LeapGNN: Accelerating Distributed GNN Training

Leveraging Feature-Centric Model Migration

Weijian Chen, Shuibing He, Haoyang Qu, Xuechen Zhang”

Yy \ AL #
3w WITLKRE WASHINGTON STATE
¥ Zhejiang University @UNWERSITY

USENIX FAST 2025

Graph Neural Network (GNN)

» GNNs are designed for learning from graph-structured data.

- Convolution Neural N LSTM, ' - Graph Neural
A Network (CNN) Transformer : Network (GNN)

Image Text Graph

» GNN has been used for vertex/graph classification, edge prediction in many domains.

Recommendation Systems Social Networks Analysis Drug Discovery

Graph Neural Network (GNN) Training

» Sampling-based GNN training is a standard approach for large-graph training.

Classifi- Predicted

cation Labels
Graph topology @bomputation
1
Vertex features § @ Gatheri : : > @ Backward
g 2 erln:gl et g & update GNN
7

Gathered features
GNN training data GNN training process

Distributed GNN Training

> Distributed sampling-based GNN training on multiple servers.

-\ D—0 s Server0 A
G X@, / &
o % q JCS<oms :
Partitioned topology V ________________________ Memory
_ /
0-31 (] Server])
- 300
4-7 { (é N @"@ 3 |
" ! emory !
Partitioned features \)

Graph & features are partitioned

Distributed GNN Training

> Distributed sampling-based GNN training on multiple servers.

Server 0

Vertex Color Server ID

red 0

blue 1

Training
vertices

Server 1

Distributed GNN Training

> Distributed sampling-based GNN training on multiple servers.

— Sampling

0 3 0@ Z o Layer 2
Server 0 oe@ee@oa Jraver

Subgraph 0

Vertex Color Server ID

red 0

blue 1

Training

vertices . :(z % }LayerZ
Server 1 em@eo@e@ }Laye”

Subgraph 1

Distributed GNN Training

» Distributed sampling-based GNN training on multiple servers.

— Sampling UHVertex features =P Local features gather
OVertex which has gathered its features ==» Remote features gather

(1)]»LayerZ e /]‘[
Server 0 609@ @ I
DOGGEOGO® | Layer | 00663600]
Subgraph 0 Subgraph 0
Vertex Color Server ID (2)
red 0 Hm M
blue 1

Training

vertices @ : G(). 3 }Layerz m
—_—
Server 1 ea@ee@e@ Puaser1 ™ 7§ so060]

Subgraph 1 Subgraph 1

Distributed GNN Training

» Distributed sampling-based GNN training on multiple servers.

— Sampling UHVertex features =P Local features gather
OVertex which has gathered its features ==» Remote features gather

Forward compute

Backward compute

6 6 @ M
c 99 Layer 2 7 [""""""" >Layer 2
Server0 | — 8 4 & @ J 2@ Q@ Update model
00CEO00E) }Layer 1 DDOEQOOC } R = Parameters
Subgraph 0 Subgraph 0 Niﬁ;el 0
Vertex Color Server ID (2)

Gradients
red 0 Hm M sync
blue 1

Training)
vertices O :|~Layer 2 /5 O }m """"""" 'LELY?LZ
Serverl | — ONONONO©, - © D @ Update model
00000000 }Layer 1 DO c;'(b 4 } -“L"L?y?l Parameters
Subgraph 1 Subgraph 1 Model 1

Bottleneck of Distributed GNN Training

Sampling D D\/ertex features == Local features gather Forward compute
Vertex which has gathered its features = Remote features gather Backward compute

o /Q Q }Laycrz e /? } }m """"""" >Layer 2
/.

Yy oy G’ »-D () — §3)) @ Q
server 00ClcE] O@@ } Layer 1 D0.0.6600 6 }M -----

) t—->Layer 1
Subgraph 0 Subgraph 0 Model 0

Gradients
W [

Update model
Parameters

b
Mini-batc blldl 0 ‘(7 3 ‘

74

50

Training
. 0 (J/ 0. |M----—-—------—- 3
vertices Layer 2 T D

Sea el » \l/ \ \:’4 ®© 000 E% Update model
dbobobs 11 dhonobes HI-- Parameters

- ayer 1

Subgraph 1 Subgraph 1 Model 1

Remote vertex feature gathering

causes the communication

bottleneck! (44%~

83%)

