# **CSWAP: A Self-Tuning Compression Framework** for Accelerating Tensor Swapping in GPUs

Ping Chen<sup>\*</sup>, Shuibing He<sup>\*</sup>, Xuechen Zhang<sup>#</sup>, Shuaiben Chen<sup>\*</sup> Peiyi Hong<sup>\*</sup>, Yanlong Yin<sup>\$</sup>, Xian-He Sun<sup>+</sup>, Gang Chen<sup>\*</sup>











## **Deep Neural Network is Popular**



### **Explosive DNN Model Size**

## The Shortage of GPU Memory

| https://www.microway.com/hpc-tech-tips/nvidia-tesla-v100-price-analysis/ |           |           |             | Cost \$10000 |                                                                                                                 |         |
|--------------------------------------------------------------------------|-----------|-----------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------|---------|
| GPU                                                                      | Memory/GB | Bandwidth | Tensor core | TFLOPS       |                                                                                                                 |         |
| V100(SXM2)                                                               | 32 HBM2   | 900       | 640         | 15.7         | 1                                                                                                               |         |
| TITAN RTX                                                                | 24 GDDR6  | 672       | 576         | 16.3         | 180                                                                                                             | _       |
| P100(SXM2)                                                               | 16 HBM2   | 732       | NA          | 10.6         |                                                                                                                 |         |
| TITAN V                                                                  | 12 HBM2   | 652.8     | 640         | 15           | 150                                                                                                             |         |
| RTX 2080Ti                                                               | 11 GDDR6  | 616       | 544         | 13.4         | 120                                                                                                             |         |
| RTX 2080                                                                 | 8 GDDR6   | 448       | 368         | 10.1         | The second se |         |
| RTX 2070                                                                 | 8 GDDR6   | 448       | 288         | 7.5          | 90 32GB is not enough to train DNN models                                                                       |         |
| TITAN Xp                                                                 | 12 GDDR5X | 547.7     | NA          | 12           | 60                                                                                                              |         |
| RTX 1080Ti                                                               | 11 GDDR5X | 484       | NA          | 11.3         | 80                                                                                                              |         |
| TITAN X                                                                  | 12 GDDR5  | 336.5     | NA          | 11           | 30                                                                                                              | - 32GB  |
| GTX 1080                                                                 | 8 GDDR5X  | 484       | NA          | 8.9          |                                                                                                                 |         |
| RTX 1070Ti                                                               | 8 GDDR5   | 256       | NA          | 8.1          | 0 Inception-V4 BERT Wide Res                                                                                    | Net-152 |
| RTX 1070                                                                 | 8 GDDR5   | 256       | NA          | 6.5          |                                                                                                                 |         |
| RTX 1060                                                                 | 6 GDDR5   | 256       | NA          | 4.4          |                                                                                                                 |         |

Current GPU cannot support DNN training because of GPU memory shortage

## The Background of Deep Neural Network



During Layer-N training procedure, GPU can only visit the tensors which have dependency with Layer-N

## **The GPU–CPU Swapping Solution**



Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., & Keckler, S. W. (2016). VDNN: Virtualized deep neural networks for scalable, memory-efficient neural network design. MICRO, 2016-Decem.

## **The Swapping with Compression Solution**



#### **ReLU Layers => Tensor Sparsity**

**Compressing** all sparse tensors (after-ReLU layers) before swapping out and **decompress** them after swapping in.

#### **Not Optimal**



Rhu, M., O'Connor, M., Chatterjee, N., Pool, J., Kwon, Y., & Keckler, S. W. (2018). Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks. HPCA'18

## **Related Works (Swapping and Compression)**

| Technique          | Compression | Compression<br>unit/location | Portability | Compression<br>Optimization |
|--------------------|-------------|------------------------------|-------------|-----------------------------|
| vDNN[MICRO'16]     | ×           | N/A                          | ✓           | N/A                         |
| cDMA [HPCA'18]     | ✓           | GPU                          | ×           | ×                           |
| vDNN++ [IPDPS'19]  | ✓           | CPU                          | ✓           | ×                           |
| CSwap [CLUSTER'21] | ~           | GPU                          | ~           | ✓                           |

Compression Optimization (Tensor Selection): 🗙 means compressing all sparse tensors without optimization or not.

Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., & Keckler, S. W. (2016). VDNN: Virtualized deep neural networks for scalable, memory-efficient neural network design. *MICRO'16*. Rhu, M., O'Connor, M., Chatterjee, N., Pool, J., Kwon, Y., & Keckler, S. W. (2018). Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks. *HPCA'18* Shriram, S. B., Garg, A., & Kulkarni, P. (2019). Dynamic memory management for GPU-based training of deep neural networks. *IPDPS'2019* 

## **Observation 1: Changing Sparsity of Tensors**



# Some DNN tensors sparsity changes constantly during training the tensor size changes across layers .

\*Figure: We evaluate ReLU output tensors in VGG16 on ImagNet. 50 epochs.

## **Observation 2: Ineffectiveness of Compressing all Tensors**



#### Some DNN tensors are unworthy being compressed.

## **Observation 2: Ineffectiveness of Compressing all Tensors**



## **Objectives of CSWAP**



# **Challenges of CSWAP**

### Challenges 1 : How to determine the compression policy for a sparse tensor?

- Different sparsity (12);
- Different sizes (12);

(1)(2); These metrics influence the overall training time.

- Different overlap time ③;
- Different forward and backward time ④.



