
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 1

Analyzing Request Volatility in Cloud-based
Machine Learning: Insights from Alibaba’s Machine

Learning as a Service Platform
Qiang Zou, Yuhui Deng, Yifeng Zhu, Yi Zhou, Jianghe Cai, Shuibing He, and Lina Ge

Abstract—With advancements in machine learning (ML) tech-
nology and the deployment of large ML-as-a-Service (MLaaS)
clouds, accurately understanding request behaviors in an MLaaS
cloud platform is paramount for resource scheduling and opti-
mization. This paper sheds light on the correlation of request
arrivals in a representative and dynamic MLaaS workload –
Alibaba PAI (an ML platform for artificial intelligence). For
requests in the PAI workloads at the job, task, instance, and
machine levels, our burstiness diagnosis reveals that the request
arrival processes at all levels are significantly bursty. Additionally,
our Gaussianity test indicates that the bursty activities in PAI
consistently appear to be non-Gaussian. Our findings show that
there exists a certain degree of correlation between request
arrivals at each level over long-term time scales. Moreover, we
reveal the self-similar nature of request activities in the various-
level wild MLaaS workloads on Alibaba PAI through visual evi-
dence, the auto-correlation structure of the aggregated process of
request sequences, and Hurst parameter estimates. Furthermore,
we implement a versatile workload synthetic model to synthesize
request series based on the inputs measured from the PAI trace.
Experimental results demonstrate that our model outperforms
typical self-similar workload models, and can improve accuracy
by up to 99% compared to them.

Index Terms—Machine learning cloud platform, workload
analysis, burst, heavy-tailed, self-similarity, synthetic model.

I. INTRODUCTION

Qiang Zou is with the School of Artificial Intelligence, Guangxi Minzu
University, Guangxi Key Laboratory of Hybrid Computation and IC Design
Analysis, Nanning 530006, P. R. China.
E-mail: qzou@gxmzu.edu.cn

Yuhui Deng is with the Department of Computer Science, Jinan University,
Guangzhou 510632, P. R. China.
E-mail: tyhdeng@jnu.edu.cn

Yifeng Zhu is with the Department of Electrical and Computer Engineering,
University of Maine, Orono, ME 04469, USA.
E-mail: yifeng.zhu@maine.edu

Yi Zhou is with the TSYS School of Computer Science, Columbus State
University, Columbus, GA.
E-mail: zhou yi@columbusstate.edu

Jianghe Cai is with the Department of Computer Science, Jinan University,
Guangzhou 510632, P. R. China.
E-mail: 761571151@qq.com

Shuibing He is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, P. R. China.
E-mail: heshuibing@zju.edu.cn

Lina Ge is with the School of Artificial Intelligence, Guangxi Minzu
University, Guangxi Key Laboratory of Hybrid Computation and IC Design
Analysis, Nanning 530006, P. R. China.
E-mail: gelina@gxmzu.edu.cn

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.

Manuscript received July XX, 2024; revised January XX, 2025.

W ITH the sustained advances in ML technology, deep
learning (DL) methods are being widely used by a

growing number of users in various scientific fields to drive
scientific discovery and innovation, such as auto-driving cars,
drug development, and image processing. To accommodate
the computing demands of rapidly growing ML workloads,
large tech firms are channeling investments in ML-as-a-service
(MLaaS) clouds outfitted with costly hardware including
GPUs to execute various types of ML workloads, such as
training and inference [1]. Optimizing resource scheduling
and management of GPU clusters requires insight into job
characteristics and user behaviors in ML application work-
loads [2]. A useful and judicious first step in understanding
arrival characteristics is to analyze real workloads and employ
corresponding stochastic models to effectively characterize the
workload [3].

Recently, the research community adopted traditional dis-
tributions, such as uniform [4] and exponential [5], to ap-
proximate the description of request features in computation-
intensive ML workloads. Meanwhile, ML researchers found
that burst phenomena are prevalent in both ML and DL work-
loads [1], [2], [6], which even show a heavy-tailed feature [1],
[7]. However, the traditional distributions mentioned above
fail to specialize in capturing the burst behavior, which brings
many challenges to accurately understanding request behaviors
in ML application workloads.

