IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage System for Large Language Model Inference

Weijian Chen, Shuibing He, Haoyang Qu, Ruidong Zhang, Siling Yang, Ping Chen, Yi Zheng ^{\$}, Baoxing Huai ^{\$}, Gang Chen

浙江大学 Zhejiang University

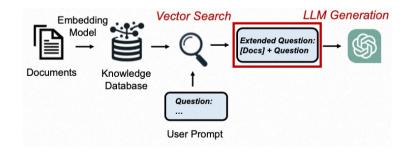
USENIX FAST 2025

Large Language Model (LLM) Inference

> LLM has been applied in a range of fields

- Context-rich prefixes + user queries = LLM requests
- Many requests share identical prefixes

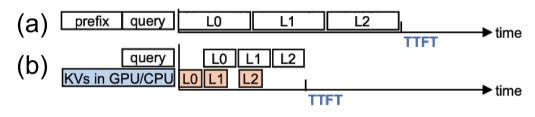
You do not have a name. You are helpful, creative, clever, and friendly <i>Examples]</i> Human: Hello, who are you?	You do not have a name. You are helpful, creative, clever, and friendly [<i>Examples</i>] Human: Hello, who are you? Al: I am an AI chatbot. How can I help you? [<i>Question</i>]	[Instructions] You are an Al chatbot. `	fou are having a conversation with a human by following rules:
 Examples] Iuman: Hello, who are you?	 [Examples] Human: Hello, who are you? Al: I am an Al chatbot. How can I help you? [Question]	You do not have a nam	e.
luman: Hello, who are you?	 [Examples] Human: Hello, who are you? Al: I am an Al chatbot. How can I help you? [Question]	You are helpful, creativ	e, clever, and friendly
luman: Hello, who are you?	Human: Hello, who are you? Al: I am an Al chatbot. How can I help you? [Question]		
luman: Hello, who are you? \I: I am an AI chatbot. How can I help you?	Al: I am an Al chatbot. How can I help you? [Question]	[Examples]	
Al: I am an Al chatbot. How can I help you?	[Question]	Human: Hello, who are	you?
	[Question]	AI: I am an AI chatbot.	How can I help you?
	Human: Tell me about the second world war.	[Question]	



* Image Source: Internet

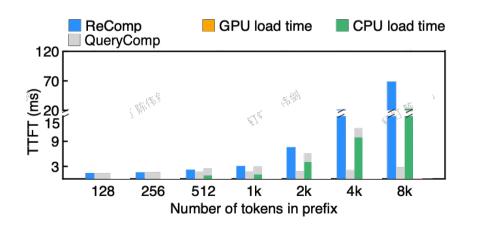
Prefix KV Storage System

Shared prefix KVs can be restored and reused



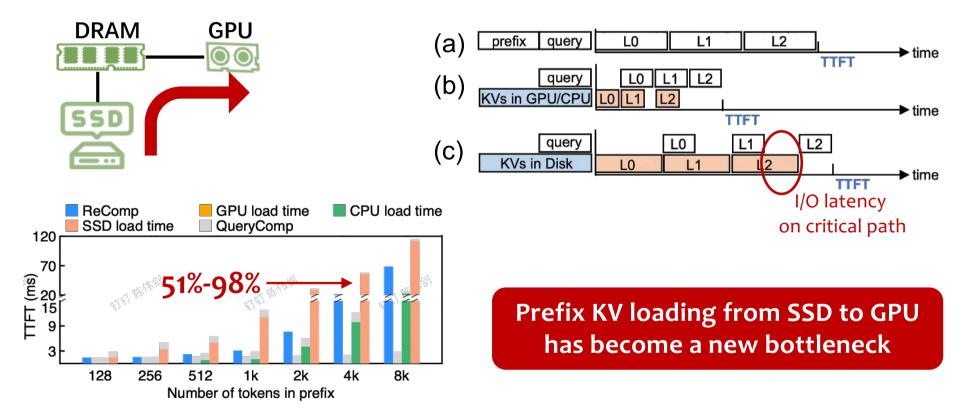
* Assume a three-layer simple LLM

Time-to-First-Token (TTFT) can be reduced.



