Enumeration of Billions of Maximal Bicliques in Bipartite Graphs without Using GPUs

Zhe Pan, Shuibing He, Xu Li, Xuechen Zhang^{*}, Yanlong Yin, Rui Wang, Lidan Shou, Mingli Song, Xian-He Sun[#], Gang Chen

Zhejiang University, *Washington State University Vancouver, #Illinois Institute of Technology

Outline

- Introduction
 - Problem definition
 - Baseline MBE approach
 - Graph representation in memory
- Motivation
 - Computational subgraph
 - Key insights
- AdaMBE: Adaptive MBE algorithm
 - Redesign of key operations using local neighborhood information
 - Hybrid in-memory representation of computational subgraphs
- Evaluation

Introduction

Problem definition
Baseline MBE approach
Graph representation in memory

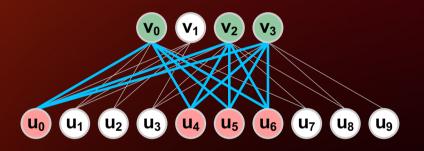
Introduction: Problem Definition

Preliminaries

- Bipartite graph G(U, V, E): A graph structure contains two disjoint vertex sets U, V and an edge set $E \cdot E \subseteq U \times V$.
- Biclique : A complete bipartite graph in which every vertex is connected to every vertex in the opposite subset.
- Maximal biclique : a biclique that can not be further enlarged to form a large biclique.

Problem definition

• Maximal biclique enumeration (MBE) aims to find all maximal bicliques in *G*.



An example of a bipartite graph G_0 and a maximal biclique ({ u_0 , u_4 , u_5 , u_6 }, { v_0 , v_2 , v_3 }) in G_0 .

Introduction: Baseline MBE Approach

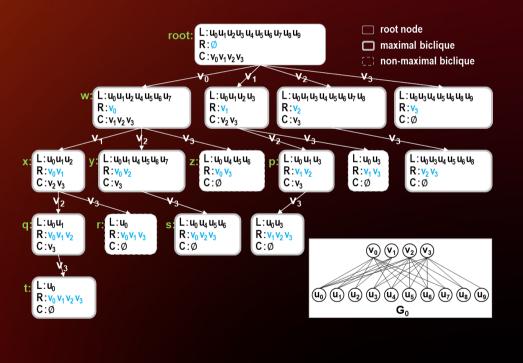
Set enumeration tree for MBE

 Each tree node is a 3-tuple (L, R, C). (L, R) is the corresponding biclique and C stores candidate vertices for expanding R.

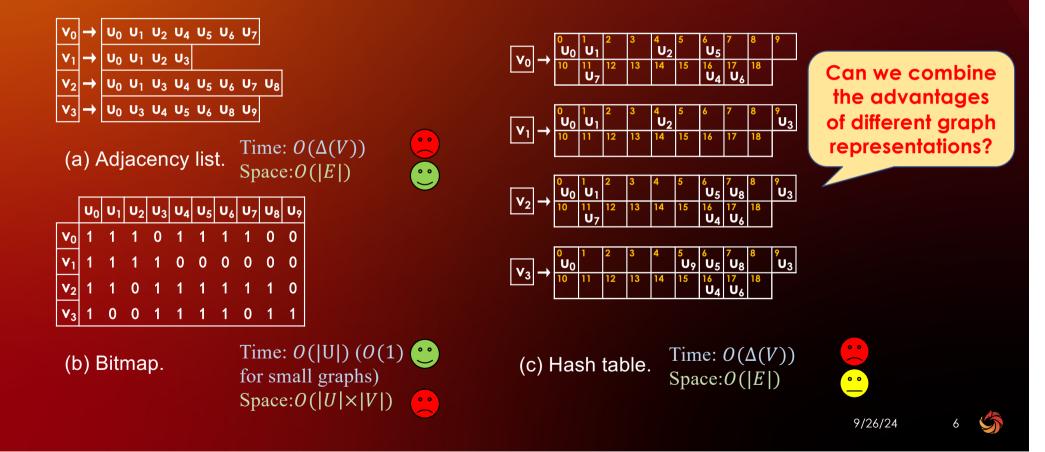
Baseline approach

- Step 1 : Utilize a set enumeration tree to generate the powerset of *V*.
- Step 2 : Expand each subset of the powerset of *V* to a biclique (*L*, *R*) and enumerate maximal ones.

Are all vertices necessary for enumeration?



