XPGraph: XPline-Friendly Persistent Memory Graph stores for Large-Scale Evolving Graphs

<u>Rui Wang</u>[†], Shuibing He[†], Weixu Zong[†], Yongkun Li[‡], Yinlong Xu[‡]

[†] Zhejiang University [‡] University of Science and Technology of China

IEEE MICRO 2022

Graph applications

Graphs are widely used in many applications

Social networks

Webpage links

Recommendation systems

Graph analytics is one of the top 10 data and analytics technology trends^[1]

[1] Gartner 's top 10 data and analytics technology trends for 2019 and 2021

Common graph storage formats for evolving graphs

Edge list format and adjacency list format

 \rightarrow Edge list format for fast edge ingesting

→ Adjacency list format for efficient vertex query

Hybrid store in SOTA memory graph storage systems, e.g., GraphOne^[2]

[2] Pradeep Kumar and Howie Huang. Graphone: A data store for real-time analytics on evolving graphs. FAST 19

SOTA memory graph storage system – GraphOne[FAST19]

Emergency persistent memory (PMEM)

- **Emergency PMEM**
 - Larger capacity and non-volatility

Provides us an opportunity to realize the scalable and high-performance graph stores.

Intel[®] Optane[™] Persistent Memory 200 Series

User data

Cacheline: 64B

XPLine: 256B

Differences between DRAM:

- 1. Flush for persistence (in 64B) cacheline size)
- 2. Physical access granularity is 256B (XPLine)
- 3. Read-modify-write update pattern
- 4. High cost for cross NUMA access

Migrate DRAM-based graph stores to PMEM

Migrate DRAM-based graph stores to PMEM

Reasons: Edge-centric global batched archiving + Remote PMEM accesses

Adjacency lists

Plenty of dense small random writes (4B)

Each small write may cause an XPLine (256B) "read-modify-write" to PMEM

Remote PMEM accesses across NUMA nodes

Migrate DRAM-based graph stores to PMEM

Experimental validation -- Run GraphOne on Friendster

High read/write amplification in PMEM

Costly remote PMEM accesses across NUMA nodes

Target: Reduce PMEM read/write cost for dynamic graph stores

Idea: XPLine-friendly graph access model

> According to ``XPLine-centric access pattern" of Optane DIMM

➢ Edge-centric global batched archive → Vertex-centric local batched archive

➢ Edge-centric global batched archive → Vertex-centric local batched archive

Consistency guaranteed circular edge log

- > Impact of buffer sizes for each vertex
 - Ingest YahooWeb graph (1.4B vertices and 6.6B edges)

Technique2: hierarchical vertex buffer managing

- Real-world graphs
 - Power law degree distribution

Large buffers for low-degree vertices \rightarrow DRAM space waste Small buffers for high-degree vertices \rightarrow Limited benefit \cap{C}

Differentiated buffer sizes for vertices with different degrees

Technique2: hierarchical vertex buffer managing

- > Dynamicly adjust the buffer sizes
 - According to the vertex degree changes

Technique2: hierarchical vertex buffer managing

- Impact of leveled buffer size setting
 - Ingest YahooWeb graph (1.4B vertices and 6.6B edges)

Technique3: NUMA-Friendly Graph Accessing

> Avoid cross NUMA PMEM access

Technique3: NUMA-Friendly Graph Accessing

- Implementations of NUMA-Friendly Graph Accessing
 - Out/In-graph-based NUMA bind implementation (NUMA-bind-OIG)
 - ✓ Suit for two-socket systems
 - ✓ Store out-graph in PMEM 0 of NUMA node 0
 - ✓ Store in-graph in PMEM 1 of NUMA node 1
 - Sub-graph-based NUMA bind implementation (NUMA-bind-SG)
 - ✓ Suit for general P-socket systems
 - ✓ Divide whole graph into P sub-graphs
 - ✓ Store sub-graph p in PMEM p of NUMA node p

Technique3: NUMA-Friendly Graph Accessing

Efficiency of NUMA-Friendly Graph Accessing

• Ingest graph datasets, then conduct BFS algorithm

Graph ingest time

Improve BFS performance by up to 54%

BFS time

No NUMA-bind

NUMA-bind-OIG

NUMA-bind-SG

Improve ingest performance by up to 23%

Other optimizations and implementations

Periodical flushing for consistency guarantees. Buddy-liked memory pool management.

Data Management Phases

Graph View Interfaces

More details are in the paper

Prototype systems

- XPGraph
- XPGraph-B, XPGraph-D

✓ Accommodate battery-backed and DRAM-only systems

Evaluation settings

> Testbed

- A server with 2 sockets, each with 24 physical cores
- 8 * 16GB = **128GB DRAM** + 8 * 128GB = **1TB PMEM**

> Graph datasets

Dataset	V	E	Bin Size	CSR Size
Twitter (TT)	61.6M	1.5B	12GB	12.4GB
Friendster (FS)	68.3M	2.6B	20.8GB	21.4GB
UKdomain (UK)	101.7M	3.1B	24.8GB	26.4GB
YahooWeb (YW)	1.4B	6.6B	52.8GB	75.2GB
Kron28 (K28)	256M	4B	32GB	36GB
Kron29 (K29)	512M	8B	64GB	72GB
Kron30 (K30)	1 B	16B	128GB	144GB

Shuffle for ingestion

Evaluation settings

- Comparison systems
 - GraphOne-D
 - ✓ The original GraphOne that stores all data on DRAM.
 - GraphOne-P
 - ✓ Stores the edge log and adjacency lists on PMEM and keeps meta in DRAM
 - GraphOne-N
 - \checkmark Stores the adjacency lists on PMEM by the NOVA file system
- Evaluation metrics
 - Graph ingesting performance
 - Graph query performance
 - ✓ 1-hop, BFS, PageRank, CC
 - Graph recovery performance

Evaluation1: Graph ingestion performance

> Ingestion time cost for non-volatile systems

XPGraph achieves 3.01x-3.95x speedup upon GraphOne-P. XPGraph-B can further improve the performance by up to 23% on top of XPGraph.

Evaluation1: Graph ingestion performance

> Ingestion time cost for volatile systems

GraphOne-D and XPGraph-D can not run out on large graphs for DRAM-only systems. XPGraph-D always performs faster than GraphOne-D: the speedup is up to 73% for DRAM-only systems and 76% for PMEM-based systems with Optane in memory mode.

Evaluation1: Graph ingestion performance

> PMEM read and write data amount

PMEM read data amount

PMEM write data amount

Compared with GraphOne-P, XPGraph greatly reduced the amount of PMEM read data by $2.29 \times$ to $4.17 \times$ and PMEM write data by $2.02 \times$ to $3.44 \times$.

Evaluation2: Graph query performance

XPGraph achieves up to $4.46 \times$, $3.57 \times$, and $4.23 \times$ speedup for BFS, PageRank, and CC respectively.

Evaluation3: Graph recovery performance

> Graph recover time cost

XPGraph achieves 5.20× to 9.47× higher recovery performance for the four relatively small graphs.
GraphOne-D can not run out on the larger three graphs, while XPGraph can realize the recovery in a reasonable time.

Conclusion

XPGraph: a PMEM-based graph storage system for managing large-scale evolving graphs

- Vertex-centric graph buffering
- Hierarchical vertex buffer managing
- NUMA-friendly graph accessing.
- > More evaluation results and analysis are in the paper
- > The source code is at <u>https://github.com/ISCS-ZJU/XPGraph</u>

Thanks for your attention!

Rui Wang @ ZJU rwang21@zju.edu.cn