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Ø Related work comparison



Introduction : Problem Definition

Ø Preliminaries

• Bipartite graph 𝐺 𝑈,𝑉, 𝐸 :  A graph structure 
contains two disjoint vertex sets 𝑈,𝑉 and an 
edge set 𝐸.𝐸 ⊆ 𝑈×𝑉.

• Biclique : A complete bipartite graph in which 
every vertex is connected to every vertex in the 
opposite subset.

• Maximal biclique : a biclique that can not be 
further enlarged to form a large biclique. 

Ø Problem definition
• Maximal biclique enumeration (MBE) aims to 

find all maximal bicliques in 𝐺.
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A bipartite graph 𝐺! containing 6 maximal bicliques.



Introduction : MBE on CPUs

Ø Set enumeration tree for MBE

• Each tree node is a 3-tuple (𝐿, 𝑅, 𝐶). 𝐿, 𝑅
is the corresponding biclique and 𝐶 stores 
candidate vertices for expanding 𝑅.

Ø Baseline solution

• Step 1 : Utilize a set enumeration tree to 
generate the powerset of 𝑉.

• Step 2 : Expand each subset of the 
powerset of 𝑉 to a biclique (𝐿, 𝑅) and 
enumerate maximal ones.
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Introduction : MBE on CPUs

• Recent optimizations
• Vertex ordering [1, 2, 5]

• Candidates pruning using pivots [1, 2]

• Parallelization on multicore CPUs [3] or distributed architectures [4]

Existing solutions for MBE are insufficient because their performance speedup is 
constrained by the limited parallelism of CPUs.

[1] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2022. Efficient Maximal Biclique Enumeration for Large Sparse Bipartite Graphs. VLDB 2022. 
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[4] Arko Provo Mukherjee and Srikanta Tirthapura. Enumerating Maximal Bicliques from a Large Graph Using MapReduce. IEEE Trans. Serv. Comput. 10, 5 
(2017), 771–784.

[5] Yun Zhang, Charles A. Phillips, Gary L. Rogers, Erich J. Baker, Elissa J. Chesler, and Michael A. Langston. BMC bioinformatics 15, 1 (2014), 110.
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Introduction : Related Work Comparison
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An enumeration tree for mining pattern P in data graph G.

[1] Xuhao Chen and Arvind. Efficient and Scalable Graph Pattern Mining on GPUs. OSDI 2022. 857–877.

Problem MBE Graph pattern mining [1]

Vertex count 
in enumerated 
subgraphs

Unfixed number of 
vertices, can be large.

Fixed number of vertices 
equivalent to pattern 
size |P|, typically small.

Enumeration 
tree height

Unfixed and can be up 
to 𝑑!"#(𝑉).

Fixed and equal to |P|.

Conclusion

(1) MBE requires significantly more memory than 
GPM to actively maintain up to 𝑑!"#(𝑉) tree 
nodes for backtracking. 

(2) MBE generates more severe imbalanced 
workloads than GPM due to the variation in 
height among its enumeration trees.
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Challenges

Ø Large memory requirement
Ø Massive thread divergence
Ø Load imbalance



Challenge 1 : Large Memory Requirement
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Directly parallelizing existing MBE procedures on an A100 GPU 
will exceed the memory capacity on multiple datasets.

Dynamic memory 
allocations on GPUs 

are expensive

We need to execute 
multiple MBE 

procedures in parallel

Pre-allocate memory 
on GPUs before 

enumeration

Requires multiple 
blocks of memory

Exceeds the memory capacity



Challenge 2 : Massive Thread Divergence
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GPU architecture.

CS 0

if((threadIdx.x & 1) == 1){
code A;
if((threadIdx.x & 2) == 2){
code B;

} else{
code C;

}
}else{
code D;
if((threadIdx.x & 2) == 2){
code E;

} else{
code F;

}
}

CS 1

code A;
code A;

CS 0 and CS 1 are GPU code segments where threads with different 
routines execute 2 sets of codes each.



Challenge 2 : Massive Thread Divergence
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Challenge 2 : Massive Thread Divergence
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Challenge 2 : Massive Thread Divergence
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CS 0 requires more 
time because of the 
thread divergence.



Challenge 3 : Load Imbalance
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Active SMs rapidly decline over time in a 
straightforward algorithm.

Subtrees have 
varying node counts

Nodes have varying 
vertex counts

Severe load imbalance
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GMBE

Ø Stack-based iteration with node reuse
Ø Pruning using local neighborhood sizes
Ø Load-aware task scheduling 



Idea 1 : Stack-based Iteration with Node Reuse 

Ø Key Observation 

• Vertices in the child 
node are always a 
subset of vertices in 
the parent node. 
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Ø Main idea

• We allocate memory for the root node and reuse 
this memory to derive all nodes within the 
subtree, resulting in a notable reduction in 
memory usage.



Idea 1 : Stack-based Iteration with Node Reuse 
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Ø Step 1 : initialize node 𝒓

Enumeration tree rooted by node 𝑟 Memory usage for existing approach Memory usage for GMBE

The local 
neighborhood size 
for 𝑣" is 3 because 
𝑣" connect with 
𝑢#, 𝑢$, and 𝑢% in 𝐿&.



Idea 1 : Stack-based Iteration with Node Reuse 
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Ø Step 2 : generate node s

Enumeration tree rooted by node 𝑟 Memory usage for existing approach Memory usage for GMBE



Enumeration tree rooted by node 𝑟 Memory usage for existing approach Memory usage for GMBE

Idea 1 : Stack-based Iteration with Node Reuse 
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Ø Step 3 : generate node t
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Idea 2 : Pruning Using Local Neighborhood Sizes

Ø Key observation
• Local neighborhood sizes, as a necessary 

intermediate result, can be utilized for pruning.

Ø Main idea
• We prune useless candidates if their local 

neighborhood sizes do not change after popping a 
traversed child node. This approach reduces thread 
divergence by checking multiple local 
neighborhood sizes simultaneously..
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GMBE proactively prunes node 𝑡# by removing useless 
candidate vertex 𝑣% at node 𝑟 because the local neighborhood 
size (i.e., 2) for 𝑣% does not change after popping node 𝑠.



Idea 3: Load-aware Task Scheduling 

Ø Key observation
• Due to the imbalance of subtrees in MBE 

problems, directly mapping subtrees to 
computational resources leads to significant 
load imbalance.

Ø Main idea
• Design two thresholds to detect large subtree.

• Dynamically divide large trees into multiple 
subtrees to balance the workloads.
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Idea 3: Load-aware Task Scheduling 
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Solution 1 : Map subtrees to warps.



Idea 3: Load-aware Task Scheduling 
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Solution 2 : Map subtrees to blocks.



Idea 3: Load-aware Task Scheduling 
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Solution 3 :  Dynamically divide large tree into multiple subtrees and  map subtrees to warps.
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Evaluation

Ø Overall evaluation
Ø Effect of optimizations
Ø Sensitivity Analysis



Evaluation : Overall Evaluation
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GMBE is 3.5×–69.8× faster than any next-best competitor on CPUs on all testing datasets.



Evaluation : Effect of Optimizations
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GMBE significantly reduces the memory usage, efficiently reduces the enumeration space, and successfully balance 
the workloads.



Evaluation : Sensitivity Analysis
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Adaptability on different GPU (log scaled). Scalability of GMBE on a machine with multi-GPU.



11/14/23 32

Q & A


