
XPGraph: XPline-Friendly Persistent Memory
Graph stores for Large-Scale Evolving Graphs

Rui Wang†, Shuibing He†, Weixu Zong†, Yongkun Li‡, Yinlong Xu‡

† Zhejiang University
‡ University of Science and Technology of China

IEEE MICRO 2022

Graph analytics is one of the top 10 data and analytics technology trends [1]

2
[1] Gartner‘s top 10 data and analytics technology trends for 2019 and 2021

Recommendation systemsSocial networks Webpage links

3

0

1

2

3

0 → 1, 3 → 0 Edge list format for fast edge ingesting

0

1

2

3

2

3

0, 3

1, 2

1
Adjacency list format for efficient vertex query

[2] Pradeep Kumar and Howie Huang. Graphone: A data store for real-time analytics on evolving graphs. FAST 19

Hybrid store in SOTA memory graph storage systems, e.g., GraphOne[2]

𝑣𝑣00 𝑣𝑣10 𝑣𝑣30 𝑣𝑣11 𝑣𝑣40 𝑣𝑣01 𝑣𝑣12 Adjacency lists

4

DRAM

Circular edge log

Logging

SSD Durable edge log file

Persisting

Archiving

(𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the 𝑗𝑗𝑗𝑗𝑗𝑗 adjacency list block of vertex 𝑖𝑖)

Extra persist cost

Limited scalability
e.g., fails to run on YahooWeb

on a server with 128GB DRAM

L1 & L2 & LLC cache

Cacheline: 64BFlush

User data

•

5

1. Flush for persistence (in 64B
cacheline size)

Differences between DRAM:

iMC

Op
ta

ne
#0

Op
ta

ne
#1

Op
ta

ne
#2

Op
ta

ne
#3

L1 & L2
Core

L1 & L2
Core

LLC cache

iMC

Op
ta

ne
#4

Op
ta

ne
#5

Op
ta

ne
#6

Op
ta

ne
#7

3D-XPoint Media

XPLine: 256B

XPBuffer

Read-modify-write
update pattern

2. Physical access granularity is 256B (XPLine)

3. Read-modify-write update pattern

4. High cost for cross NUMA access

Provides us an opportunity to realize the
scalable and high-performance graph stores.

6

PMEM
Circular edge log

Logging

𝑣𝑣00 𝑣𝑣10 𝑣𝑣30 𝑣𝑣11 𝑣𝑣40 𝑣𝑣01 𝑣𝑣12

Archiving

Adjacency lists

(𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the 𝑗𝑗𝑗𝑗𝑗𝑗 adjacency list block of vertex 𝑖𝑖)

1.45x 5.88x 6.37x

•

7

0

1

2

3
0

1

2

3

2, 1

3

0, 3

1, 2

1

Adjacency lists

0 → 1, 3 → 0, ...

Circular edge log

0

Plenty of dense small random writes (4B)

Each small write may cause an XPLine (256B)
“read-modify-write” to PMEM

Remote PMEM accesses across NUMA nodes

8

High read/write amplification in PMEM

Target: Reduce PMEM read/write cost for dynamic graph stores

Costly remote PMEM accesses across NUMA nodes

9

𝑏𝑏50

PMEM
Circular edge log

Vertex-centric
graph bufferingDRAM

𝑏𝑏00

𝑏𝑏31

𝑏𝑏10

𝑝𝑝𝑏𝑏60

Subgraph 0
stored in PMEM 0
(NUMA node 0)

𝑏𝑏 1
1

⋯

⋯

𝑝𝑝𝑏𝑏80

⋯

𝑏𝑏6𝑖𝑖

Hierarchical vertex
buffer managing

NUMA-friendly
graph accessing

⋯

𝑏𝑏20 𝑏𝑏30 𝑏𝑏40

𝑏𝑏61
L0

L1

Li ⋯

𝑝𝑝𝑏𝑏40

Subgraph 1
stored in PMEM 1
(NUMA node 1)

𝑝𝑝𝑏𝑏70

⋯

⋯

XPLine-friendly graph access model

10

Logging

𝑣𝑣00 𝑣𝑣10 𝑣𝑣30 𝑣𝑣11 𝑣𝑣40 𝑣𝑣01 𝑣𝑣12

Archiving

Adjacency lists

(𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the 𝑗𝑗𝑗𝑗𝑗𝑗 adjacency list block of vertex 𝑖𝑖)

Circular edge log

PMEM

11

𝑏𝑏5𝑏𝑏0 𝑏𝑏1 ⋯𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

DRAM

buffering

PMEM

Circular edge log

Logging

𝑣𝑣00 𝑣𝑣10 𝑣𝑣30 𝑣𝑣11 𝑣𝑣40 𝑣𝑣01 𝑣𝑣12 Adjacency lists

(𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the 𝑗𝑗𝑗𝑗𝑗𝑗 adjacency list block of vertex 𝑖𝑖)