# **Challenges of CSWAP**

#### Challenges 2 : How to predict the (de)compression time?

> Without (de)compression time, we cannot make decisions.



# **Challenges of CSWAP**

Challenges 3 : the compression/decompression algorithm performance varies severely with different GPU settings.

Super parameters : GPU has Grid size and Block size.

Bruce force search (Grid search) needs hours.



14

## **Overview of CSWAP**



(1) *The tensor profiler: Collecting* tensor sparsity, size, and execution time of layers.

(2) Execution Advisor: Making policy, includes compression decision and GPU settings for (de)compression operations.

③ *Swapping Executor*: DNN training.

## 1. Determining Cost-Effectiveness of Tensor Compression

We compare the swapping cost with compression T with the swapping cost without compression T'

- T' > T => compression
- T'< T => no compression

$$T' = \max\left(\frac{Size^t}{BW_{d2h}} - Hidden_f^t, 0\right) + \max\left(\frac{Size^t}{BW_{h2d}} - Hidden_b^t, 0\right)$$
(1)

$$T = Time_c^t + Time_{dc}^t + O_f + O_b \tag{2}$$

$$O_f = \max(\frac{Size^t \times (1 - Sparsity^t)}{BW_{d2h}} - Hidden_f^t, 0)$$
(3)

$$O_b = \max(\frac{Size^t \times (1 - Sparsity^t)}{BW_{h2d}} - Hidden_b^t, 0)$$
(4)

| Symbol           | Meaning                                                              | Profiling |
|------------------|----------------------------------------------------------------------|-----------|
| $Size^t$         | size of tensor $t$                                                   | one time  |
| $BW_{h2d}$       | effective PCIe bandwidth from CPU to GPU                             | one time  |
| $BW_{d2h}$       | effective PCIe bandwidth from GPU to CPU                             | one time  |
| $Hidden_{f}^{t}$ | overlapped swapping latency in forward propagation of tensor t       | one time  |
| $Hidden_b^t$     | overlapped swapping latency in back-<br>ward propagation of tensor t | one time  |
| $Sparsity^t$     | sparsity of tensor $t$                                               | epoch     |
| $Time_c^t$       | compression time of tensor $t$                                       | offline   |
| $Time_{dc}^{t}$  | decompression time of tensor $t$                                     | offline   |

## 2. Prediction of (De)compression Time



## **3. Setting GPU Parameters for Compression Kernels**

Algorithm 1 BO search algorithm for choosing GPU parameters for (de)compression kernels

- **Require:**  $s_1$ : the number of initial samples;  $s_2$ : the times of attempts to find the optimal solution;
- 1: bayes\_opt ← new bayes\_opt() ▷ Create a CSWAP BO search engine
- 2:  $D \leftarrow \emptyset$  > Dataset of previously observed samples 3: for  $i = 1, 2, ..., s_1$  do
- 4:  $q \leftarrow random(0..4096)$   $\triangleright q$  denotes grid size
- 5:  $b \leftarrow random(64,128) \triangleright$  Set block size as 64 or 128
- 6:  $p \leftarrow ig, b_{i}$
- 7:  $y \leftarrow bayes\_opt.exec(p) \triangleright obtain sum of Time_c^t$  and  $Time_{dc}^t$
- 8: D.append(p,y) > Add the new sample to D
- 9: end for
- 10: *bayes\_opt.update*(**D**) ▷ estimate posterior distribution and acquisition function
- 11: for  $i = 1, 2, ..., s_2$  do
- 12:  $p \leftarrow bayes\_opt.select() \triangleright$  select the next point to search
- 13:  $y \leftarrow bayes\_opt.exec(p)$
- 14: D.append(p,y)
- 15: bayes\_opt.update(**D**)
- 16: end for
- 17: return bayes\_opt.optimize(D) ▷ return an optimal point



#### Explore & Exploit => Fast and jump minimum point

Hours to near 1 minutes

### **Bayesian Optimization**

# **Experimental Setting**



Symposium (IPDPS)

<sup>[3] &</sup>quot;Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks," in Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA)

## **Eval 1: Overall Performance**



#### CIFAR10-2080Ti



CSWAP outperforms vDNN and vDNN++ by 25% and 190% on average

### **Eval 2: Effectiveness of Dynamic Tensor Compression**



Performance improvement of CSwap over the static compression (SC) scheme.

CSWAP can improve the performance by 5.5% and 5.1% on average compared to cDMA.

### **Eval 3: Effectiveness of Dynamic Tensor Compression**



#### DNN training details using CSWAP

## **Thanks for your attention!**











## Appendix

| Model      | ReLu layers | All layers | Ratio |
|------------|-------------|------------|-------|
| AlexNet    | 7           | 21         | 33%   |
| VGG19      | 16          | 38         | 42%   |
| SqueezeNet | 26          | 57         | 46%   |
| MobileNet  | 27          | 83         | 33%   |
| GoogleNet  | 64          | 205        | 31%   |

Appendix-1: ReLU layers



Figure 12: The compression decision accuracy based on the LR model.

## Appendix



Figure 13: The average training time of VGG16 for one iteration. RD: random search, EP: expert knowledge, BO: CSwAP BO search, and GS: grid search.

## Appendix



Figure 11: (a) Computation time of the compression algorithms with the tensor sparsity of 60%. (b) The compression ratio with the tensor size of 50 MB. (c) Tensor swapping time. X\_CT and X\_ST denote the computation time and data swaping time using the compression algorithm X.