Motivated by these observations, we analyze the workload
traces [1] gleaned from the ML Platform for Artificial In-
telligence (PAI) – an integrative MLaaS platform offered by
Alibaba cloud. The PAI workloads consist of both training
and inference tasks executing cutting-edge ML algorithms.
For the PAI workloads at the levels of job, task, instance,
and machine, we characterize request burstiness, conduct the
Gaussianity tests [8] for request sequences, and diagnose the
correlation of arrival patterns. For the PAI workloads with
certain degrees of correlations, this paper presents visual and
theoretical evidence for the existence of self-similarity and
estimates the self-similarity parameters using statistical tools.
Based on the inputs measured from the PAI traces, we further
employ a versatile synthetic model to faithfully synthesize
request sequences in the PAI workloads at various levels,
respectively. To the best of our knowledge, few research works
on this topic have been reported in the literature.

In short, this paper makes the following four contributions:
• For the requests in the PAI workloads at the levels of

job, task, instance, and machine, we characterize the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 2

burstiness and reveal that request arrival processes are
significantly bursty. Furthermore, we study the correlation
of request arrivals. Our findings uncover that there is
a certain degree of correlation between request arrivals.
Moreover, for the requests in the job-level and task-level
workloads, both the correlations among request arrivals
and the measurements for the burstiness of requests are
relatively close, respectively, which may be caused by the
fact that most jobs in PAI have only one task [1].

• We perform the Gaussianity tests for the request se-
quences in the PAI workloads at various levels. The
testing results show that the burst activities in the PAI
workloads appear to be non-Gaussian. This observation
is surprising because it differs significantly from previ-
ous studies using Gaussian methods to analyze Alibaba
production cluster data [5]. Therefore, our findings help
to faithfully describe the burst behaviors in PAI.

• We unearth the self-similar nature of request activities
in the PAI workloads at various levels through visual
evidence, the auto-correlation structure of an aggregated
process of request sequences, and Hurst parameter [8]
estimates.

• We employ a versatile request generator based on the
inputs measured from the Alibaba PAI traces to generate
synthetic request sequences for PAI at the levels of
job, task, instance, and machine. Experimental results
demonstrate that our model outperforms existing models
in terms of accuracy in emulating burstiness and heavy-
tailed property.

The rest of this paper is organized as follows. Section
II gives an overview of the Alibaba PAI traces investigated
throughout this work and summarizes related research stud-
ies. Section III characterizes the burstiness of the request
arrival process in the PAI workload at each level, performs
the Gaussianity tests for the request sequences in the PAI
workloads at various levels, and elaborates on the correlation
of request arrivals in the four-level PAI workloads. Section IV
presents both visual and statistical evidence for the existence
of self-similarity in the PAI workloads. Section V articulates
the implementation of a request series generator to synthesize
request series for PAI. Section VI discusses the importance
of gaining insights into the workload characteristics of ML
applications. Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Alibaba PAI

In machine learning cloud platforms, jobs, tasks, instances,
and machines are the core concepts for building and managing
machine learning workflows. A job is a complete computing
process performed on a machine learning cloud platform, usu-
ally corresponding to an end-to-end machine learning work-
flow, such as model training, inference, or data processing.
Each job is decomposed into one or more tasks that are exe-
cuted sequentially or in parallel. A task is a specific execution
unit within a job, corresponding to a stage in the machine
learning workflow, such as data cleaning, feature extraction,

model training or evaluation. An instance is a unit of comput-
ing resources allocated by the cloud platform, usually referring
to a virtual machine or containerized environment. Tasks are
typically bound to specific computing resources (instances) for
execution. Machines are the physical or virtualized hardware
resources that provide computing power at the underlying layer
of the cloud platform, such as GPU clusters, or CPU servers.
Each task may consist of one or multiple instances and can
run on multiple machines.

