
9/26/24 1

Enumeration of Billions of Maximal Bicliques
in Bipartite Graphs without Using GPUs
Zhe Pan, Shuibing He, Xu Li, Xuechen Zhang*, Yanlong Yin,
Rui Wang, Lidan Shou, Mingli Song, Xian-He Sun#, Gang Chen

Zhejiang University, *Washington State University Vancouver, #Illinois Institute of Technology

9/26/24 2

Ø Introduction
• Problem definition
• Baseline MBE approach
• Graph representation in memory

Ø Motivation
• Computational subgraph
• Key insights

Ø AdaMBE: Adaptive MBE algorithm
• Redesign of key operations using local neighborhood information
• Hybrid in-memory representation of computational subgraphs

Ø Evaluation

Outline

9/26/24 3

Introduction

Ø Problem definition
Ø Baseline MBE approach
Ø Graph representation in memory

9/26/24 4

Introduction: Problem Definition

Ø Preliminaries
• Bipartite graph 𝐺 𝑈, 𝑉, 𝐸 : A graph

structure contains two disjoint vertex
sets 𝑈, 𝑉 and an edge set 𝐸. 𝐸 ⊆ 𝑈×𝑉.

• Biclique : A complete bipartite graph
in which every vertex is connected to
every vertex in the opposite subset.

• Maximal biclique : a biclique that can
not be further enlarged to form a
large biclique.

Ø Problem definition
• Maximal biclique enumeration (MBE)

aims to find all maximal bicliques in 𝐺.

An example of a bipartite graph G0 and a maximal
biclique ({u0, u4, u5, u6}, {v0, v2, v3}) in G0.

u1 u2 u3 u4 u5 u6 u7 u8u0 u9

v0 v1 v2 v3

9/26/24 5

Introduction: Baseline MBE Approach

ØSet enumeration tree for MBE
• Each tree node is a 3-tuple (𝐿, 𝑅, 𝐶).
𝐿, 𝑅 is the corresponding biclique

and 𝐶 stores candidate vertices for
expanding 𝑅.

ØBaseline approach
• Step 1 : Utilize a set enumeration tree

to generate the powerset of 𝑉.
• Step 2 : Expand each subset of the

powerset of 𝑉 to a biclique (𝐿, 𝑅) and
enumerate maximal ones.

Are all vertices necessary
for enumeration?

9/26/24 6

Introduction: Graph Representation in Memory
v0 → u0 u1 u2 u4 u5 u6 u7
v1 → u0 u1 u2 u3
v2 → u0 u1 u3 u4 u5 u6 u7 u8
v3 → u0 u3 u4 u5 u6 u8 u9

u0 u9 u5 u8 u3
u4 u6

u0 u1 u5 u8 u3
u7 u4 u6

u0 u1 u2 u3

u0 u1 u2 u5
u7 u4 u6

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

v0 →

v1 →

v2 →

v3 →

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9
v0 1 1 1 0 1 1 1 1 0 0
v1 1 1 1 1 0 0 0 0 0 0
v2 1 1 0 1 1 1 1 1 1 0
v3 1 0 0 1 1 1 1 0 1 1

(a) Adjacency list.

(b) Bitmap. (c) Hash table.

Time: 𝑂(Δ(𝑉))
Space:𝑂(|𝐸|)

Time: 𝑂(|U|) (𝑂(1)
for small graphs)
Space:𝑂(𝑈 ×|𝑉|)

Time: 𝑂(Δ(𝑉))
Space:𝑂(|𝐸|)

Can we combine
the advantages

of different graph
representations?

9/26/24 7

Motivation

Ø Computational subgraph
Ø Key insights

9/26/24 8

Motivation: Computational Subgraph

Computational subgraph (CG): At the
current node (L, R, C), the CG in MBE is
the subgraph formed by the vertices in
L∪C, along with all edges between L and
C in the original bipartite graph.

Example: Given a node x, we highlight
the corresponding CG of node x in the
original bipartite graph G0 in blue.

L : u0 u1 u2
R : v0 v1
C : v2 v3

Node x:

u1 u2 u3 u4 u5 u6 u7 u8u0 u9

v0 v1 v2 v3

Bipartite graph G0

9/26/24 9

Motivation: Key Insights

Ø Characteristics of CGs
1. The size of CGs dynamically changes. Most

of these CGs are relatively small.
2. The computational subgraph of the current

enumeration node can be directly used for
node generation.

3. Existing algorithms require access to
vertices outside their corresponding CGs.

Ø Limitations of existing works
1. They typically operate on the original

graph, resulting in extensive access to
vertices outside CGs.

2. They commonly utilize the adjacency list as
the default choice for representing graphs.

Percentage of vertices inside and outside CGs on
real-world datasets.

Distribution of CG sizes based on |L| and |C|.

9/26/24 10

AdaMBE: Adaptive MBE Algorithm

Ø Redesign of key operations using local neighborhood
information

ØHybrid in-memory representation of computational
subgraphs

9/26/24 11

AdaMBE: Redesign of Key Operations Using Local
Neighborhood Information
Ø Local neighbors

• Neighbors of vertex v in
the current CG.

Ø Main idea
• We use local neighbors

to redesign key
operations to reduce
unnecessary vertex
accesses, repetitive set
intersections, and
unproductive tree nodes
at the same time.

9/26/24 12

AdaMBE: Hybrid in-memory representation of
computational subgraphs
Ø Main idea

• For large CGs, we use
the adjacency list for
its memory efficiency

• For small CGs, we
use the bitmap to
boost computational
efficiency.

9/26/24 13

Evaluation

Ø Overall evaluation
Ø Breakdown analysis
Ø Sensitivity analysis

9/26/24 14

Evaluation: Overall Evaluation

Running time evaluation on general datasets (log scale). Parallel MBE algorithms are indicated by diagonal lines.

• Our AdaMBE outperforms all other serial competitors by 1.6x-49.7x across all datasets.
• Our parallel ParAdaMBE is 1.3x-33.7x faster than the CPU-based ParMBE on all datasets.
• ParAdaMBE on a 96-core CPU is up to 5.07x faster than GMBE on an A100 GPU on time-

consuming datasets like StackOverflow, BookCrossing, and GitHub, .

9/26/24 15

Evaluation: Overall Evaluation

Overall evaluation on two large datasets.

• On the CebWiki dataset, AdaMBE and ParMBE complete in 572 and 79 seconds, respectively,
while all other competitors take several hours.

• On the TVTropes dataset, only AdaMBE and ParMBE can enumerate all 19.6 billion maximal
bicliques within 48 hours.

9/26/24 16

Evaluation: Breakdown Analysis

Both local-neighbor-based optimizations (LN) and the hybrid in-memory bitmap representation (BIT)
enhance AdaMBE's performance.

9/26/24 17

Evaluation: Sensitivity Analysis

• AdaMBE excels over all serial competitors on large synthetic datasets with billions of
maximal bicliques.

• ParAdaMBE consistently outperforms ParMBE across all thread configurations.

9/26/24 18

Q & A

Open source: https://github.com/ISCS-ZJU/AdaMBE
Contact information: panzhe@zju.edu.cn

https://github.com/ISCS-ZJU/AdaMBE

