU (40 GB)

Network 10Gb/s Ethernet

Ø Models and datasets
• Shallow models: GCN, GraphSAGE, GAT 

with hidden sizes of 16 and 128
• Deep models: DeepGCN (7), GNN-FiLM (10)

Ø Compared systems



Overall Training Time
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LeapGNN achieves 1.3-3.1x over DGL, 1.2-4.2x over P3, 
1.1-4.8x over Naïve, and 1.1-1.8x over NeutronStar.

Mini-batch training  with shallow models

Mini-batch training with deep models Full-batch training



Impact of Individual Techniques
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Each technique enhances performance. 
The most impactful technique varies across scenarios.

• +MG denotes the version where micrograph-based GNN training is turned on. 
• +PG denotes the version where pre-gathering is added based on +MG. 
• All means the micrograph merging is also enabled.



Impact of Individual Techniques
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+MG decreases the 
cache miss rate 

across four datasets.

+PG decreases the number 
of request vertex and 
local missed vertex.

LeapGNN automatically adjusts the 
number of time steps to 3 which 

shows the best performance.



Sensitivity Analysis
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LeapGNN consistently outperforms the comparisons under various conditions.

(a) Feature dimension (d) Number of servers(b) Batch size (c) Fanout size

More evaluations: checkout our paper. 



Summary & Conclusion

Ø Problem
• Feature transmission becomes the bottleneck in distributed GNN training.

Ø Key idea
• Introduce feature-centric model migration to reduce features transmission.

ØChallenges
• Naïve model migration avoids feature transfer, but incurs intermediate data transmission.

Ø Techniques in LeapGNN
• Micrograph-Based GNN Training
• Vertex Feature Pre-Gathering
• Micrograph Merging in GNN Training

Ø Results
• LeapGNN achieves up to 4.2× speedup compared to the state-of-the-art counterpart P3.
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Thanks & QA

30

LeapGNN: Accelerating Distributed GNN Training 

Leveraging Feature-Centric Model Migration

Source Code: https://github.com/ISCS-ZJU/LeapGNN-AE

Contact Email: weijianchen@zju.edu.cn

ISCS Lab: https://shuibing9420.github.io
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