Prefix KV Storage System

When shared prefix KVs needs to be stored into SSD



Related Work

> Most existing systems store prefix KVs only in GPU and/or CPU memory

PromptCache-MLSys24, RAGCache-arxiv24, ChunkAttention-arxiv24, SGLang-arxiv23

Limited space in GPU and CPU memory quickly becomes exhausted

> Pre-loads them into CPU memory based on the scheduler's predictions

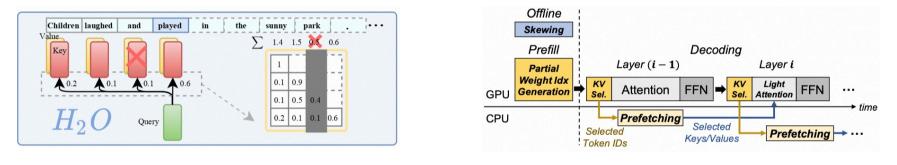
AttentionStore-ATC24

Limitations exists under high request volumes or in preemptive scheduling

Is it possible to reduce KV data that needs to be loaded?

Opportunity from KV Importance

Only preserve important KVs during decoding phase achieves the same level accuracy



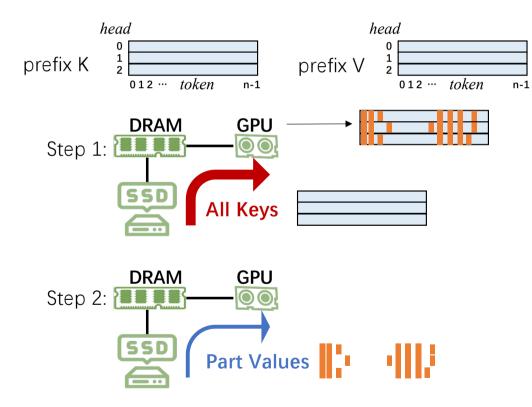
H2O-NeurIPS23

InfiniGen-OSDI24

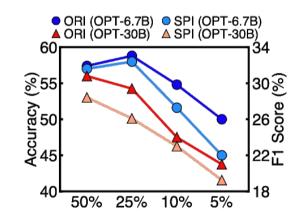
How about only load important KVs during prefill to reduce I/O bottleneck and TTFT?

Challenge 1

> A large amount of I/O is introduced to identify important KVs.



Pre-determine important KVs?
 Accuracy Drop.



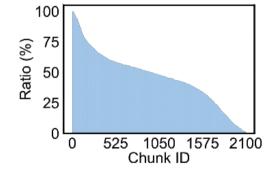
- SPI: statically pre-determine importance
- ORI: original dynamically determine importance

Challenge 2

The existing prefix KV storage and caching systems are suboptimal considering the importance of tokens' KVs.

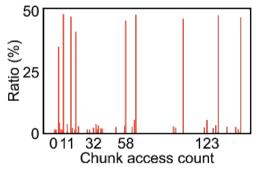
Storage: read amplification

 (Each chunk contains a mix of
 important and unimportant KVs.)



(a) The ratio of important KVs within each chunk.

2. Caching: based solely on recency or frequency(ignore the importance of KVs)



(b) Average ratio of important tokens in all chunks for a given chunk access frequency.

Outline

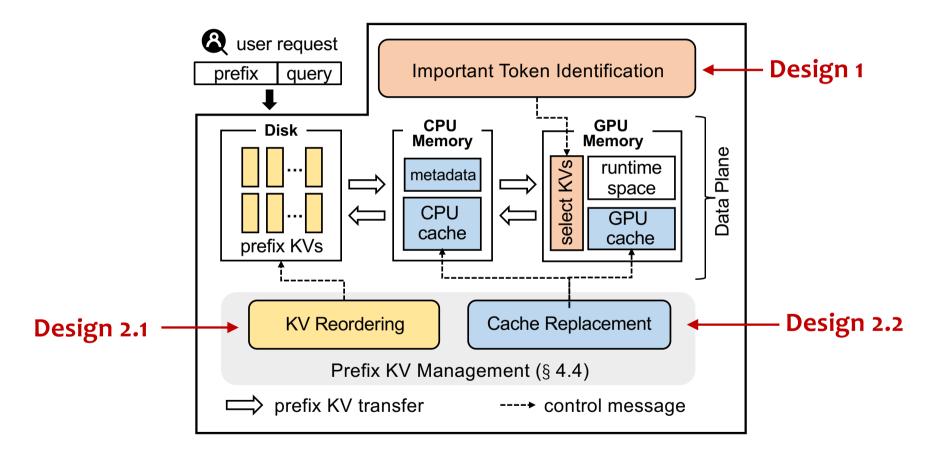
> Background & Motivation

Observation & Design of IMPRESS

Evaluation

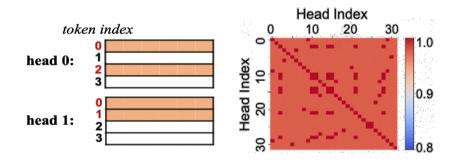
> Summary & Conclusion

IMPRESS Architecture



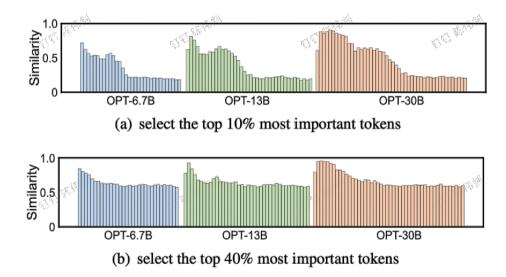
Observation

• There is a high similarity in the set of important token indices across different heads within the same layer of an LLM.



