
NVAlloc: Rethinking Heap Metadata Management in
Persistent Memory Allocators

Zheng Dang $ Shuibing He$ Peiyi Hong $ Zhenxin Li $

Xuechen Zhang* Xian-He Sun # Gang Chen$

* #$

Persistent Memory is Emerging

2

Flash

DRAM

PMEM

Speed Cost Non-Volatility Byte-Addressability

Low

High

High*

Decreasing

Increasing

Decreasing

Yes

No

Yes

No

Yes

Yes

Power

Low

High

Low

Speed Cost Non-Volatility Byte-Addressability Power

Persistent Memory Allocator

3

Application

Operating System

File Mapping

malloc() / free()

Persistent Memory

Identify and Set Up

Ø Fundamental building block for developing high-
performance applications on PMEM.

Ø Middleware that
provides recoverable
and fine-grained user-
level heap memory
management.

Persistent Memory Allocator
nvm_mallocPMDK PAllocatorMakalu

ralloc

Persistent Memory Leaks

4

• Memory leaks are more problematic for persistent memory.
Ø The leaks are persistent.

• Persistent memory faces a new class of memory leaks resulting from
power failures.

Allocator
metadata

Linked
list new

Allocator
metadata

Linked
list ?

Crash
between

Consistency Models

5

• Previous works use different consistency models to address persistent
memory leaks:
• Write-ahead log(WAL) based model (nvm_malloc, PAllocator).
• Post-crash garbage collection based model (Makalu, ralloc).
• Internal collection based model (PMDK).

Allocator
metadata

Linked
list

WAL
Allocator
metadata

Linked
list

Rebulid

Allocator
metadata

Linked
list

iterator Compare

(a) WAL (b) Post-crash GC (c) Internal Collection

Persistent Heap Memory Management
ØExisting persistent memory allocators inherit mature designs from volatile

memory allocators.
ØLarge allocations (e.g., ≥ 16 KiB) are served by large memory regions in chunks.
ØSmall allocations (e.g., < 16 KiB) are served by small memory regions in slabs.
ØThey use thread-local cache (or tcache) to reduce lock contention in small allocations.

slab (e.g., 64 KiB)

…

…

128 B

128 B

128 B

bitmapheader

256 KiB

chunk (e.g., 4 MiB)

64 KiB

196 KiB

80 KiB

6

Thread-local cache (tcache)

Thread 1 Thread 2 Thread 3

Characteristics of Real PMEM Hardware

7

ØBetter sequential access
performance than random[1].

ØRepeated cache line flush
(reflush) latency is 8x higher[2].

Existing allocators are not aware of these PMEM characteristics

Intel® Optane™ DCPMM

[1] “An Empirical Guide to the Behavior and Use of Scalable Persistent Memory”, FAST’20
[2] “FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent Memory”, ASPLOS’20

Objectives of Our Work

8
NVALLOC

Heap Metadata Management

Interleaved
Mapping

Cache Line
Reflush

Small Random
Access

Static Slab
Fragmentation

Log-structured
Bookkeeping

Slab
Morphing

ISSUES

DESIGNS

Observation I: Cache Line Reflush Frequently
Happens in Small Allocations

9

Ratio of cache line reflush in well-known benchmarks

Reflush frequently happens for updating bitmaps in slab
header and WALs.

slab

…

…

bitmap

memory
regions

REFLUSH
write-ahead log (WAL)

1
2
3
4
5
6
7
8
9

10

Cache
Line 0

Cache
Line 1

REFLUSH

99.7%

Optimization I: Interleaved Mapping

10

Ø Key insight: the metadata of consecutive objects do not need to be
consecutive.

Ø Interleaved tcache layout => check the paper!

log

CL #0

CL #1

log
LE 1
LE 2
LE 3
LE 4
LE 5

(b) Interleaved mapping in WALs

bitmap
CL0 CL1 CL2 CL3

BL0 BL1 BL2 BL3 BL4

CL0 CL1 CL2 CL3

BL0 BL1 BL2 BL3 BL4
memory objects

bitmap

memory objects

CL: Cache Line BL: Block

(a) Interleaved mapping in slab headers

sequential mapping interleaved mapping

LE: Log Entry

LE 1

LE 2

LE 3

LE 4

LE 5

Observation II: Small Random Access Frequently
Happens in Large Allocations

11

Small random access to PMEM in DBMStest

The allocation algorithms (e.g., best-fit) and in-place
bookkeeping modification causes small random access.

header
Heap space

Chunk #1 Chunk #2 Chunk #3 Chunk #4

Chunk #5 Chunk #6 Chunk #7 Chunk #8

Large Allocation
Sequence:

RANDOM ACCESS

178 224 143 136 …

Best-fit/first-fit search

Optimization II: Log-structured Bookkeeping

12

Ø NVAlloc decouples large allocation metadata into volatile indexes and
persistent log-structured bookkeeping.

append

Activated
list

Reclaimed
list

Retained
list

VEH2 VEH3 VEH5

VEH6

VEH1 VEH4

malloc() free()
Program

Data
extent 1

DRAM

LE1
Persistent bookkeeping log

LE4

size
addr

log_type

…Data
extent 2

Data
extent 3

Data
extent 4

LE: Log Entry
VEH: Virtual Extent Header

Small essential metadata

PMEM

Observation III: Persistent Memory Fragmentation
in Small Allocations

13

Static slab segregation causes fragmentation under varying
allocation pattern.

128B
…

Request:
256B

slab
364B

…

slab

FRAGMENTATION

Fragmentation cannot be eliminated by restarting the system for PMEM

Memory usage in Fragbench (1GiB for real usage)

256B
…

Mis-matched slabs cannot serve the request even they are mostly empty.

slab
Create new slab.