Taking the TensorFlow framework [9] as an example, users
define computational graphs (jobs) on the client side, which
include variables, operators, and data flow relationships. These
jobs are submitted to the distributed master node via a
Session. The master node optimizes the job (e.g., operator
fusion, constant folding) and splits the logical computational
graph into multiple subgraphs based on device topology and
parallelization strategies (data parallelism/model parallelism).
Subsequently, the master node assigns the optimized subgraphs
to different worker nodes, with each subgraph corresponding
to a task. The task can then be mapped to devices, such as
CPU or GPU, forming a physical execution plan.

Fig. 1. PAI architecture overview.

MLaaS packages the entire machine learning workflow,
including data preprocessing, model training, inference, and
more, into standardized cloud services, lowering technical
barriers through elastic computing power, automated tools,
and pre-built algorithm libraries. To enable developers to
use ML technology flexibly and efficiently, Alibaba Cloud
launched the ML Platform for Artificial Intelligence (PAI) – a
large production cluster comprising over 6,500 GPUs across
1,800 machines – to provide a variety of services spanning
the whole ML pipeline (see Figure 1 for an architectural
overview). In PAI, users send ML jobs, including training
and inference, which are developed in various frameworks,
including TensorFlow, MXNet [10], and Graph-Learn [11],
and provide application code. Meanwhile, users specify the
computational resources required, such as GPUs, CPUs, and
memory. Each job is then split into multiple tasks with
different compute roles: parameter server (PS), workers for
training jobs, and estimators for inference jobs. To simplify

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 3

scheduling and execution on heterogeneous hardware, Docker
containers are employed to instantiate tasks in PAI. Each task
consists of many instances that run in Docker containers. Due
to cost considerations, only some subclusters in PAI are fitted
with NVLink in multi-GPU servers.

As the core platform of Alibaba’s MLaaS, PAI empowers
enterprises to rapidly build and optimize predictive models,
covering multiple application scenarios, such as e-commerce,
product recommendation, and financial. For instance, in prod-
uct recommendation, PAI leverages collaborative filtering and
deep interest network models to deliver millisecond-level
response recommendations, dynamically generating personal-
ized product suggestions (e.g., Taobao homepage Feed stream)
based on users’ real-time behaviors. Additionally, PAI’s pre-
built algorithms reduce the model deployment cycle from the
traditional 2-3 weeks to within 3 days. Since its deployment,
PAI has attracted tens of thousands of enterprises and individ-
ual developers, becoming one of the leading MLaaS platforms
in China.

To address the challenges of load imbalance and long
queuing delays across heterogeneous machines caused by
cluster scheduling, Weng et al. [1] ran training and inference
jobs using state-of-the-art ML algorithms on PAI in the second
half of 2020, and collected application workload traces for
two months. The trace files analyzed in this work, include
pai job table (job launch information), pai task table (task
launch information), pai instance table (instance launch in-
formation), and pai machine metric (machine resource met-
rics with respect to the instance). Taking âpai job tableâ?as an
example, each row represents the information corresponding to
one request, including timestamp, user name, name of users’
submit jobs, job status, etc. A detailed description of the PAI
traces can be found in the referenced literature [1].

Table I briefly summarizes the PAI trace, in which the
V100M32 and V100 GPUs are equipped with NVLink. The
traces record timestamps, resource requests, and usage at the
levels of job, task, instance, and machine. The traces at the
job, task, and instance levels include the corresponding launch
information, while the machine-level trace contains machine
resource metrics related to the instance. Most jobs in the traces
have only one task, but some may launch multiple tasks with
different names. However, since our study aims at studying
the arrival process of requests from a temporal perspective,
we only use timestamp information (in seconds for about two
months), without considering other information.

TABLE I
SUMMARY OF PAI TRACE AND MACHINE SPECS OF GPU CLUSTERS [1].

#Machines 1800 Duration 2 months
Memory (GiB) 512 512 512 384 512/384

GPU type P100 T4 Misc. V100M32 V100
#GPUs 2 2 8 8 8
#Nodes 798 497 280 135 104

Previous studies on the PAI traces have shown that request
behaviors in ML application workloads are bursty and exhibit
heavy-tailed features [1]. In genereal, request bursts often
exist on different time scales, and traditional methods (e.g.,
exponential) will gradually become smooth at long time scales,

making them difficult to accurately describe the burst behav-
iors in request activities [12], posing significant challenges to
the accurate understanding of request activities in typical ML
workloads, as well as to their scheduling and optimization.