Introduction: Graph Representation in Memory



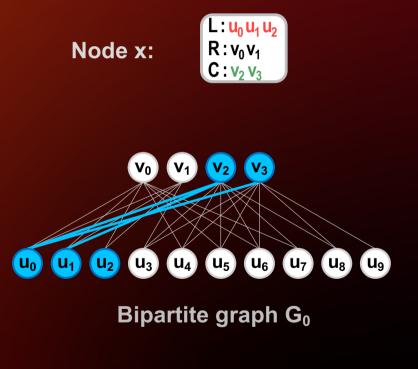
Motivation

Computational subgraphKey insights

Motivation: Computational Subgraph

Computational subgraph (CG): At the current node (L, R, C), the CG in MBE is the subgraph formed by the vertices in LUC, along with all edges between L and C in the original bipartite graph.

Example: Given a node x, we highlight the corresponding CG of node x in the original bipartite graph G_0 in blue.



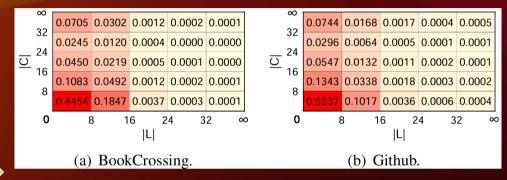
Motivation: Key Insights

Characteristics of CGs

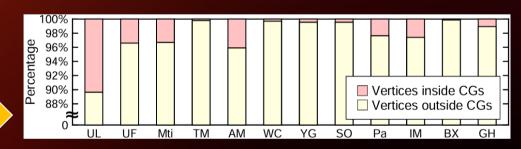
- 1. The size of CGs dynamically changes. Most of these CGs are relatively small.
- 2. The computational subgraph of the current enumeration node can be directly used for node generation.
- 3. Existing algorithms require access to vertices outside their corresponding CGs.

Limitations of existing works

- 1. They typically operate on the original graph, resulting in extensive access to vertices outside CGs.
- 2. They commonly utilize the adjacency list as the default choice for representing graphs.



Distribution of CG sizes based on |L| and |C|.



Percentage of vertices inside and outside CGs on real-world datasets.

AdaMBE: Adaptive MBE Algorithm

Redesign of key operations using local neighborhood information

Hybrid in-memory representation of computational subgraphs

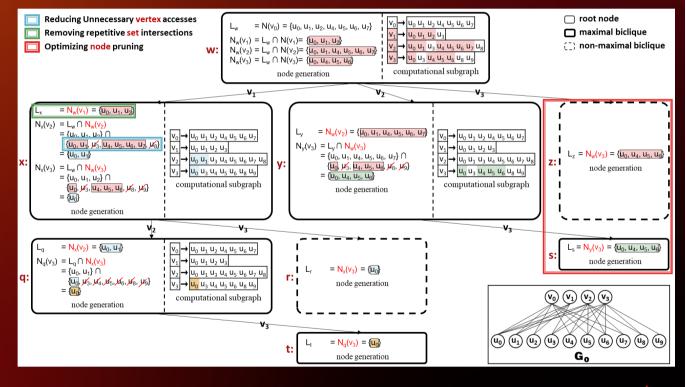
AdaMBE: Redesign of Key Operations Using Local Neighborhood Information

Local neighbors

 Neighbors of vertex v in the current CG.

Main idea

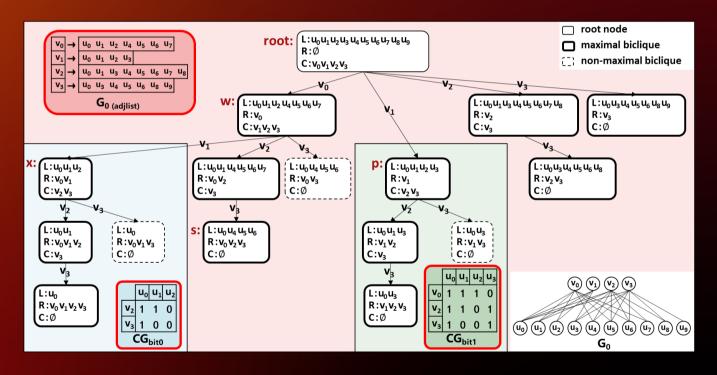
 We use local neighbors to redesign key operations to reduce unnecessary vertex accesses, repetitive set intersections, and unproductive tree nodes at the same time.



AdaMBE: Hybrid in-memory representation of computational subgraphs

Main idea

- For large CGs, we use the adjacency list for its memory efficiency
- For small CGs, we use the bitmap to boost computational efficiency.