@1 0 O gather-remote E computation O others

o

c L | H H =

% 80 =y =sg L L 5 L L

seorH | HEHLUHEHL i

S 4ot B

S

GEJ 20

g 0 S S S

m‘bw\’sbw‘bm\,bw a O N0

< SN Q, ,\ UERAE k NN

- S oc’e@‘?&@“ O o 8 S P S eoeevo@o‘;\
OGB-Arxiv OGB Products UK

Existing Methods

>

Partitioning Optimization
GNN-aware graph partitioning to reduce cross-server feature
transmission. [DistDGL-IA320, ROC-MLSys20, ByteDance-VLDB22, BGL-NSDI23]

Sampling Optimization
Locality-aware sampling to reduce the probability of being sampled
for remote vertices. [Pagraph-SoCC20, DistGNN-SC21, LAS-1CS24]

Cache Optimization

Cache hot features in GPU to reduce the redundant feature
gathering. [PaGraph-SoCC20, GNNLab-EuroSys22, BGL-NSDI23, Legion-ATC23]

New Training Schema

Combine model parallelism and data parallelism to avoid original
feature transfers. [P3-0SDI21]

Limitations

Insufficient due to dynamic and
random nature of sampling.

Compromise model accuracy.

Limited by the cache size.

Introduce additional
intermediate feature transfer.

We name these methods as “model-centric” methods.

» Background & Related work

» New observation
» Our naive method & Challenges
» Design

» Experimental Results

10

New Observation

» The amount of data transferred for vertex feature gathering is significantly larger
than the GNN model size.

training data transfer between servers
a =

model parameter size

Feature-centric method.

Move the model to the servers where
i 1 the vertex features are located,
rather than fetching the features from
the remote servers.

—L

CWoWOMN
T
1

The log value

N
Denoted as Naive model migration method
g

11

Naive Model Migration

— Sampling

— B0 }LayerZ
Server0| 3 & @ @ Layer 1
VOIOEE006,

Subgraph 0

Server 1

Naive Model Migration

— Sampling === Local features gather O Vertex which has gathered its features U UVertex features Forward compute

Time step 0

(1)

— ®03]»LayerZ /@

(3 Layerl) 9 @ } -.%%
DDEGAOO 00660e0slll, ., |

Subgraph 0 Subgraph 0 Model 0

Server 0

Server 1

Naive Model Migration

— Sampling === Local features gather O Vertex which has gathered its features Vertex features Forward compute

== Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Time step 0 : Time step 1

1
1
ayer 2 :
6 Qe @ Layerl 5\ /\ :
Q@EGBGGOB 7 6 553) 6 (D '»Layer 1 :
Subgraph 0 Subgraph 0 Model 0 1
1
1
1

: }H ------ *>Layer 2

Server 1 9 ‘7 @ 2
‘ oe@ec?@oe et

|
1
i Subgraph 0 Model 0
1
1

Naive Model Migration

— Sampling === Local features gather

== Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

O Vertex which has gathered its features

Vertex features Forward compute

Backward compute

Time step 0 : Time step 1 : Time step 2
| |
1
ayer 2 3 | } —->Layer 2
AT ik ik
000, SOOEEOO iyer1 ! : ©BO600
Subgraph 0 Subgraph 0 Model 0 1 Subgraph 0 Model 0
1 1

\/

Server 1
(

_> ﬂ
00CE "(a 00 }H]ﬂ
Subgraph 0

--=-=>layer 2

[l

L»layer 1

Model 0

Naive Model Migration

— Sampling === Local features gather O Vertex which has gathered its features U UVerteX features
== Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration

Time step 0 Time step 1 | Time step 2

Forward compute

Backward compute

|
1
1
1
ayer 2 3 : ------ -’LaLeLZ } -->Layer 2
a é Layerl 5\ Q }M %%:_’ %% :%&
VOO0 7 0336), Layer 1 ! b @ S 3 HQ I»Layer 1 ©®30®00B
:
]

Subgraph 0 Subgraph 0 Model 0 Subgraph 1 Model 11 Subgraph 0 Model 0
1 1
:QI I
Layer 2 I 9Q } """" ~layer2 | } ---»LayerZ
Server 1 a é Q3 }Lae_.rl 8 O ‘a‘ﬁ M_I%%:—; @ & } %% :_> ONON©
90066000] " 00060000/l 1 00600600 m&lqaal: DOOBOOBR
Subgraph 1 Subgraph 1 Model 1, Subgraph 0 Model 0 , Subgraph 1 Model 1
1 1
[} [}

16

Naive Model Migration

Sampling DD\mcx features Local features gather Forward compute

Vertex which has gathered its features Remote features gather Backward compute

v' Compared to existing model-centric GNN training
(a) Existing model-centric GNN training

Totally eliminate cross-machine features transmission by
model migration.

