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Graph Convolutional Network

Graph convolutional networks (GCN) are widely used in node classification, link
prediction and recommendation.
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Graph Convolutional Network

GCN training LTI
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There are many irregular memory accesses in Aggregation stages, causing
a performance bottleneck in the system.



Processing-in-Memory
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PIM shows superior performance over traditional architectures for GCN .



Motivation 1:

» Motivation 1: Existing ReRAM-based GCN accelerators do not fully resolve the
under-utilization issues of ReRAM crossbars.
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Motivation 1:

» The idleness are mainly caused by two reasons.

» First, data dependencies exist among stages.
» Second, different stages have distinct computation patterns (up to 888x).
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(a) Baseline. Unused crossbar: 3. Execution time units: 52



Motivation 2:

» Motivation 2: vertex updating operations (writing mapped vertices onto crossbars)
can be time-consuming.

Writing mapped vertices onto crossbars
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Our Initial Idea:

Use unoccupied crossbar resources as replicas to shorten the execution
times of longer stages, thus streamlining the overall pipeline.

Selectively update only a portion of vertices on ReRAM-based PIM
architectures to optimize performance.
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Challenge 1:

» Challenge 1: It is difficult to determine how many replicas to set, since the execution
times vary at different stages.
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(c) Allocate 3 crossbars for stage2. Execution time units: 16



Challenge 2:

» Challenge 2: Existing mapping strategies for ReRAM-based GCN accelerators, such
as ReGraphX and SIimGNN, may negate the latency benefits of selective updating.
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Design 1: Architecture and dataflow

Design 2.1
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ReRAM-SRAM architecture for GCN accelerator

Resource ||

Design 2.2

e ISU Data
Design 3 ——yapme |

Off-chip Memory — CO stage—~ AG stage
DIO) ® — LC stage— GC stage
® Global Buffer IR || OR S&H
T ® @ [® © G @o
- vy w* \ A / / %g %El:
2 3 3) 7 7 T
o Tilg: Tilg Tilg Tilg: TiI<ej Tile A .. CHCH
5 ¥ ] ¥ ¥ ¥ ¥ I - O
o | Adder | | Adder ||| Adder | M
Ic 4@ ) 5 4@ 4@ 4@ *@ \\ = |
% Tile| |Tile Tile | || Tile Tile| |Tile o | oo
© \ N =l
EEN e
\
Weight Minager - Activation Module | |\ i - ﬁlj

. » CO: 1-4 > LC: 912
Design 1 > AG: 5-8 > GC 13-14



Design 2.1: ML-based Execution Time Prediction

Key idea: (1) Use the Multilayer perceptrons (MLP) model to predict stage execution
times on a crossbar-based PIM accelerator, (2) then greedily allocate replicas based on

these times.
(1) ML-based Execution Time Prediction
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Design 2.2: Max-Heap Based Resource Allocator

Key idea: Use an MLP model to predict stage execution times on a crossbar-based
PIM accelerator, then greedily allocate replicas based on these times.

(2) Max-Heap Based Resource Allocator
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Design 3: Interleaved mapping with adaptive selective

update method

Key idea: Update important vertices every epoch, less important vertices every 20
epochs. Use interleaved mapping to balance writes across crossbars.

Adaptive selective vertex updating
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Evaluation Setup

» System configuration

PIM-based simulator, NeuroSim

» Compared systems

» Workloads and datasets

Link prediction: Ddi, collab, ppa,

Datasets L . .
Node prediction:proteins, arxiv, products, Cora

Six GCN models (256-256-256, 128-256-256, 58-

Model
oaets 256-256, 8-256-112, 128-256-40, ... )

Serial sequential execution without pipeline and graph sparsification;
SlimGNN-like [TCAD22] SIimGNN without weight pruning;
ReGraphX [DATE21] a fixed resource allocation ratio and it discards graph sparsification

ReFlip [hpca22]

adopts replicas only in combination phases and without sparsification

GOPIM-Vanilla

GOPIM without using ISU

GOPIM

ours




Overall Performance and Energy Saving

GOPIM gains the largest speedup and energy saving for all datasets.
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GOPIM achieves 727.6x, 2.1x, 2.4 X, 45.1X, and 1.5X on average, compared

to Serial, SIimGNN-like, ReGraphX, ReFlip, and GOPIM-Vanilla, respectively.
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SpeedUp

Impact of Individual techniques
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(a) Speedup. (b) Energy Comsumption.

+PP, +ISU, and GOPIM deliver up to 62%, 75%, and 79% energy reduction,

respectively, across all datasets.
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Additional Results in Paper
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Accuracy analysis Sensitivity analysis Scalability analysis Overhead analysis
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