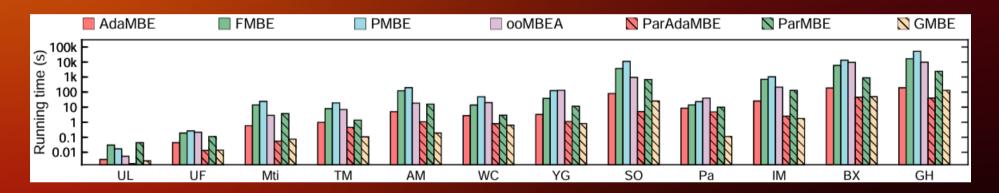
9/26/24

Evaluation

Overall evaluation
Breakdown analysis
Sensitivity analysis

9/26/24

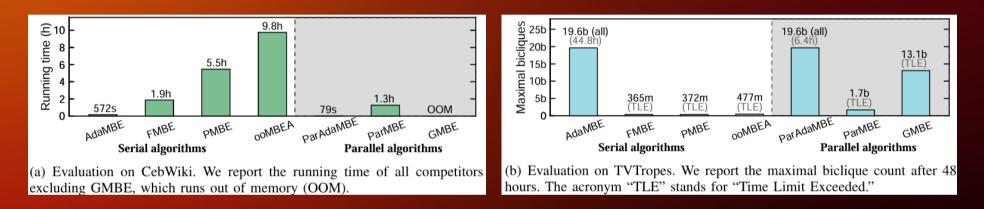
Evaluation: Overall Evaluation



Running time evaluation on general datasets (log scale). Parallel MBE algorithms are indicated by diagonal lines.

- Our AdaMBE outperforms all other serial competitors by 1.6x-49.7x across all datasets.
- Our parallel ParAdaMBE is 1.3x-33.7x faster than the CPU-based ParMBE on all datasets.
- ParAdaMBE on a 96-core CPU is up to 5.07x faster than GMBE on an A100 GPU on timeconsuming datasets like StackOverflow, BookCrossing, and GitHub, .

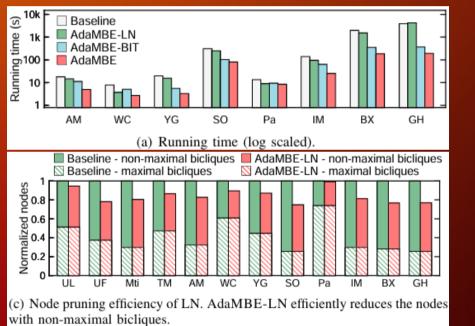
Evaluation: Overall Evaluation

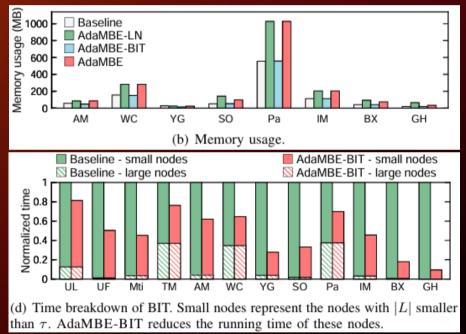


Overall evaluation on two large datasets.

- On the CebWiki dataset, AdaMBE and ParMBE complete in 572 and 79 seconds, respectively, while all other competitors take several hours.
- On the TVTropes dataset, only AdaMBE and ParMBE can enumerate all 19.6 billion maximal bicliques within 48 hours.

Evaluation: Breakdown Analysis

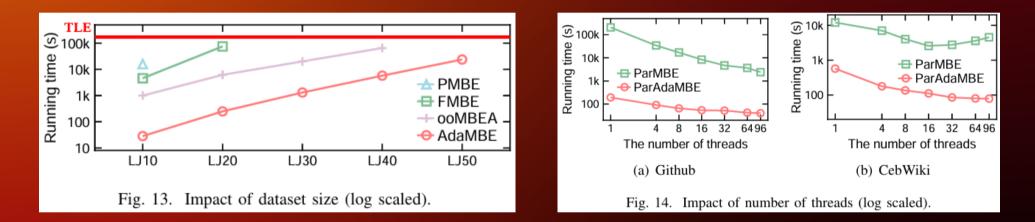




Both local-neighbor-based optimizations (LN) and the hybrid in-memory bitmap representation (BIT) enhance AdaMBE's performance.

9/26/24 16

Evaluation: Sensitivity Analysis



- AdaMBE excels over all serial competitors on large synthetic datasets with billions of maximal bicliques.
- ParAdaMBE consistently outperforms ParMBE across all thread configurations.

9/26/24

Q & A

Open source: https://github.com/ISCS-ZJU/AdaMBE Contact information: panzhe@zju.edu.cn

9/26/24 18