Flush to PMEM
when the buffer is full

Merge multiple XPLine writes

to one XPLine write

Archiving

Periodical flushing strategy
for consistency guarantees

12

Allow overwritten by new coming edges

Wait for flushing before overwriting

Write new coming edges in clockwise

Once system crashes, we can recover the lost
DRAM vertex buffers by traversing the edges
between the marker and flushing positions

•

13

Cost more than 50GB DRAM spacePerformance improved by large buffer sizes

14

•

Large buffers for low-degree vertices DRAM space waste

Small buffers for high-degree vertices Limited benefit

Differentiated buffer sizes for vertices with different degrees

•

15

Reduce the DRAM cost𝑏𝑏31𝑏𝑏 1
1 ⋯𝑏𝑏61L1

PMEM

DRAM

L0 𝑏𝑏50𝑏𝑏00 𝑏𝑏10 ⋯𝑏𝑏20 𝑏𝑏30 𝑏𝑏40
16B

Free the last level block
to reduce the pointer links

Maintain performance benefit

𝑝𝑝𝑏𝑏60

𝑏𝑏64
⋯

Li
⋯

𝑏𝑏8𝑖𝑖

𝑝𝑝𝑏𝑏80 ⋯

One XPLine access Memory pool based vertex
buffer management

•

17

Reduced around 3/4 DRAM space costKeep the same performance benefit

18

𝑝𝑝𝑏𝑏10

Subgraph 0
stored in PMEM 0
(NUMA node 0)

𝑝𝑝𝑏𝑏30

⋯

𝑝𝑝𝑏𝑏20

Subgraph 1
stored in PMEM 1
(NUMA node 1)

𝑝𝑝𝑏𝑏60

⋯
NUMA-aware

segregated graph storing

𝑏𝑏3𝑏𝑏 1 ⋯𝑏𝑏6

DRAM Vertex buffers

Cores in
NUMA node 0

CPU-binding based
graph updating/querying

Cores in
NUMA node 1

PMEM

DRAM

•

•

19

•

20

Graph ingest time BFS time

Improve ingest performance by up to 23% Improve BFS performance by up to 54%

 Prototype systems
• XPGraph
• XPGraph-B, XPGraph-D

21

Periodical flushing
for consistency

guarantees.

Data Management
Phases

Graph View
Interfaces

Buddy-liked
memory pool
management.

More details are in the paper

•
•

22

Shuffle for ingestion

•

•

•

•
•

•

23

24

XPGraph achieves 3.01x-3.95x speedup upon GraphOne-P.
XPGraph-B can further improve the performance by up to 23% on top of XPGraph.

25

GraphOne-D and XPGraph-D can not run out on large graphs for DRAM-only systems.
XPGraph-D always performs faster than GraphOne-D: the speedup is up to 73% for

DRAM-only systems and 76% for PMEM-based systems with Optane in memory mode.

26

PMEM read data amount PMEM write data amount

Compared with GraphOne-P, XPGraph greatly reduced the amount of
PMEM read data by 2.29× to 4.17× and PMEM write data by 2.02× to 3.44×.

27

One-hop BFS

PageRank CC

XPGraph achieves up to 4.46×, 3.57×, and 4.23× speedup for
BFS, PageRank, and CC respectively.

28

XPGraph achieves 5.20× to 9.47× higher recovery performance
for the four relatively small graphs.

GraphOne-D can not run out on the larger three graphs, while
XPGraph can realize the recovery in a reasonable time.

•
•
•

 https://github.com/ISCS-ZJU/XPGraph

29

30

	XPGraph: XPline-Friendly Persistent Memory Graph stores for Large-Scale Evolving Graphs
	Graph applications
	Common graph storage formats for evolving graphs
	SOTA memory graph storage system – GraphOne[FAST19]
	Emergency persistent memory (PMEM)
	Migrate DRAM-based graph stores to PMEM
	Migrate DRAM-based graph stores to PMEM
	Migrate DRAM-based graph stores to PMEM
	Idea: XPLine-friendly graph access model
	Technique1: Vertex-centric graph buffering
	Technique1: Vertex-centric graph buffering
	Technique1: Vertex-centric graph buffering
	Technique1: Vertex-centric graph buffering
	Technique2: hierarchical vertex buffer managing
	Technique2: hierarchical vertex buffer managing
	Technique2: hierarchical vertex buffer managing
	Technique3: NUMA-Friendly Graph Accessing
	Technique3: NUMA-Friendly Graph Accessing
	Technique3: NUMA-Friendly Graph Accessing
	Other optimizations and implementations
	Evaluation settings
	Evaluation settings
	Evaluation1: Graph ingestion performance
	Evaluation1: Graph ingestion performance
	Evaluation1: Graph ingestion performance
	Evaluation2: Graph query performance
	Evaluation3: Graph recovery performance
	Conclusion
	幻灯片编号 30