Sampling Local features gather Vertex which has gathered its features D\mm features Forward compute

Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration Backward compute

Time step 0 : Time step 1 : Time step 2
; ;

A

(b) Our preliminary solution: Naive model migration

17

Challenges in our naive solution

Sampling Local features gather Vertex which has gathered its features HH\’ertex features Forward compute 1 Model-centric] Naive feature-centric
Model parameters and other data (partial aggregation results, intermediate data, and subgraph) migration Backward compute 8
—~~
, - S m =
Time step 0 Time step 1 i Time step 2 O6f 4
1
N e —

© --»Layer 2
> Update model - |
S0 Parameters
Model 0 | .
> I Gradients 1 1 | I

sync 0
N PEEGRY GEONGpGEGRT GONEpEEGRY GONAGE AT

SN
T

N

Data Size

s 9O Foioe: OGB-Arxiv IN UK OGB-Products
oy) @ > > AT Update model
Server 1 ‘ }l_u.\cr] O00600 ‘/i\":}mﬂ'} iﬁ % })al'ﬂlmclcrg (y-values are ZOgZ Scaled)

4) C Ver 1 K %06 _»D"‘:’ 1
Subgraph 1 Subgraph 1 Model 1 Subgraph 0 Model 0 | Subgraph 1 Model 1

1
1
1
layerl 1
1
1
1

Sometimes naive method is advantageous, but may
incur up to 2.6 x model-centric data transmission.

Avoid feature transfer, but incur other data transmission.

® partial aggregation results
® intermediate data for backward

18

Locality of Micrograph

» Micrograph » Data locality in micrographs
Definition. A micrograph G'is a computation graph Most fanout neighbors are located within the same
derived from a single mini-batch vertex v via k-hop partition (server) as the root vertex.

sampling in the original graph G.

S METIS (%) Heuristic (%)
Subgraph 0 lin #S Arxiv Products Papers IT Ry (%)
i e e 2L [10L | 2L | 10L | 2L | 10L | 2L | 10L
| ORIO | 2 [75] 73 [95| 88 | 93] 61 | 66 | 64 50
| K : Node- | 4 | 66 | 45 | 92 | 79 | 89 | 43 | 54 | 46 25
I | s
, , wise | 8 | 59 | 27 | 88 | 68 | 84 | 35 | 48 | 36 12
| S @ | @ Q2 | 16 | 63 | 35 | 86 | 61 | 84 | 30 | 46 | 32 6
! L ! 2 [79] 54 | 55| 52 |85 | 58 | 80 | 53 50
| I
: 0 0 @ 6 | } 9 @ (D 9 | Layer- | 4 | 70 | 30 |34 | 28 | 77 | 31 | 67 | 30 25
| Micrograph 6! |Micrograph 3! wise [8 | 65 | 18 | 25 | 14 | 56 | 24 | 63 | 18 12
———————————————————— 16| 61 | 12 |21 | 9% 57 | 12 | 61 | 12 6

* #S: the number of distribute servers
* xL: the number of sampling layers is x
* Rsup: the locality of subgraph

19

Micrograph-Based GNN Training

— Sampling Vertex features OVertices gathered features === [ocal features gather — Forward compute
==P Model parameters and accumulated gradients migration =—3p» Remote features gather < Backward compute
Time step 0 Time step 1

©)
& @
OO

Server 0 e Micrograph 6

Mini-batch 0

Training s
vertices Y AN ¢) B | T
1
4
Server 1 a ! é .
e?@c?@ | -rLaer 1
Micrograph 3 ' Wicrograph 3 Model
[]

Model migration + Locality of micrograph

20

Micrograph-Based GNN Training

— Sampling Vertex features OVertices gathered features ===p L ocal features gather Forward compute
==P Model parameters and accumulated gradients migration =) Remote features gather Backward compute
Time step 0 Time step 1

