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Deep Neural Network (DNN) Training

 DNN has been applied in a range of fields

DNN training pipeline
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Deep Neural Network (DNN) Training

 Characteristics of each stage

When memory is insufficient for growing dataset
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Data
Loading

Data
Preprocessing

Forward and Backward
Computation

 Poor temporal locality. (Access each data
item only once in each epoch)

 Poor spatial locality. (Fully random access)

 Operators are
usually lightweight

 DL accelerators are
getting faster: GPU
V100, A100, TPU, ASIC…

Data Loading is becoming the
training bottleneck !

LRU-based cache is
not practice. 
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Deep Neural Network (DNN) Training

 Common techniques to accelerate DNN training
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These widely used techniques are inefficient for I/O-bound DNN tasks.

 Data prefetching
 Traditional data caching
 Batch size adjustment
Multi-GPU training

31%

90%



Related Work: DNN Cache Optimization

 Explore data locality in more depth.
• between epochs → CoorDL [VLDB’ 21]: A static cache.
• between multiple jobs → OneAccess [HotCloud’ 19], et al.: Sharing cached data.

 Exploit data substitutability of DNN training.
• DeepIO [MASCOTS’ 18], Quiver[FAST’ 19]: Replace cache missed data with data

in the cache
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These techniques are not sufficient when data size is huge.
DNN applications in all of these work need to

fetch all data from cache/storage for each epoch training.



Opportunity from Importance Sampling
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 For each epoch training:

H-samples L-samples

a. Default DNN training:

b. Importance sampling-based DNN training:

Original
accuracy

Comparable
accuracy



Opportunity from Importance Sampling

However, existing IS  algorithms are designed for computing-bound
tasks (We name them CIS).
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a. Computing-bound training (cache size 100%) b. I/O-bound training (cache size 20%)

CIS Speed up training 1.3x CIS Speed up training 1.02x 



I/O-oriented Importance Sampling Algorithm
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 Inspired by CIS, we propose I/O-oriented importance sampling (IIS).

b. CIS DNN training:

c. IIS DNN training:

H-samples L-samples

Comparable
accuracy

Comparable
accuracy



The necessity of re-design cache optimization

It seems promising to combine IIS and cache optimization…
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Cache optimization

IIS Reduce # of data items loaded

Reduce data loaded from storage

Mitigate I/O
bottleneck of
DNN training

select data items based 
on their impact on model 

accuracy

OS cache
Quiver

CoorDL…
Existing DNN 
cache system

Unmatched
cache replacement
based on locality 

IIS It is necessary to re-
design cache 
management 
considering

importance sampling.



Challenges
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How to keep a maximum number of H-samples in the
cache when the importance values changes to achieve
high cache hit rate ?

How to deal with poor I/O efficiency when accessing L-samples ?

How to coordinate samples cached between multiple jobs ?

1. Importance value of a specific data item fluctuates during
training.

2. Cache capacity is limited and L-samples are likely to be cache missed.

3. The cache needs to serve multiple jobs.

 Intuitively, caching H-samples as much as possible. However…



Outline

 Background & Motivation

 Design of iCACHE: an cache system to accelerate DNN training

 Implementation & Evaluation

 Summary & Conclusion
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iCACHE Architecture

Cache clients
 Request data items based on

Importance sampling algorithm

Maintains each data item’s
importance value

Cache server
 User-level cache

 H-cache: cache H-samples

 L-cache: cache L-samples
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iCACHE Architecture
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Training dataset

Cache clientDL
Framework

Cache
Manager

Cache client

Multi-job 
handling

H-cache

L-cache

Cache client

Importance-informed 
replacement

Dynamic 
packaging

Storage 
System

Deep learning applications

Control flow Data flow

Server

Cache Manager (Key ideas)

 Importance-informed cache

replacement

 Dynamic packaging to server

L-sample requests

Multi-job handling module



1. Importance-Informed Cache Algorithm

 Aims to serve H-sample requests and improve
H-cache hit ratio.

 Use a small-top-heap for cache replacement.
• O(1) to find the data item with smallest

importance value.

 Tracks samples‘ importance value and refresh.

 Build shadow-heap to asynchronously update
importance value.

• The additional space overhead is less than 0.5%
of the cache size.
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LRU-like cache
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iCACHE
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(a) LRU-like algorithm



2. Dynamic Packaging
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 Aims to serve L-sample requests.

 Key idea:
• apply substitutability on L-samples has minor

impact on model accuracy while reducing data
fetch time.

 Two asynchronous concurrent threads
 three benefits:

a) Alleviate random small I/O
b) Improving effective storage bandwidth
c) Increase randomness of training sequence

L-cache

Memory

Storage

Packaging

H-cache Loading

Existing packages

* The white area represents L-samples; the blue 
area denotes H-samples.



3. Multi-Job Handling

 One data item may receive different import-
ance value

a) Different model has different fit capacity
b) Importance values tend to decrease during

training

1. Evaluate the cost-effectiveness of caching
for each job by profiling

2. Adjust importance value:
• use relative importance value
• calculate aggregated importance value
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Implementation

 Cache client (2000 LOC)
• New Dataset interface of PyTorch

 Cache server (3500 LOC)
• Key-value structure in Golang
• dynamic packaging & multi-job handling

 Easy to deploy iCACHE.

We also extend iCACHE to the distributed version.
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(1.8.0)



Experimental Setup

 System configuration

 Compared systems
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Default PyTorch + LRU user-level cache

Base CIS + LRU user-level cache

Quiver [FAST’20] Uses sample substitutability & Coordinated eviction

CoorDL [VLDB’21] Does not evict already cached data

iLFU IIS + LFU to compare different cache strategies

CPU 2× AMD EPYC 7742 CPUs

GPU 8× NVIDIA A100 

Dataset store OrangeFS (Remote PFS),
10Gbps Ethernet.

 Workloads and datasets
Datasets CIFAR10, ImageNet-1k

DNN
Models

ShuffleNet, ResNet18, MobileNet, 
ResNet50, VGG11, MnasNet, 

SqueezeNet, and DenseNet121.

 Default cache size: 20% of total training dataset

State-of-the-art



Accuracy
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Comparable accuracy is achieved on different models and datasets



Overall Performance
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iCACHE speeds up the overall training time by 1.7x compared to SOTA, and 2.3x to
Base. Compared to Default, iCACHE reduces the I/O time by 2.4x on average.

1.7x

2.3x



Multi-job Training Performance
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iCACHE speeds up the jobs completion time
in multi-job scenario by up to 1.2x.

INDA: Manage cache simply based on importance value given by ShuffleNet.
INDB: Manage cache simply based on importance value given by ResNet50.



Multi-GPU and multi-node training

21More evaluations: checkout our paper. 

iCACHE always performs better than Default on Multi-GPU training.
iCACHE speeds up at least 8.6x and 7.6x under 2-server and 4-server configurations.

(a) Multi-GPU training (b) Multi-node training



Summary & Conclusion

 Problem
• I/O is becoming the bottleneck in DNN training

 Key idea
• Introduce I/O-oriented importance sampling (IIS) and optimize cache

management considering importance values.
 Techniques in iCACHE

• Importance-Informed Cache Algorithm
• Dynamic Packaging
• Multi-Job Handling

 Results
• iCACHE alleviates I/O bottleneck of DNN training in various training scenarios.
• iCACHE outperforms state-of-the-arts while maintaining comparable accuracy.
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Thanks & QA
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iCACHE: An Importance-Sampling-Informed Cache for 

Accelerating I/O-Bound DNN Model Training 

Contact Information: weijianchen@zju.edu.cn
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