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Accelerating the DNN
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 DNN Hardware accelerator  

 GPU
 TPU
 ASIC
 Novel architectures and emerging devices

Deep neural network (DNN) 
is popular in various fields.

…



Von Neumann Architecture vs. Processing-in-
Memory  
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Processing in Memory

PIM and emerging devices can alleviate the energy wall.
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ReRAM-based Accelerator

ReRAM-based DNN accelerator architecture.[SRE-19] 
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Illustration of mapping filter weights to a crossbar array used in the architecture of ReRAM-based accelerators. 

Mapping Filter Weights of DNNs in ReRAM-
based Accelerators 

 Operation Unit (OU)

Filter weight matrices of DNN models are sparse.



Related Work & Motivation
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Pruning techqiue Method Hardware
customization Pattern for pruning Use OU in data-path

LSR[ASPDAC19] heuristics ❌ Unimportant weight groups ❌

SRE[ISCA20] heuristics ❌ All-zero row/column vectors ✅

PIM-Prune[DAC20] heuristics ❌
Unimportant rows and 

columns ❌

Pattern 
pruning[arxiv20] heuristics ❌ Patterns ✅

1. They use heuristics to prune the weights, leading to suboptimal pruning policies.
2. They mostly focus on improving compression ratio, thus may not meet accuracy constraints.
3. They ignore direct feedback of hardware, e.g., the number of occupied crossbars or energy consumption.



Objectives of Our Work
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Make a pruning 
and mapping 

policy tailored for 
different hardware

Make a 
global optimal 
pruning policy

Avoid the 
dislocation 

problem
+ +

AUTO-PRUNE



Design of AUTO-PRUNE
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Main Design

DDPG Algorithm for ReRAM-based Accelerator

Column-Vector Based Pruning and OU Formation

Data-Path Design
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Overview of AUTO-PRUNE
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1. DDPG Algorithm for ReRAM-based Accelerator

 State Space: identify a layer with its characteristics
(𝑘𝑘, 𝑡𝑡, 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖, 𝑘𝑘𝑘𝑘,ℎ,𝑤𝑤, 𝑘𝑘, 𝑥𝑥𝑥𝑥 𝑘𝑘 , 𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘 , 𝑥𝑥𝑥𝑥𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟 𝑘𝑘 ,𝑎𝑎𝑘𝑘−1)

 Action Space: pruning rate for a specified layer
 a𝑘𝑘 𝜖𝜖 (0, 1]

 Reward Function: related with compression rate and accuracy

R𝑒𝑒𝑤𝑤𝑎𝑎𝑒𝑒𝑒𝑒 = (1 −
1

𝑒𝑒𝑎𝑎𝑡𝑡𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥𝑥𝑥 )𝛼𝛼 × acc𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑐𝑐
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2. Column-Vector Based Pruning and OU Formation

{(3,1), (3,3), (2,2), (2,5), (1,3), (1,4), (3,4), (3,6), (1,5)} 

 OU List
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3. Data-Path Design

An overview of the data-path for Auto-prune. 



An example: conv operation in OU1

①



An example: conv operation in OU1
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An example: conv operation in OU1
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An example: conv operation in OU1
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An example: conv operation in OU1

⑤



An example: conv operation in OU1
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Experimental Setting
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simulator: MNSIM-2.0
• Crossbar size：128 x 128 
• bit-per-cell: 1 bits
• OU size: 32 x 32 

Workloads and datasets
• NN:  AlexNet, VGG16, Plain20
• Dataset: CIFAR10, MNIST

Counterparts
• Naïve
• PIM-Prune[DAC-20]
• Pattern-Prune[Arxiv-20]

Metrics
• Compression rate
• Energy & area efficiency

Discussion
• Sensitivity & Overhead



Compression rate
Network Method CR on XBs Acc5 Acc Drop

AlexNet

Naïve 1 99.36% -
PIM-Prune 4.3 98.81% 0.55%

Pattern-Prune 1.1 96.48% 2.88%
Auto-Prune 14.3 99.10% 0.26%

VGG16

Naïve 1 99.29% -
PIM-Prune 6.1 98.62% 0.67%

Pattern-Prune 2.6 98.43% 0.86%
Auto-Prune 11.9 98.62% 0.67%

Plain20

Naïve 1 98.14% -
PIM-Prune 7.3 98.19% -0.05%

Pattern-Prune 1.2 98.24% -0.10%
Auto-Prune 10.3 98.29% -0.15%

the same or higher accuracy, compression rate up to:
3.3X PIM-Prune

13X Pattern-Prune



Energy efficiency & area efficiency

the result of energy efficiency on CIFAR10 the result of area efficiency on CIFAR10

3.1X Pattern-Prune
9.6X PIM-Prune

12.2 Pattern-Prune
2.3 PIM-Prune



Sensitivity study

• granularity of column-vector
• ……

The smaller granularity of column-vector, the higher compression rate.



Index overhead

The index overhead is ignorable.



Conclusions
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• AUTO-PRUNE is a hardware-aware automated DNN pruning and 
mapping framework for ReRAM-based accelerators. It leverages 
RL to automatically determine a global optimum pruning policy, 
considering the direct hardware feedback. 

• We propose a new data-path to correctly index and feed input to 
matrix-vector computation.

• AUTO-PRUNE achieves up to 3.3X compression rate, 3.1X area 
efficiency, and 3.3X energy efficiency compared to PIM-Prune 
while maintaining a similar or even higher accuracy.
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