Similarity measurement:

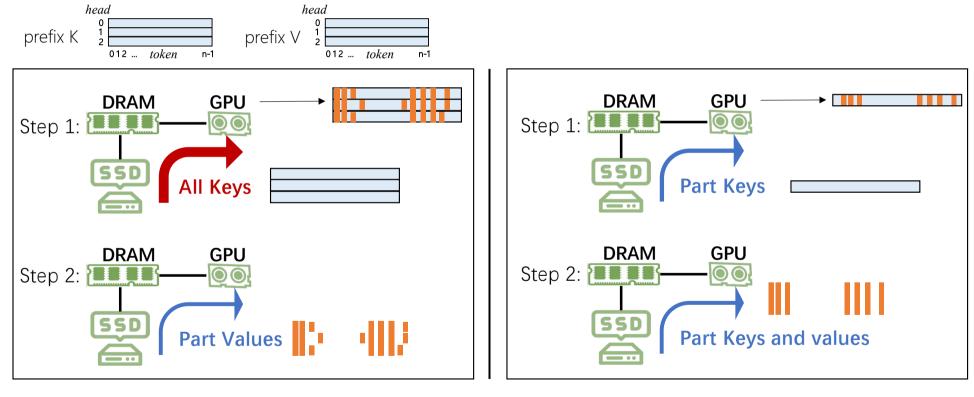
ho={0, 2} h1={0, 1} $J(h_0, h_1) = \frac{|h_0 \cap h_1|}{|h_0 \cup h_1|} = \frac{1}{3}$



The similarity of important tokens indices exists across different LLM scales and important KV ratios.

1 Similarity-Guided Important Token Identification

Key idea: Use the important token index set from a few selected heads to **approximate** the important token index sets for the remaining heads



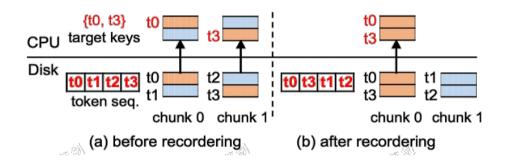
(a) Without our method

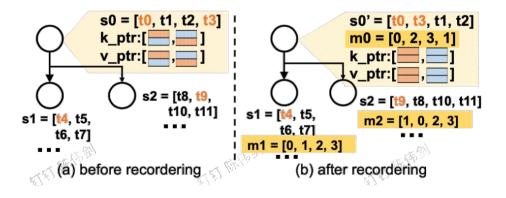
(b) With our method

2.1 KV Reordering

- ➤ Target: Reduce read amplification
- Key idea: reorder and repack important KVs into denser chunks

- Problem: KV reordering may destroy the radix tree structure by altering the token order
 - 1. avoid cross-node reordering
 - 2. Add mapping list to recovery



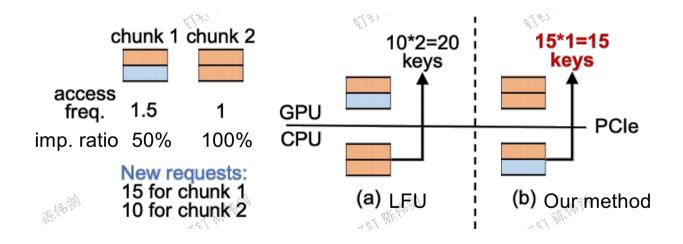


2.2 Score-Based Cache Management

Key idea: Data admission and cache replacement based on scoring.

> The score = the chunk access frequency * proportion of important KVs.

