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Deep Neural Network (DNN)

LUER

» Deep neural networks (DNNs) have achieved great success.

» The training time and cost are increasing rapidly.

Estimated training cost of select Al models, 2016-23
Source: Epoch, 2023 | Chart: 2024 Al Index report
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Importance Sampling

» Traditional Training: each data instance is treated equally.

»Importance Sampling-Based Training: some data are less informative, storing and
training these instances has negligible benefit to improve the model accuracy.
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Motivation

» Existing methods focus on reducing computational time, but computation
is not always the bottleneck in training.
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Motivation

» Adaptive sampling rates should be applied when a model has higher

discriminative ability.
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Motivation

»Redundant data instances can lead to unnecessary 1/O access costs

The redundant images in MNIST,
CIFAR10, and CIFAR100.
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The distribution of similarity scores in
MNIST, CIFAR10, CIFAR100, and ImageNet.



» Background & Motivation

» Design of IOWA: An I/O-Aware Adaptive Sampling Framework
» Evaluation

» Summary & Conclusion



Overview
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Overview

Adaptive Criteria: an I/O-Aware Multi-
Criteria Importance Metric to evaluate
the importance of training data
instances, taking I/O-intensive scenarios

into consideration.

Adaptive Criteria




I/O-Aware Multi-Criteria Importance Metric

» CPU-bound Task

CrossEntropyScore = —Py(Ytarget|Z)10g2 Py (Ytarget|T)

The smaller the value, the higher the probability of predicting the correct label, indicating less importance.
» 1/0-bound Task, add

Margz'n Score =1 — (Pﬁ(ytargetlx) 3 PH(ymaxlw))

The smaller the value, the lower the probability of classifying it as an incorrect label, indicating less importance.

I/0 Score =1/(a x Timejoaq + (1 — @) X Size)

The smaller the value, the worse the I/O bottleneck.



Overview

LifeCycle-aware Sampling: a Learning-
Ability-Conscious Sampling Strategy,
called Bucket Sampling, selects data

instances according to model training.

LifeCycle-aware Sampling
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Learning-Ability-Conscious Sampling Strategies

1. Regular Training: profile the bottleneck and get importance of all samples.

2. Sampling Out: dynamically adjust the training datasets by gradually moving data
from the in-process to the waiting bucket.

3. re-Sampling: randomly re-sample data from the waiting bucket when training
accuracy stagnates for k epochs.

Training Waiting  non-training
Dataset Bucket dataset
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Overview

Redundancy Replacement: further
reduce the training data size by using
copies of data that are already loaded

in memory or discarding similar copies.

Redundancy Replacement
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Redundancy Removed Importance Sampling

»CPU bound task: discard samples to avoid redundant computation

»1/0O bound task: use similar copies when cache miss to avoid I/O
stall

Cache Miss

4
Storage System

B

Cache

Selected Instances

Example: Instances {2, 4, 7} and {5, 6} are two groups with
higher similar scores. In case we need to read data instances
#4 and #7, we can replace them with instance #2 which is
cached in memory rather than loading them from remote

storage system.



Experimental Setup

» Platform
* single-machine tests: a server equipped with 8-core Intel Xeon CPUs, 128GB of

RAM, and an NVIDIA Tesla V100 GPU with 32GB of GPU memory

 data-parallel distributed training: a platform with 64-core AMD CPUs, 256GB of
RAM, and 4 A100-SXM GPUs, each with 40GB of GPU memory

* storage: 2TB SSD

» Workloads and Datasets :
* For the image classification task, we use four datasets: MNIST, CIFAR10, CIFAR100,

and ImageNet, representing small, medium, medium, and large datasets respectively.



Experimental Setup

»Baseline
* Origin: uniform sampling
* Online: samples data instances according to a loss-rank based probability.
Active Bias: re-weights data instances according to prediction variance
Biggest Loser: back-propagate instances with high loss values
Select Via Proxy: target models were trained on the coreset selected by a pre-trains
lightweight model
»Ours
* BS-norecall: BS without re-Sampling stage
* BS
* BS-random: BS with re-Sampling stage
* BS-random-RRemove: remove similar instance
* BS-random-RRepeat: re-train the similar instance



Speedup with a Single GPU

TABLE Il
THE ACCURACY AND SPEEDUP COMPARISON OF DIFFERENT
FRAMEWORKS ON MNIST

Model Sample Method Accuracy DAcc Speedup
Origin 0.9922+0.0004 1.00
BS-norecall 0.992+0.0003 2.51