9@«7 (3]

DODO® 6 }H_ ------- >Layer 2 5 }H_ _______ Layer 2
Server 0 | @ Micrograph6 —p 0 yer g yer

1
T
1
1
1
1
5 7 1 6
i 3 W }Hm__‘ X ! }Hﬂm__
= e i
@& @ TH6MS I‘"Layerl : 4 7 S L;Layerl
1
1
T

OB

Micrograph 3 Micrograph 0 njogel 1 Micrograph 3 Model 0

@0® i i
Micrograph 5 Micrograph 6 Model 0 Micrograph S Model 1
@ Redistribution H H m m
1
— @) T
Traltr_ung eo(oe?@ | Layer 2
vertices . 0 |- ->Layer 2 QA L »Layer
Micrograph 0 —p } s | }H_ Ao
Server1| ! P D O . @ ! 4% }M_“ %@%
oo D0OQ }Ml-->Layer 1 I éf’ > Laer 1
1
|
I

v Model accuracy fidelity.

It does not compromise model accuracy as keep the randomly assigned training data unchanged.

21

Further Optimization 1

» Vertex Feature Pre-Gathering

® Problem ® Solution
Redundant vertex transmission across time steps. Pre-gathering vertex features in the subsequent few
time steps.
Time step 0 Time step 1 Time step 0 Time step 1
/6\ : (5 /6\ : /5
Server 0) @ ! © g Server 0) P ! o cgl
é7 05 I DODOG d)7 He ! DDOGC
1 -

[itk

(a) without Pre-Gathering (b) with Pre-Gathering

22

Further Optimization 2

» Micrograph Merging in GNN Training

® Problem

Time overhead increases with more distributed servers (N servers means N time steps in one iteration).

® Solution
Merge micrographs, thus reducing the number of time steps.

Server 0

Server 1
* Which micrograph should be merged? Server 2
* How many micrograph should be merged?

t0 t1 t2

Om‘l

m?2

m?2

mO0

ml

Initial model

ts

migration path

(a)

Merging

t0’

t1’

m0

m?2

m2|ml

m0

s

Migration path
after merging

(b)

One iteration training before (a) and

after (b) micrograph merging.

23

Experimental Setup

» System configuration
* 4 GPU Servers, each equipped with:

CPU

2xIntel(R) Xeon(R)
Gold 5318Y CPUs (48 cores)

Memory

128 GB CPU memory

» Models and datasets

* Shallow models: GCN, GraphSAGE, GAT
with hidden sizes of 16 and 128

* Deep models: DeepGCN (7), GNN-FiLM (10)

GPU

One NVIDIA A100 GPU (40 GB)

Network

10Gb/s Ethernet

» Compared systems

Dataset | #Vertex | #Edge | Dim. Vol Vol
Arxiv 169K 1.17M | 128 3.3MB 85 MB
Products | 2.45M | 61.9M | 100 | 464 MB | 980 MB
UK IM 41.2M | 600 12 MB 2.3GB
IN 1.38M | 169M | 600 | 82MB | 3.2GB
IT 41.3M 1.15B | 600 | 363MB | 92.3 GB

DGL [IA3’20]

Fetches all the required features locally or remotely

P3[OSDI’21]

Combined model-parallel and data-parallel

NeutronStar [SIGMOD’22]

Balance the redundant computation and communication time

Naive

Naive model migration methods

Overall Training Time

Mini-batch training with shallow models

] DGL H P3 [] Naive [] LeapGNN
70\16 2400 300 300
1o} - B =
.§12 1800 il b gl s i
8) 8 -1 1200 |- -1
gl]] Ul I | i '
|: 0 [n:!l\ "T[IG\ "n;‘l)\ 22) _A22) %) Y rﬂ}é\ n.";lﬁ\ "ﬂ;\ 29) _A2°) ,0®) Y AD) _C(AO) A0 | (a2®) _(AZO) ,0o®) 0 AQ) (A0 _(A0) | (A2®) _A2°) f;l%\
o W 5\\06\ GP:‘\\GG“\\\;,%G?’\ GJ’:“\ 60‘\\ SPQ?,\ G":‘\\@O“\\QPF’?’\ GP:‘\\ GG\A\ SP(,?,\ GP‘“\GO‘\\\\%PG‘&\ GP;(\\ G@\\ s,,ee\ Gp:(\\eo\«\\sp‘eﬁ\ GP;(\\
(a) Arxiv (b) Products (c) IN (d) UK
Mini-batch training with deep models Full-batch training
~32r— 15k - 2.0k 2.5k 100 O DGL [NeutronStar 0 LeapGNN 100 O DGL @ NeutronStar O LeapGNN
» - =
© o4 k- a 1.5k F 1 2.0k| 1 % 80} . = 80f
§16 | el 1.0k 1.5k - i £ oo} £ oo}
g) 5k | . y 1.0k | -1 g 401 g 40}
-% 8r 5] 0.5k '"_m "]' 0.5k _’h.h i = 20-”“ & 20}
p -
(a) Arxiv (b) Products (c) IN (d) UK (a) IN dataset. (b) UK dataset.

