A Novel Multi-CPU/GPU Collaborative Computing Framework for SGD-based Matrix Factorization

Yizhi Huang*, Yinyan Long†, Yan Liu*,
Shuibing He‡, Yang Bai*, Renfa Li*

* HUNAN UNIVERSITY † ZHEJIANG LAB ‡ ZHEJIANG UNIVERSITY
Outline

• Background and Motivation

• Design and Implementation

• Evaluation
Background

- Matrix Factorization: can help recommender systems predicted user’s preferences to products.

- SGD-based MF

\[\theta(p_i, q_j) = \frac{1}{2}(r_{i,j} - p_i \cdot q_j)^2 + \lambda_1 \|P\|^2 + \lambda_2 \|Q\|^2 \]

\[p_i \leftarrow p_i - \gamma \frac{\partial \theta(p_i, q_j)}{\partial p_i} \]

\[q_j \leftarrow q_j - \gamma \frac{\partial \theta(p_i, q_j)}{\partial q_j} \]

Iteration

Each score \(r \) will be used to update two \(k \)-dimensional vectors \(p, q \).

Need to accelerate SGD-based MF
Observation: the Under-utilized CPUs

- Many computing nodes have multi-CPUs/GPUs
- Existing researches more willing to manage the GPUs for computing
- CPUs’ computing power is easily overlooked
- Is it possible to cooperate with the CPUs to accelerate SGD-based MF?
• The performance of high-end GPUs does not increase linearly with price

• Cooperative computing of CPU and GPU may bring a good price/performance ratio
Challenges

- How to uniformly manage and transparently use heterogeneous CPUs and GPUs?
- How to design appropriate data distribution?
- How to optimize communication inter-CPUs/GPUs?

Unbalanced load leads to short board effect

Naïve Communication Cost: \(R_{m \times n} = P_{m \times k} \times Q_{k \times n} \)

Netlix: \(m = 480190, n = 17771, k = 128, \text{iterations} = 20, \text{cost} = 0.4s \)
Outline

• Background and Motivation

• Design and Implementation

• Evaluation
Our solution: HCC-MF

Problem 1
How to transparentize heterogeneous CPUs and GPUs

A general framework that unifies the abstraction and workflow

Problem 2
How to distribute data to each heterogeneous CPU/GPU to make the whole system more efficient?

- A time cost model for guiding data distribution.
- Two data partition strategies to deal with different synchronization overhead conditions

Problem 3
How to optimize communication Inter-CPUs/GPUs?

Communication optimization strategies that reduce the amount of data transmission and use computation to overlap communication
HCC-MF

- Heterogeneous CPUs/GPUs are abstracted into worker processes
- Use shared memory as a COMM channel between processes
- Server assigns data to workers, workers asynchronously calculate SGD-based MF
- Workers: Pull -> Computing -> Push
- Servers: Synchronization $\sum_{i=1}^{p} (P_i + Q_i)/p$
Our solution: HCC-MF

Problem 1
How to transparentize heterogeneous CPUs and GPUs

A general framework that unifies the abstraction and workflow

Problem 2
How to distribute data to each heterogeneous CPU/GPU to make the whole system more efficient?

- A time cost model for guiding data distribution.
- Two data partition strategies to deal with different synchronization overhead conditions

Problem 3
How to optimize communication Inter-CPUs/GPUs?

Communication optimization strategies that reduce the amount of data transmission and use computation to overlap communication
Time Cost Model

\[T = \max \{ T_i \} + T_{\text{sync}} \]

- \(T_i \gg B_i \)

Omit performance-related components

\[T = \max \left\{ \frac{x_i \text{nnz} (16k + 4)}{B_i} \right\} + \frac{2k(m + n)}{B_{\text{bus}_i}} + \frac{3tk(m + n)}{B_{\text{server}}} \]

Can sync be ignored?

Worker 0
- Pull
- Computing
- Push

Worker 1
- Pull
- Computing
- Push

Worker 2
- Pull
- Computing
- Push

Worker 3
- Pull
- Computing
- Push

Worker 4
- Pull
- Computing
- Push

Worker \(i \)
- Computational complexity: \(7kx_i \text{nnz} \)
- Memory access complexity: \((16k + 4)x_i \text{nnz} \)
- Transmission complexity: \(2k(m + n) \)
Data partition for load balance

\[
\theta(x) = \min\{T\} = \min \left\{ \max \left\{ \frac{x_i \cdot \text{nnz}(16k + 4)}{B_i} \right\} + \frac{2k(m + n)}{B_{bus_i}} \right\}
\]

\[
\theta(x) = \min\{\max(Ax + B)\}
\]

Assuming \(B_i\) is a constant function of \(x_i\)

Can DP0 really guarantee load balance?

\[
a_1x_1 + b_1 = a_2x_2 + b_2 = \cdots = a_nx_n + b_n, \theta \text{ is the minimum}
\]

\[
b_1 \approx b_2 \approx \cdots \approx b_n
\]

\[
\text{DP}_0: \ x_i = \frac{1}{\sum_{j=1}^{p} a_j} = \frac{1}{\sum_{j=1}^{p} \frac{T_i e}{T_{j e}}}
\]
Data partition for load balance