AlexNet B X0. B R
BS-random-RRemove  0.992+0.0004 -0.0002  2.37
BS-random-RRepeat 0.9918+0.0011  -0.0004 1.97
Origin 0.9915+0.0007 1.00
BS-norecall 0.9917+0.0005 0.0002 1.98

ConvNet  BS-random 0.9912+0.0003 -0.0003  1.83
BS-random-RRemove  0.9915+0.0003 0 1.81
BS-random-RRepeat 0.9914+0.0003 -0.0001 1.77
Origin 0.9788+0.0 1.00
BS-norecall 0.9783+0.0004 -0.0005 1.67

MLPNet  BS-random 0.9786+0.0011  -0.0002 1.51
BS-random-RRemove  0.9784+0.0004 -0.0004 1.61
BS-random-RRepeat 0.9781+0.0 -0.0007 1.52

TABLE IV
THE ACCURACY AND SPEEDUP COMPARISON OF DIFFERENT
FRAMEWORKS ON CIFAR10

Model Sample Method Accuracy DAcc Speedup
Origin 0.923+0.002 1.00
BS-norecall 0.9115+0.0014 -0.0115 2.71
MobileNetV2  BS-random 0.9159+0.0021  -0.0071  2.10
BS-random-RRemove  0.9169+0.0008  -0.0061  2.11
BS-random-RRepeat 0.9146+0.0034  -0.0084  2.09
Origin 0.9327+0.0014 1.00
BS-norecall 0.9175+0.0015  -0.0152  3.25 l
ResNet18 BS-random 0.9243+0.002 =0.0084  2.43
BS-random-RRemove  0.9222+0.0013  -0.0105  2.49
BS-random-RRepeat 0.9224+0.0022 -0.0103 2.51
Origin 0.916+0.0023 1.00
BS-norecall 0.9033+0.0006  -0.0127  2.13
VGG16 BS-random 0.9059+0.0029  -0.0101  1.50
BS-random-RRemove  0.9057+0.0023 -0.0103  1.55
BS-random-RRepeat 0.9089+0.0034  -0.0071  1.61

TABLE V
THE ACCURACY AND SPEEDUP COMPARISON OF DIFFERENT
FRAMEWORKS ON CIFAR100

Model Sample Method Accuracy DAcc Speedup
Origin 0.685+0.0032 1.00
BS-norecall 0.679+0.001 -0.006 1.15
MobileNetV2  BS-random 0.689+0.0012 0.004 1.04
BS-random-RRemove  0.6845+0.0025 -0.0005 1.04
BS-random-RRepeat 0.6864+0.0036  0.0014 1.04
Origin 0.762+0.0022 1.00

I BS-norecall 0.7125+0.0036  -0.0495 2.15 I
ResNet18 -random 0.7518x0.0006 -0.0102 1.27
BS-random-RRemove  0.754+0.002 -0.008 1.29
BS-random-RRepeat 0.7539+0.0021  -0.0081 1.29
Origin 0.7262+0.0029 1.00
BS-norecall 0.6586+0.0033  -0.0676  1.59
VGG16 BS-random 0.718+0.0029 -0.0082 1.14
BS-random-RRemove  0.72+0.0019 -0.0062 1.15
BS-random-RRepeat 0.7194+0.0017  -0.0068 1.15

Compared to the origin, BS can achieve up to a 3x speedup.
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Speedup with Distributed GPUs

TABLE VI
THE ACCURACY AND SPEEDUP COMPARISON OF DIFFERENT NUMBERS
OF GPUs

Model (GPU number) Methods Accuracy Speedup

Origin 69.90% -
ResNetl18 (with 8 GPUs) | BS-random  69.51% 1.21 x
BS-norecall _ 69.56% 1.23 x

Origin 69.78% -
ResNetl18 (with 4 GPUs) | BS-random  69.53% 1.21 x
BS-norecall  69.35% 1.23 x

Origin 69.79% -
ResNetl18 (with 2 GPUs) | BS-random  69.37% 1.18 x
BS-norecall  69.21% 1.22 x

BS achieves a 1.2x speedup for distributed DNN training.
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The time breakdown (in minutes) of training ResNet on ImageNet.
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Thanks!

IOWA: An I/O-Aware Adaptive Sampling

Framework for Deep Learning
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