
CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree for
Reducing XPBuffer-Induced Write Amplification in

Persistent Memory

Zhenxin Li , Shuibing He , Zheng Dang, Peiyi Hong ,
Xuechen Zhang †, Rui Wang , Fei Wu

EuroSys 2024

†

Persistent memory (PM)

The first commercially available PM device -- Intel Optane Persistent Memory

p Memory-like speed and byte addressability

• Low latency (~100 ns for small I/O)

• High bandwidth (3 GB/s write and 8 GB/s read per DIMM)

• Byte-addressable using load/store instructions

p Storage-like capacity and persistence

• Up to 3TB (6 * 512 GB) per socket

• Durable storage like SSD

Intel Optane Persistent Memory 200 Series

2

Two types of write amplification in PM

XPBuffer

Cacheline: 64 B

XPLine: 256 B

Optane DCPMM

User Data: 0-64 B

Small writes suffer from write amplification in two hardware layers!

3DX-Point Media

CPU Cache Cacheline-induced amplification (CLI)

XPBuffer-induced amplification (XBI)

Which one has a greater impact on write performance?

CLI =
the amount of data written to XPBuffer

the amount of users! data

XBI =
the amount of data written to media

the amount of users! data

3

CLI vs. XBI amplification

(a): Fix the value of XBI and increase the CLI by four times

XBI-amplification determines the performance when the PM bandwidth is exhausted!

3.5x

4

p One socket with 4 * 128 GB Intel Optane DCPMMs 200 series

(b): Fix the value of CLI and increase the XBI by four times

XBI-amplification in persistent B+-trees

Most existing persistent B+-trees focus on reducing CLI amplification, not XBI amplification

(a) Uniform distributions. (b) Zipfian distributions.

5

Our solution Our solution

p One socket with 4 * 128 GB Intel Optane DCPMMs 200 series
p 48 threads, 8B key, 8B value, warm up 50M KVs & upsert 50M KVs

Avg XBI-amplification: 37.1 Avg XBI-amplification: 12.4

Severe XBI-amplification

Our Solution: CCL-BTree

Main components:

p Buffer node

Cache multiple small KVs in buffer nodes and flush them to PM in batch

p Write ahead log

Maintain the crash consistency of data in buffer nodes

K1

256 B

Buffer NodeD
RA

M
PM Leaf Node …

Inner Node

…

T1:Leaf-node centric buffering T2：Write-conservative logging

T3:Locality-aware garbage collection 6

Write-Ahead LogAppend

Technique 1: leaf-node centric buffering

Merge contiguous small writes and flush them to leaf nodes in batch

p Directly insert into the leaf node

L Trigger one XPLine flush for each KV

L Severe XBI-amplification

p Introduce buffer node (# slots = 2)

J Trigger one XPLine flush for 3 KVs

J Lower XBI-amplification

7

(a) Naïve insert

K1

XPLine
Flush

256B Leaf Node

K2

XPLine
Flush

K3

XPLine
Flush

K1 K1 K2K1 K2 K3

DRAM

PM

Requests

(b) Buffered insert

K1

K1

256B Leaf Node

Buffer Node

K2

K1

K3

K1K2 K2

K1 K2 K3

XPLine
Flush

DRAM

PM

Requests

Technique 2: write-conservative logging

Skip the unnecessary log operations while ensuring the crash consistency

(a) Naive logging

K1 K2 K3 K4 K5 K6
K1
K2
K3
K4
K5
K6

Requests

(b) Write-conservative logging

Buffer
node K4 K5

K1 K2 K3 K4 K5 K6
Leaf
node

K1 K2 K3 K4 K5 K6
K1
K2
K4
K5K4 K5

K1 K2 K3 K4 K5 K6

Log file

Write log ❌

❌

Log file

Trigger insertion of leaf nodes

8

L A naive logging method writes logs for each new KV

J CCL-BTree skips logging for KVs that trigger the insertion of leaf nodes when the buffer nodes are full

Technique 3: locality-aware garbage collection

Convert random leaf node access to sequential logging

(a) Naive GC (b) Locality-aware GC

Buffer node layer

Inner node layerInner node layer

Leaf node layer Leaf node layer

Foreground Thread GC Thread

Batch InsertionRandom Insertion

Old logNew log

Buffer node layer

Write log

Old log

L The naïve GC flushes all KVs in buffer nodes to leaf nodes, which incurs many random accesses.

9

Logs for new KVs

Logs for KVs inserted
before the current GC

J Our GC only copies a portion of KVs in buffer nodes to new logs in sequential manner.

Theoretical performance analysis

of 256 B XPLine writes Traditional B+-tree CCL-BTree

Leaf Node 𝐾
1

𝑁!"#$% + 1
∗ 𝐾

Log 0
24
256

∗
𝑁!"#$%

𝑁!"#$% + 1
∗ 𝐾

Total 𝐾
256 + 24 ∗ 𝑁!"#$%
256 ∗ (𝑁!"#$% + 1)

∗ 𝐾

p Insert	K	key-value	pairs	with	uniform distributions
p 𝑁!"#$%: the number of slots in a buffer node.
p The log item size: 24 bytes (16-byte KV and 8-byte timestamp)

leaf-node centric buffering

write-conservative logging

JWhen 𝑁,-./0 = 2 (the default value), CCL-BTree reduces 60.4% XPLine writes

10

Experimental setup

p Platform

p Target comparisons

11

p Other settings

• 2 sockets
• CPU: Intel Xeon Gold 5318Y (24 physical/48 logical

cores)
• DRAM: 4 * 16 GB 2666 Mhz
• PM: 4 * 128 GB Intel Optane DCPMMs 200 series

• FPTree [SIGMOD’16]
• FAST&FAIR [FAST’18]
• DPTree [VLDB’19]
• uTree [VLDB’20]
• LBTree [VLDB’20]
• PACTree [SOSP’21]

• Use the same 256 B tree node size for each index

• Use pre-allocated PM pools from the local socket for
all indexes to minimize the allocation overhead

Overall performance

1.97x 1.78x
1.4x

J For write workloads, CCL-BTree outperforms other B+-Tree variants by 1.4x at least

J For read workloads, CCL-BTree has competitive performance

12

p 8-byte key and 8-byte value
p Warm up the index with 50 million KVs and then run each test with 50 million operations

Other tests

(a) Skew test, 48 threads (b) Various dataset sizes, 96 threads (c) eADR test

J Demonstrate the high efficiency of CCL-Btree under various workloads
13

More details

p System optimizations
• NUMA-friendly PM accesses
• Concurrency control.
• Variable-size KVs.

p Evaluation results
• Comparison with persistent log structures
• Realistic datasets test
• Latency test
• Recovery
• …

14

Please check our paper!

Conclusion

p We propose CCL-BTree to address the XPBuffer-induced write amplification issue in
persistent B+-trees.

• Leaf-node centric buffering

• Write-conservative logging

• Locality-aware garbage collection

p CCL-BTree improves the insert throughput by 1.97x to 9.35x

p The source code is available at https://github.com/ISCS-ZJU/CCL-BTree

15

CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree for
Reducing XPBuffer-Induced Write Amplification in

Persistent Memory

Thanks & QA

Contact information: zhenxin@zju.edu.cn 16

Zhenxin Li , Shuibing He , Zheng Dang, Peiyi Hong ,
Xuechen Zhang †, Rui Wang , Fei Wu

Open source: https://github.com/ISCS-ZJU/CCL-BTree

