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Graph analytics is one of the top 10 data and analytics technology trends [1]
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[1] Gartner‘s top 10 data and analytics technology trends for 2019 and 2021
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0 → 1, 3 → 0 Edge list format for fast edge ingesting
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Adjacency list format for efficient vertex query

[2] Pradeep Kumar and Howie Huang. Graphone: A data store for real-time analytics on evolving graphs. FAST 19

Hybrid store in SOTA memory graph storage systems, e.g., GraphOne[2]



𝑣𝑣00 𝑣𝑣10 𝑣𝑣30 𝑣𝑣11 𝑣𝑣40 𝑣𝑣01 𝑣𝑣12 Adjacency lists
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DRAM

Circular edge log

Logging

SSD Durable edge log file

Persisting

Archiving

(𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the 𝑗𝑗𝑗𝑗𝑗𝑗 adjacency list block of vertex 𝑖𝑖)

Extra persist cost

Limited scalability
e.g., fails to run on YahooWeb

on a server with 128GB DRAM



L1 & L2 & LLC cache

Cacheline: 64BFlush

User data
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1. Flush for persistence (in 64B 
cacheline size) 

Differences between DRAM: 
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3D-XPoint Media

XPLine: 256B 

XPBuffer

Read-modify-write 
update pattern



2. Physical access granularity is 256B (XPLine)

3. Read-modify-write update pattern

4. High cost for cross NUMA access

Provides us an opportunity to realize the 
scalable and high-performance graph stores. 
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PMEM
Circular edge log

Logging

𝑣𝑣00 𝑣𝑣10 𝑣𝑣30 𝑣𝑣11 𝑣𝑣40 𝑣𝑣01 𝑣𝑣12

Archiving

Adjacency lists

(𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the 𝑗𝑗𝑗𝑗𝑗𝑗 adjacency list block of vertex 𝑖𝑖)



1.45x 5.88x 6.37x
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Adjacency lists

0 → 1, 3 → 0, ... 

Circular edge log

0

Plenty of dense small random writes (4B) 

Each small write may cause an XPLine (256B) 
“read-modify-write” to PMEM

Remote PMEM accesses across NUMA nodes
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High read/write amplification in PMEM 

Target: Reduce PMEM read/write cost for dynamic graph stores

Costly remote PMEM accesses across NUMA nodes
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Logging

𝑣𝑣00 𝑣𝑣10 𝑣𝑣30 𝑣𝑣11 𝑣𝑣40 𝑣𝑣01 𝑣𝑣12

Archiving

Adjacency lists

(𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the 𝑗𝑗𝑗𝑗𝑗𝑗 adjacency list block of vertex 𝑖𝑖)

Circular edge log

PMEM
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𝑏𝑏5𝑏𝑏0 𝑏𝑏1 ⋯𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

DRAM

buffering

PMEM

Circular edge log

Logging

𝑣𝑣00 𝑣𝑣10 𝑣𝑣30 𝑣𝑣11 𝑣𝑣40 𝑣𝑣01 𝑣𝑣12 Adjacency lists

(𝑣𝑣𝑖𝑖
𝑗𝑗 indicate the 𝑗𝑗𝑗𝑗𝑗𝑗 adjacency list block of vertex 𝑖𝑖)

Flush to PMEM 
when the buffer is full

Merge multiple XPLine writes 

to one XPLine write 

Archiving

Periodical flushing strategy 
for consistency guarantees
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Allow overwritten by new coming edges

Wait for flushing before overwriting

Write new coming edges in clockwise

Once system crashes, we can recover the lost 
DRAM vertex buffers by traversing the edges 
between the marker and flushing positions
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Cost more than 50GB DRAM spacePerformance improved by large buffer sizes
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Large buffers for low-degree vertices  DRAM space waste

Small buffers for high-degree vertices  Limited benefit

Differentiated buffer sizes for vertices with different degrees
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Reduce the DRAM cost𝑏𝑏31𝑏𝑏 1
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Reduced around 3/4 DRAM space costKeep the same performance benefit
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Graph ingest time BFS time

Improve ingest performance by up to 23% Improve BFS performance by up to 54% 



 Prototype systems
• XPGraph
• XPGraph-B, XPGraph-D 
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Periodical flushing 
for consistency 

guarantees. 

Data Management 
Phases 

Graph View 
Interfaces 

Buddy-liked 
memory pool 
management. 

More details are in the paper
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Shuffle for ingestion
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XPGraph achieves 3.01x-3.95x speedup upon GraphOne-P.
XPGraph-B can further improve the performance by up to 23% on top of XPGraph. 
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GraphOne-D and XPGraph-D can not run out on large graphs for DRAM-only systems. 
XPGraph-D always performs faster than GraphOne-D: the speedup is up to 73% for 

DRAM-only systems and 76% for PMEM-based systems with Optane in memory mode. 
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PMEM read data amount PMEM write data amount

Compared with GraphOne-P, XPGraph greatly reduced the amount of 
PMEM read data by 2.29× to 4.17× and PMEM write data by 2.02× to 3.44×.  
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One-hop BFS

PageRank CC

XPGraph achieves up to 4.46×, 3.57×, and 4.23× speedup for 
BFS, PageRank, and CC respectively. 
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XPGraph achieves 5.20× to 9.47× higher recovery performance 
for the four relatively small graphs.

GraphOne-D can not run out on the larger three graphs, while 
XPGraph can realize the recovery in a reasonable time. 
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 https://github.com/ISCS-ZJU/XPGraph
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