The higher the score, the higher the priority for admission into the faster medium cache.



score for chunk 1: 1.5 * 50% = 0.75 score for chunk 2: 1 * 100% = 1

Experimental Setup

System configuration

CPU	2 × AMD EPYC 7763
GPU	1× NVIDIA A100 (80GB)
Memory & SSD	128 GB DRAM, 2TB SSD (5GB/s)

Workloads and datasets

Datasets	PIQA, RTE, COPA, and OpenBookQA Prefix sizes: 55GB, 57GB, 64GB, 65 GB
Models	OPT-6.7B, OPT-13B, OPT-30B

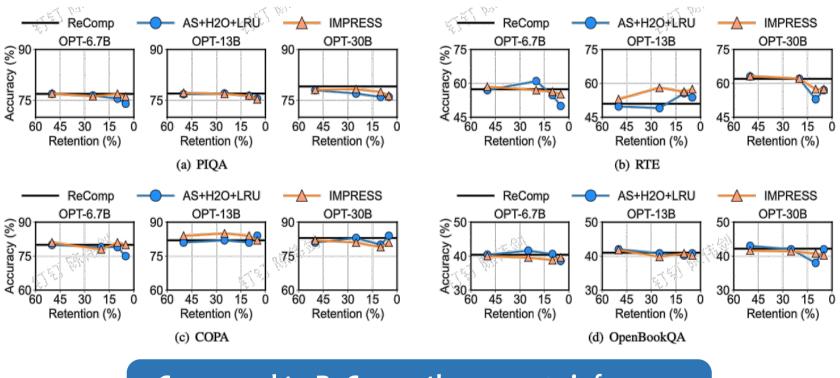
Compared systems

ReComp	Recomputation without reusing prefix KVs
AS-like	AttentionStore with async KV loading, without scheduler
AS+H2O+LRU	Add H2O on top of AttentionStore with LRU
AS+H2O+LFU	Add H2O on top of AttentionStore with LFU
IMPRESS	Our three optimizations on top of H2O

Default settings.

- (1) cache size: 10GB GPU HBM, 32GB CPU DRAM
- (2) Chunk size: keys or values of 64 tokens

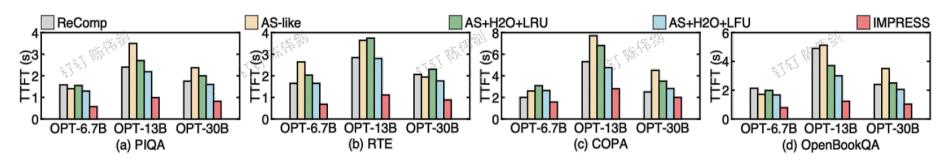
Model Inference Accuracy

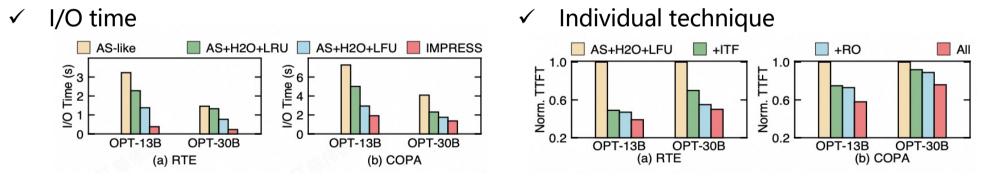


Compared to ReComp, the average inference accuracy drop is less than 0.2%

Time-to-first-token (TTFT)

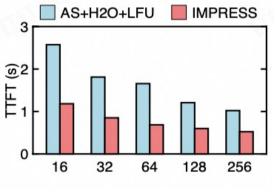
✓ TTFT

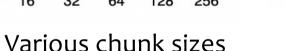


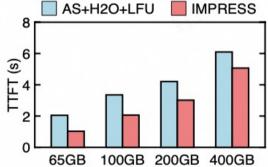


IMPRESS outperforms alternatives, with a 1.2×~2.8× improvement over SOTA solutions, due to a 1.5×~3.8× reduction in I/O time.

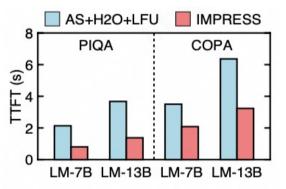
Sensitivity Analysis







Various dataset scales



Results on Llama models

IMPRESS outperforms the leading alternative on various cases.

More evaluations: checkout our paper

Summary & Conclusion

Problem

• I/O becomes the bottleneck when shared prefix KVs are loaded from SSD for LLM

Key idea

Only load important KVs during prefill phase

Challenges

- A large amount of I/O is introduced to identify important KVs
- Storage and caching systems are suboptimal

Techniques in iCache

- Similarity-Guided Important Token Identification
- KV Reordering & Score-Based Cache Management

Results

• IMPRESS outperforms the alternatives with the same level of inference accuracy

Thanks & QA

IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage System for Large Language Model Inference

Contact Email: weijianchen@zju.edu.cn

ISCS Lab: https://shuibing9420.github.io