M
em

or
y

W1 W2 W3 W4
0

1

2

3

co
ns

um
pt

io
n

(G
iB

)

jemalloc
tcmalloc

Makalu
Ralloc

nvm_malloc
PMDK

2.8x

Optimization III: Slab Morphing

14

Ø NVAlloc allows a slab of low memory usage to be transformed to a slab
of another size class using slab morphing.

Ø During the transformation, the slab may store two types of data blocks
of different sizes.

128B

…

Request:
256B

slab
128B
&256B

…

slab
256B

…

slab

before morphing after

Ø Challenge:
Ø Correctness of indexing two

types of blocks in one slab.
ØMinimize the overhead.

Optimization III: Slab Morphing

15

Ø NVAlloc adds new metadata in slab header to manage the blocks during morphing.
Ø The release of old blocks (e.g., B0) has a low cost because they are small in number.
Ø The allocation and release of new blocks have no extra overhead because only the

bitmap is used in the process.

Header
B0
B1
B2
B3
B4
B5
B6
B7
B8
…

New
Header

NB0

…

NB1

NB2

NB3

cntblockBitmap

Before morphing In morphing

Allocated

…

Free

Allocated

Free

1

…

0

2

1

Free
Allocated

Free
Free
Free

Allocated
Allocated

Free
Free
…

Bitmap

Allocated

Allocated

1

5

6 Allocated

Index_table

New Metadata

Evaluation Setup

16

Ø Platform
Ø CPU: Intel Xeon Gold 5218R
ØDRAM: 4*16 GB 2666 Mhz
Ø PMEM: 2*128 GB Intel Optane DCPMMs

Ø Workloads
Categories Workloads Size

Small
Allocation

Threadtest 64 B

Prod_con 64 B

Shbench 64~1000 B

Larson (small) 64~256 B

Large
Allocation

Larson (large) 32~512 KB

DBMStest 32~512 KB

Memory Usage Fragbench 100~2000B

Consistency
Model

Counterparts

WAL

nvm_malloc

PAllocator

NVAlloc-LOG

Post-crash
GC

Makalu

ralloc

NVAlloc-GC

Internal
Collection

PMDK

NVAlloc-LOG

Ø Compared Allocators

Performance Results: Small Allocation

17

For small allocation, NVAlloc outperforms existing
allocators by up to 6.4x and 3x in average.

(a) Threadtest (b) Prod-con (c) Shbench (d) Larson-small

1 2 4 8 16 32 64

100

1000

threads

Ti
m

e
el

ap
se

d
(s

ec
)

PMDK nvm_malloc PAllocator NVAlloc-LOG

2 4 8 16 32 64

10

threads
1 2 4 8 16 32 64

100

threads
1 2 4 8 16 32 64

1

10

threadsTh
ro

ug
hp

ut
 (M

 o
ps

/s
ec

)

(a) Threadtest (b) Prod-con (c) Shbench (d) Larson-small

1 2 4 8 16 32 64

10

100

threads

Ti
m

e
el

ap
se

d
(s

ec
)

Makalu Ralloc NVAlloc-GC

2 4 8 16 32 64

1

threads

1

1 2 4 8 16 32 64

10

100

threads
1 2 4 8 16 32 64

10

100

threadsTh
ro

ug
hp

ut
 (M

 o
ps

/s
ec

)

Performance Results: Large Allocation

18

For large allocation, NVAlloc outperforms existing
allocators by up to 57x and 5x in average.

(a) Larson-large (b) DBMStest

1 2 4 8 16 32 64

0.1

1

threadsTh
ro

ug
hp

ut
 (M

 o
ps

/s
ec

)
PMDK nvm_malloc PAllocator Makalu NVAlloc

1 2 4 8 16 32 64

0.1

1

10

threads

Ti
m

e
el

ap
se

d
(s

ec
)

Performance Breakdown

19

Theadtest DBMStest

BaseNVAllo
c-LOG

0

1

2

FlushMeta FlushWAL Search Other
N

o
rm

al
iz

ed
 t

im
e

Base NVAllo
c-LOG

0

1

2

ØThe performance improvement is mainly due to the reduction of the flush time.
ØFor small allocation, the cache line reflushes are eliminated.
ØFor large allocation, the small random flushes to PMEM are eliminated.

Performance Results: Memory Usage

20

NVAlloc reduces memory usage by up to 57.8% with
performance overhead less than 5%.

(a) Memory usage with Fragbench (b) Performance with Fragbench

M
em

or
y

W1 W2 W3 W4
0.0

1.0

2.0

co
ns

um
pt

io
n

(G
iB

)

Makalu
NVAlloc-LOG (w/o SM)

NVAlloc-LOG

W1 W2 W3 W4
0

100

200

Ti
m

e
el

ap
se

d
(s

ec
)

PMDK
nvm_malloc

NVAlloc-LOG (w/o SM)
NVAlloc-LOG

W1 W2 W3 W4
0

20

40

60

80

Ti
m

e
el

ap
se

d
(s

ec
)

Makalu
Ralloc

NVAlloc-GC (w/o SM)
NVAlloc-GC

Summary

21

• We propose NVAlloc to address performance and memory usage issues
in existing persistent memory allocators.
• Interleaved mapping => cache line repeated flush.
• Log-structured bookkeeping => small random access.
• Slab morphing => static slab fragmentation.

• NVAlloc significantly speeds up small and large allocations and reduces
memory usage.

• The source code for NVAlloc is available at https://github.com/ISCS-
ZJU/NVAlloc with 8 KLOC.

NVAlloc: Rethinking Heap Metadata Management in
Persistent Memory Allocators

Thanks for watching!
Contact me at: dangzheng@zju.edu.cn

