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New Large Model Training Scenario: Heterogeneous GPU Clusters 

Model Training on Heterogeneous GPU Clusters 

n LLMs are growing in size and sequence length

n AI companies buy and deploy new GPUs in training clusters

n Heterogeneous clusters with coexistence of high-end and low-end GPUs
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Memory Wall in LLM Training

Limited GPU memory restricts the large model training 



Parallel Training to Reduce Memory Pressure
The foundation distributed LLM training policy 

• Pipeline Model Parallelism, vertical partitioning for layers

• Tensor Model Prallelism, horizontal partition for layers

[1] GPipe: Efficient training of giant neural networks using pipeline parallelism, NIPS19.
[2] REDUCING ACTIVATION RECOMPUTATION IN LARGE TRANSFORMER MODELS, MLsys23.

Pipeline Model Parallelism Tensor Model Prallelism



Activation Recomputation to Reduce Memory Pressure

[1] Training Deep Nets with Sublinear Memory Cost, 2016

Activation Recomputation to Reduce Intermediate Data

Drop

Recompute



How to Deploy These Techniques in Heterogeneous Clusters 
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How?
Different memory capacity and computing power



Pipeline Model Parallelism on Heterogeneous Cluster 

Load Balance for Optimal Pipeline Model Parallelism 



Challenge: Pipeline Model Parallelism in Heterogeneous Cluster 
Homogeneous GPU Cluster
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Frequent communications in Tensor Model Parallelism
Frequent All-reduce synchronization 



Training is constrained by the slowest GPU

Challenge: Tensor Model Parallelism in Heterogeneous Cluster 
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We need a more efficient tensor Partition strategy 



Challenge: Recomputation in Heterogeneous Cluster 

Recomputed activationSaved activation
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Our Design 

Model partitioning + Tensor partitioning + Recomputation
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Preliminary Experimental Results

n Setup: 2 A100 and 2 T4 GPUs, training mini GPT-3 1B model

n Baton improves the training throughput by 1.69× compared to SOTA system 

Metis[ATC’24], and 7.12×compared to Megatron-LM.



Please contact zjuchenping@zju.edu.cn for any questions
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