LeapGNN achieves 1.3-3.1x over DGL, 1.2-4.2x over P3,
1.1-4.8x over Naive, and 1.1-1.8x over NeutronStar.

Impact of Individual Techniques

O DGL B +MG O +PG Al

4 3
a3l 1 o
3 =hil |
02| 4 O
) [
Q a4l i
Dyl | »

0" & A8 (18 W28 c (128} (129) _GON e\ 0= & (Ol (B A 2BLe (122X (1 28) GOV ¢

REANNEER RN VAN NE BT RO R NP INACENG R REE SRS
(a) UK (b) Products

* +MG denotes the version where micrograph-based GNN training is turned on.
* +PG denotes the version where pre-gathering is added based on +MG.
* Allmeans the micrograph merging is also enabled.

Each technique enhances performance.
The most impactful technique varies across scenarios.

Impact of Individual Techniques

Miss Rate =100—e—otMG__O0+PG o= sk O Epoch time M # Time steps -
DGL | 74% 2 s =
. (4]] I = \U_J, | P
Arxiv NG 3% g 80 16‘27 CIE)220 LY . 4 S
E 6o} Jio € E 190} 13%
Products DGL 17% S 60 12 5 =190 \\ / ——4a 130
MG | 22% = = o ' = .
40 1go £160f . — — 12 E
Uk |DGL | 78% o 2 £ £
+MG 19% | | ,E Ic_,g130- i
DGL | 77% g 8 100 0
IN 5 S
0 0 i 5 6
MO | 0% i Request Local Missed Epoch ID
+MG decreases the +PG decreases the number LeapGNN automatically adjusts the
cache miss rate of request vertex and number of time steps to 3 which

across four datasets. local missed vertex. shows the best performance.

Sensitivity Analysis

[DGL-gather [DGL-others

O LeapGNN-gather [LeapGNN-others CIDGL O LeapGNN o5 MDGL O LeapGNN 500 ®DGL LeapGNN
1600 1 = —
= =600} - : _
L1200} 2 3200} 3400
[} 1 g [0 @
£ =400} { E150f { £EB8oof
o 800} o o 2
S 400t { 2001 18 S
£ 0 H E £ sof |_|_I { F1oof
0 0 , B) 7 5
50 100 200 400 800 512 1K 2K 4K 8K 16K 3 10 20 20 - D N
(a) Feature dimension (b) Batch size (c) Fanout size (d) Number of servers

LeapGNN consistently outperforms the comparisons under various conditions.

Summary & Conclusion

» Problem

* Feature transmission becomes the bottleneck in distributed GNN training.
> Key idea

* Introduce feature-centric model migration to reduce features transmission.
»Challenges

* Naive model migration avoids feature transfer, but incurs intermediate data transmission.

» Techniques in LeapGNN

* Micrograph-Based GNN Training

* Vertex Feature Pre-Gathering

* Micrograph Merging in GNN Training
> Results

* LeapGNN achieves up to 4.2x speedup compared to the state-of-the-art counterpart P3.

Thanks & QA

LeapGNN: Accelerating Distributed GNN Training

Leveraging Feature-Centric Model Migration

WL K27 WASHINGTON STATE

Zhejiang University [y UNIVERSITY
Source Code: https://github.com/ISCS-ZJU/LeapGNN-AE ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
Contact Email: weijianchen@zju.edu.cn é""‘ o é’}‘ S N
ISCS Lab: https://shuibing9420.github.io AVAILABLE REPRODUCED

30

mailto:weijianchen@zju.edu.cn

