
Efficient Maximal Biclique Enumeration on GPUs

Zhe Pan, Shuibing He, Xu Li, Xuechen Zhang*, Rui Wang, Gang Chen

Zhejiang University, *Washington State University Vancouver

11/14/23 1

Outline

Ø Introduction
• Problem definition

• MBE on CPUs

• Related work comparison

Ø Challenges of MBE on GPUs
• Large memory requirement
• Massive thread divergence

• Load imbalance

Ø GMBE : the first highly-efficient GPU solution for the MBE problem
• Stack-based iteration with node reuse

• Pruning using local neighborhood sizes
• Load-aware task scheduling

Ø Evaluation

11/14/23 2

11/14/23 3

Introduction

Ø Problem definition
Ø MBE on CPUs
Ø Related work comparison

Introduction : Problem Definition

Ø Preliminaries

• Bipartite graph 𝐺 𝑈,𝑉, 𝐸 : A graph structure
contains two disjoint vertex sets 𝑈,𝑉 and an
edge set 𝐸.𝐸 ⊆ 𝑈×𝑉.

• Biclique : A complete bipartite graph in which
every vertex is connected to every vertex in the
opposite subset.

• Maximal biclique : a biclique that can not be
further enlarged to form a large biclique.

Ø Problem definition
• Maximal biclique enumeration (MBE) aims to

find all maximal bicliques in 𝐺.

11/14/23 4

A bipartite graph 𝐺! containing 6 maximal bicliques.

Introduction : MBE on CPUs

Ø Set enumeration tree for MBE

• Each tree node is a 3-tuple (𝐿, 𝑅, 𝐶). 𝐿, 𝑅
is the corresponding biclique and 𝐶 stores
candidate vertices for expanding 𝑅.

Ø Baseline solution

• Step 1 : Utilize a set enumeration tree to
generate the powerset of 𝑉.

• Step 2 : Expand each subset of the
powerset of 𝑉 to a biclique (𝐿, 𝑅) and
enumerate maximal ones.

11/14/23 5

Introduction : MBE on CPUs

• Recent optimizations
• Vertex ordering [1, 2, 5]

• Candidates pruning using pivots [1, 2]

• Parallelization on multicore CPUs [3] or distributed architectures [4]

Existing solutions for MBE are insufficient because their performance speedup is
constrained by the limited parallelism of CPUs.

[1] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2022. Efficient Maximal Biclique Enumeration for Large Sparse Bipartite Graphs. VLDB 2022.
1559-1571.

[2] Aman Abidi, Rui Zhou, Lu Chen, and Chengfei Liu. Pivot-Based Maximal Biclique Enumeration. IJCAI 2020. 3558–3564.

[3] Apurba Das and Srikanta Tirthapura. 2019. Shared-Memory Parallel Maximal Biclique Enumeration. HiPC 2019.

[4] Arko Provo Mukherjee and Srikanta Tirthapura. Enumerating Maximal Bicliques from a Large Graph Using MapReduce. IEEE Trans. Serv. Comput. 10, 5
(2017), 771–784.

[5] Yun Zhang, Charles A. Phillips, Gary L. Rogers, Erich J. Baker, Elissa J. Chesler, and Michael A. Langston. BMC bioinformatics 15, 1 (2014), 110.

11/14/23 6

Introduction : Related Work Comparison

11/14/23 7

An enumeration tree for mining pattern P in data graph G.

[1] Xuhao Chen and Arvind. Efficient and Scalable Graph Pattern Mining on GPUs. OSDI 2022. 857–877.

Problem MBE Graph pattern mining [1]

Vertex count
in enumerated
subgraphs

Unfixed number of
vertices, can be large.

Fixed number of vertices
equivalent to pattern
size |P|, typically small.

Enumeration
tree height

Unfixed and can be up
to 𝑑!"#(𝑉).

Fixed and equal to |P|.

Conclusion

(1) MBE requires significantly more memory than
GPM to actively maintain up to 𝑑!"#(𝑉) tree
nodes for backtracking.

(2) MBE generates more severe imbalanced
workloads than GPM due to the variation in
height among its enumeration trees.

11/14/23 8

Challenges

Ø Large memory requirement
Ø Massive thread divergence
Ø Load imbalance

Challenge 1 : Large Memory Requirement

11/14/23 9

Directly parallelizing existing MBE procedures on an A100 GPU
will exceed the memory capacity on multiple datasets.

Dynamic memory
allocations on GPUs

are expensive

We need to execute
multiple MBE

procedures in parallel

Pre-allocate memory
on GPUs before

enumeration

Requires multiple
blocks of memory

Exceeds the memory capacity

Challenge 2 : Massive Thread Divergence

11/14/23 10

GPU architecture.

CS 0

if((threadIdx.x & 1) == 1){
code A;
if((threadIdx.x & 2) == 2){
code B;

} else{
code C;

}
}else{
code D;
if((threadIdx.x & 2) == 2){
code E;

} else{
code F;

}
}

CS 1

code A;
code A;

CS 0 and CS 1 are GPU code segments where threads with different
routines execute 2 sets of codes each.

