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Persistent Memory is Emerging
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Persistent Memory Allocator
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Ø Fundamental building block for developing high-
performance applications on PMEM.

Ø Middleware that 
provides recoverable 
and fine-grained user-
level heap memory 
management.
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Persistent Memory Leaks 
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• Memory leaks are more problematic for persistent memory.
Ø The leaks are persistent.

• Persistent memory faces a new class of memory leaks resulting from 
power failures.
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Consistency Models
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• Previous works use different consistency models to address persistent 
memory leaks:
• Write-ahead log(WAL) based model (nvm_malloc, PAllocator).
• Post-crash garbage collection based model (Makalu, ralloc).
• Internal collection based model (PMDK).
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Persistent Heap Memory Management
ØExisting persistent memory allocators inherit mature designs from volatile 

memory allocators.
ØLarge allocations (e.g., ≥ 16 KiB) are served by large memory regions in chunks.
ØSmall allocations (e.g., < 16 KiB) are served by small memory regions in slabs.
ØThey use thread-local cache (or tcache) to reduce lock contention in small allocations. 
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Characteristics of Real PMEM Hardware
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ØBetter sequential access 
performance than random[1].

ØRepeated cache line flush 
(reflush) latency is 8x higher[2].

Existing allocators are not aware of these PMEM characteristics

Intel® Optane™ DCPMM

[1] “An Empirical Guide to the Behavior and Use of Scalable Persistent Memory”, FAST’20
[2] “FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent Memory”, ASPLOS’20



Objectives of Our Work
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Observation I: Cache Line Reflush Frequently 
Happens in Small Allocations
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Ratio of cache line reflush in well-known benchmarks

Reflush frequently happens for updating bitmaps in slab 
header and WALs.
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Optimization I: Interleaved Mapping
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Ø Key insight: the metadata of consecutive objects do not need to be 
consecutive.

Ø Interleaved tcache layout => check the paper! 
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Observation II: Small Random Access Frequently 
Happens in Large Allocations

11

Small random access to PMEM in DBMStest

The allocation algorithms (e.g., best-fit) and in-place 
bookkeeping modification causes small random access.
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Optimization II: Log-structured Bookkeeping
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Ø NVAlloc decouples large allocation metadata into volatile indexes and 
persistent log-structured bookkeeping.

append

Activated
list

Reclaimed 
list

Retained 
list

VEH2 VEH3 VEH5

VEH6

VEH1 VEH4

malloc() free()
Program

Data 
extent 1

DRAM

LE1
Persistent bookkeeping log

LE4

size
addr

log_type

…Data 
extent 2

Data 
extent 3

Data 
extent 4

LE: Log Entry
VEH: Virtual Extent Header

Small essential metadata

PMEM



Observation III: Persistent Memory Fragmentation 
in Small Allocations
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Static slab segregation causes fragmentation under varying 
allocation pattern.
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Optimization III: Slab Morphing
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Ø NVAlloc allows a slab of low memory usage to be transformed to a slab 
of another size class using slab morphing.

Ø During the transformation, the slab may store two types of data blocks 
of different sizes.
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Ø Challenge:
Ø Correctness of indexing two 

types of blocks in one slab.
ØMinimize the overhead.



Optimization III: Slab Morphing
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Ø NVAlloc adds new metadata in slab header to manage the blocks during morphing. 
Ø The release of old blocks (e.g., B0) has a low cost because they are small in number.
Ø The allocation and release of new blocks have no extra overhead because only the 

bitmap is used in the process.
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Evaluation Setup
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Ø Platform
Ø CPU: Intel Xeon Gold 5218R
ØDRAM: 4*16 GB 2666 Mhz
Ø PMEM: 2*128 GB Intel Optane DCPMMs

Ø Workloads
Categories Workloads Size

Small 
Allocation

Threadtest 64 B

Prod_con 64 B

Shbench 64~1000 B

Larson (small) 64~256 B

Large 
Allocation

Larson (large) 32~512 KB

DBMStest 32~512 KB

Memory Usage Fragbench 100~2000B

Consistency 
Model

Counterparts

WAL

nvm_malloc

PAllocator

NVAlloc-LOG

Post-crash
GC

Makalu

ralloc

NVAlloc-GC

Internal 
Collection

PMDK

NVAlloc-LOG

Ø Compared Allocators



Performance Results: Small Allocation
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For small allocation, NVAlloc outperforms existing 
allocators by up to 6.4x and 3x in average. 
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Performance Results: Large Allocation
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For large allocation, NVAlloc outperforms existing
allocators by up to 57x and 5x in average. 

(a) Larson-large (b) DBMStest
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Performance Breakdown
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ØThe performance improvement is mainly due to the reduction of the flush time.
ØFor small allocation, the cache line reflushes are eliminated. 
ØFor large allocation, the small random flushes to PMEM are eliminated.



Performance Results: Memory Usage
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NVAlloc reduces memory usage by up to 57.8% with 
performance overhead less than 5%. 

(a) Memory usage with Fragbench (b) Performance with Fragbench
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Summary
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• We propose NVAlloc to address performance and memory usage issues 
in existing persistent memory allocators.
• Interleaved mapping => cache line repeated flush.
• Log-structured bookkeeping => small random access.
• Slab morphing => static slab fragmentation.

• NVAlloc significantly speeds up small and large allocations and reduces 
memory usage.

• The source code for NVAlloc is available at https://github.com/ISCS-
ZJU/NVAlloc with 8 KLOC. 



NVAlloc: Rethinking Heap Metadata Management in 
Persistent Memory Allocators

Thanks for watching!
Contact me at: dangzheng@zju.edu.cn