- The assumption of B_i is not true
- The Runtime performance may not be ignored

Differential

if Δx is small, ΔT can be regarded as linear

Few iterations

DP0 -> Algorithm 1 -> DP1

Algorithm 1 Compensation algorithm

Input: Old data partition $\{x_1, x_2, ..., x_p\}$; The computing time $\{t_1, t_2, ..., t_p\}$

Output: New data partition $\{x_1, x_2, ..., x_p\}$

1. $T_{\text{prev}} = \frac{1}{p} \sum_{i=1}^{p} t_i$
2. $T_{\text{prev}} = \frac{1}{p} \sum_{i=1}^{p} (x_i + \Delta t_i)$
3. while $\min\{T_{\text{prev}} - T_{\text{prev}}\} > 0.1$ do
 4. $T_{\text{prev}} = \frac{1}{p} \sum_{i=1}^{p} (x_i + \Delta t_i)$
 5. for $i = 1, c$ do
 6. $x_i_{\text{new}} = \frac{x_i_{\text{prev}} + x_i_{\text{new}}(x_i - x_i_{\text{new}})}{x_i_{\text{prev}}}$
 end for
 7. for $j = 1, g$ do
 8. $x_j_{\text{new}} = \frac{x_j_{\text{prev}} + x_j_{\text{new}}}{x_j_{\text{prev}}}$
 end for
10. $\{x_1, x_2, ..., x_p\} \leftarrow \{x_1_{\text{new}}, x_2_{\text{new}}, ..., x_p_{\text{new}}\}$
11. $T_{\text{prev}} = \frac{1}{p} \sum_{i=1}^{p} (x_i_{\text{new}} + \Delta T)$
12. return $\{x_1, x_2, ..., x_p\}$
Data partition: hiding synchronization

\[T = \max \left\{ \frac{x_i \text{nnz}(16k + 4)}{B_i} + \frac{2k(m + n)}{B_{bus_i}} \right\} + \frac{3tk(m + n)}{B_{server}} \]

\(t \) is a nonlinear function of \(x \)

Difficult to solve the objective function

Use DP1 to balance the computational overhead of each worker

\[T_1 = T_2 = \cdots = T_n \]

Use calculation to hide synchronization overhead

\[T_{(i+n)} = T_i \pm nT_{i,\text{sync}} \]

Server

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4
Our solution: HCC-MF

Problem 1
How to transparentize heterogeneous CPUs and GPUs

A general framework that unifies the abstraction and workflow

Problem 2
How to distribute data to each heterogeneous CPU/GPU to make the whole system more efficient?

- A time cost model for guiding data Distribution.
- Two data partition strategies to deal with different synchronization overhead conditions

Problem 3
How to optimize communication Inter-CPUs/GPUs?

Communication optimization strategies that reduce the amount of data transmission and use computation to overlap communication
Reduce data transmission

Rows (columns) are independent of each other

Transmitting Q matrix only

The data range of the rating matrix is limited

Transmitting FP16 Data

Rating Matrix R

User Matrix P

Item Matrix Q

\[R \approx \hat{R} = P \times Q \]

\[k \]
Overleap communication

Multiple Asynchronous computing-transmission streams in worker

GPU: copy engine

CPU: multithreads and free bandwidth

SoC: copy engine in iGPU
Outline

• Background and Motivation

• Design and Implementation

• Evaluation
Evaluation Setup

<table>
<thead>
<tr>
<th>Item</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>2 Intel(R) Xeon(R) Gold 6242, Nvidia RTX 2080S, Nvidia Rtx 2080</td>
</tr>
<tr>
<td>DataSet</td>
<td>Netflix, Yahoo Music R1, R2, R1*, Movielens-20m</td>
</tr>
<tr>
<td>Baseline</td>
<td>FPSGD and cuMF_SGD we implemented</td>
</tr>
</tbody>
</table>

- We do not change the core idea of the baseline algorithm in our implementation
- We optimized the code to make the baseline execute faster
- We use baseline as the kernel running on the worker
Overall performance

Same convergence rate

Faster training speed

Netflix

R1

R2
Data partition evaluation

DP0 can only guarantee load balancing on similar processors

DP1 can guarantee load balance on all processors
- Netflix-4workers: -12.2%
- R2-4workers: -10%

DP2 can hide synchronization overhead
- R1*-4workers: -12.1%
Without any communication optimization, the communication overhead will offset the benefits brought by parallelism.

Q can achieve better optimization results, but the effectiveness depends on the shape of the rating matrix.

The transmission performance of half-q is more than twice that of Q.
Conclusion

HCC-MF: A heterogeneous multi-CPU/GPU collaborative computing framework for SGD-based matrix factorization

- Unified workflow and transparent heterogeneous CPUs/GPUs usage
- Data distribution algorithm for different synchronization conditions
- Optimal inter-CPUs/GPUs communication

Limitation (Under study):

- Communication overhead can be further optimized
- Server bottleneck
Thank you

Yizhi Huang
huangyizhi @hnu.edu.cn