Challenge 2 : Massive Thread Divergence

11/14/23 11

CS 0

if((threadIdx.x & 1) == 1){
code A;
if((threadIdx.x & 2) == 2){
code B;

} else{
code C;

}
}else{
code D;
if((threadIdx.x & 2) == 2){
code E;

} else{
code F;

}
}

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

CS 1

code A;
code A;

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

Challenge 2 : Massive Thread Divergence

11/14/23 12

CS 0

if((threadIdx.x & 1) == 1){
code A;
if((threadIdx.x & 2) == 2){
code B;

} else{
code C;

}
}else{
code D;
if((threadIdx.x & 2) == 2){
code E;

} else{
code F;

}
}

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

CS 1

code A;
code A;

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

2 cycles

Challenge 2 : Massive Thread Divergence

11/14/23 13

CS 0

if((threadIdx.x & 1) == 1){
code A;
if((threadIdx.x & 2) == 2){
code B;

} else{
code C;

}
}else{
code D;
if((threadIdx.x & 2) == 2){
code E;

} else{
code F;

}
}

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

CS 1

code A;
code A;

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

2 cycles

Challenge 2 : Massive Thread Divergence

11/14/23 14

CS 0

if((threadIdx.x & 1) == 1){
code A;
if((threadIdx.x & 2) == 2){
code B;

} else{
code C;

}
}else{
code D;
if((threadIdx.x & 2) == 2){
code E;

} else{
code F;

}
}

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

CS 1

code A;
code A;

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

2 cycles

Challenge 2 : Massive Thread Divergence

11/14/23 15

CS 0

if((threadIdx.x & 1) == 1){
code A;
if((threadIdx.x & 2) == 2){
code B;

} else{
code C;

}
}else{
code D;
if((threadIdx.x & 2) == 2){
code E;

} else{
code F;

}
}

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

CS 1

code A;
code A;

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

2 cycles

Challenge 2 : Massive Thread Divergence

11/14/23 16

CS 0

if((threadIdx.x & 1) == 1){
code A;
if((threadIdx.x & 2) == 2){
code B;

} else{
code C;

}
}else{
code D;
if((threadIdx.x & 2) == 2){
code E;

} else{
code F;

}
}

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

6 cycles

CS 1

code A;
code A;

thread 0

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

2 cycles

CS 0 requires more
time because of the
thread divergence.

Challenge 3 : Load Imbalance

11/14/23 17

Active SMs rapidly decline over time in a
straightforward algorithm.

Subtrees have
varying node counts

Nodes have varying
vertex counts

Severe load imbalance

11/14/23 18

GMBE

Ø Stack-based iteration with node reuse
Ø Pruning using local neighborhood sizes
Ø Load-aware task scheduling

Idea 1 : Stack-based Iteration with Node Reuse

Ø Key Observation

• Vertices in the child
node are always a
subset of vertices in
the parent node.

11/14/23 19

Ø Main idea

• We allocate memory for the root node and reuse
this memory to derive all nodes within the
subtree, resulting in a notable reduction in
memory usage.

Idea 1 : Stack-based Iteration with Node Reuse

11/14/23 20

Ø Step 1 : initialize node 𝒓

Enumeration tree rooted by node 𝑟 Memory usage for existing approach Memory usage for GMBE

The local
neighborhood size
for 𝑣" is 3 because
𝑣" connect with
𝑢#, 𝑢$, and 𝑢% in 𝐿&.

Idea 1 : Stack-based Iteration with Node Reuse

11/14/23 21

Ø Step 2 : generate node s

Enumeration tree rooted by node 𝑟 Memory usage for existing approach Memory usage for GMBE

Enumeration tree rooted by node 𝑟 Memory usage for existing approach Memory usage for GMBE

Idea 1 : Stack-based Iteration with Node Reuse

11/14/23 22

Ø Step 3 : generate node t

M
em

or
y

siz
e

is
in

cr
ea

sin
g

M
em

or
y

siz
e

is
fix

ed

Idea 2 : Pruning Using Local Neighborhood Sizes

Ø Key observation
• Local neighborhood sizes, as a necessary

intermediate result, can be utilized for pruning.

Ø Main idea
• We prune useless candidates if their local

neighborhood sizes do not change after popping a
traversed child node. This approach reduces thread
divergence by checking multiple local
neighborhood sizes simultaneously..

11/14/23 23

GMBE proactively prunes node 𝑡# by removing useless
candidate vertex 𝑣% at node 𝑟 because the local neighborhood
size (i.e., 2) for 𝑣% does not change after popping node 𝑠.

Idea 3: Load-aware Task Scheduling

Ø Key observation
• Due to the imbalance of subtrees in MBE

problems, directly mapping subtrees to
computational resources leads to significant
load imbalance.

Ø Main idea
• Design two thresholds to detect large subtree.

• Dynamically divide large trees into multiple
subtrees to balance the workloads.

11/14/23 24

Idea 3: Load-aware Task Scheduling

11/14/23 25

Solution 1 : Map subtrees to warps.

Idea 3: Load-aware Task Scheduling

11/14/23 26

Solution 2 : Map subtrees to blocks.

Idea 3: Load-aware Task Scheduling

11/14/23 27

Solution 3 : Dynamically divide large tree into multiple subtrees and map subtrees to warps.

11/14/23 28

Evaluation

Ø Overall evaluation
Ø Effect of optimizations
Ø Sensitivity Analysis

Evaluation : Overall Evaluation

11/14/23 29

GMBE is 3.5×–69.8× faster than any next-best competitor on CPUs on all testing datasets.

Evaluation : Effect of Optimizations

11/14/23 30

GMBE significantly reduces the memory usage, efficiently reduces the enumeration space, and successfully balance
the workloads.

Evaluation : Sensitivity Analysis

11/14/23 31

Adaptability on different GPU (log scaled). Scalability of GMBE on a machine with multi-GPU.

11/14/23 32

Q & A