These observations have inspired us to examine the fea-
sibility and effectiveness of using traditional methods such
as uniform [4] and exponential [5] distributions to describe
request behaviors in representative MLaaS workloads. In other
words, we must consider the following critical issues: Is it
appropriate to use independently and identically distributed
(IID) methods to describe the bursts and heavy-tailed behav-
iors in MLaaS workloads? Whether do the request activities in
MLaaS workloads also present the self-similarity observed in
other workloads [13], [14]? To find the answer, we revisit the
PAI workloads at various levels, and diagnose the temporal
behaviors in Section III.

B. Related Work

At present, the research community is making significant
efforts to guide cluster design based on characterizing ML
application workloads. In this section, we focus on previous
works most relevant to this study.

1) Workload Characterization: Currently, the research
community often employs traditional methods to approxi-
mately characterize request behaviors in ML workloads. For
instance, Li et al. [15] assumed that requests for each model
follow independent Poisson processes, thereby modeling the
service of individual GPUs as an M/D/1 queue. Based on this,
they conducted queuing theory analyses to derive analytical
expressions for critical metrics such as the average number of
requests and average latency. Additionally, Zhang et al. [16]
hypothesized that job arrivals adhere to a Poisson distribution
and generated corresponding job arrival processes by parame-
terizing them using publicly available GPU trace data from
Helios, aiming to simulate request behaviors in production
clusters.

Recently, researchers have discovered that request behaviors
in ML workloads exhibit bursty or heavy-tailed characteristics.
For instance, while evaluating their proposed GPU cluster task
scheduling optimization solution, IADeep, Chen et al. [17]
noted that the completion times of small DL tasks in the
baseline demonstrated heavy-tailed properties. Additionally,
Saxena et al. [18] generated a long-duration (up to 12 hours)
workload featuring bursty arrivals of DL jobs based on a
Poisson distribution parameterized by the average job arrival
rate, claiming it reflects real-world DL job arrival scenarios.
However, the Poisson distribution is not well-suited for cap-
turing burstiness [19].

2) Self-similarity: In nature, many phenomena exhibit self-
similarity, such as a fern plant, where a part resembles the
whole or other parts. This characteristic is referred to as
self-similarity. For time series, self-similarity implies that the
attributes of a given process remain consistent across different
time scales. Recently, researchers have been examining self-
similarity in various domains, such as network traffic [20],
cloud workloads [13], social network dynamics [21], and
internet traffic [14], to accurately characterize their respective
workloads. For instance, Li et al. [20] observed that normal

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 4

0 5 10 15 20

Request Intervals (seconds)

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

0 1 2 3 4 5

0.2

0.3

0.4

0.5

Real trace

(a) Job

0 5 10 15 20

Request Intervals (seconds)

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

0 1 2 3 4 5

0.2

0.3

0.4

0.5

Real trace

(b) Task

0 5 10 15 20

Request Intervals (seconds)

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n

0 1 2 3 4 5

0.75

0.8

0.85

0.9

Real trace

(c) Instance

0 5 10 15 20

Request Intervals (seconds)

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n

0 1 2 3 4 5

0.7

0.75

0.8

0.85

Real trace

(d) Machine
Fig. 2. Empirical CDFs of request arrival intervals in the PAI workloads at the job, task, instance and machine levels, respectively.

OpenFlow traffic has a low self-similarity degree whereas
the occurrences of saturation attacks typically imply a higher
degree of self-similarity measured by Hurst exponents. Then
they exploited the self-similarity degrees of OpenFlow traffic
for anomaly detection. Gupta et al. [13] studied Google cluster
traces and found self-similarity and heavy-tailed behaviors in
cloud workloads using auto-correlation analysis and rescaled
adjusted range (R/S) analysis. Liu et al. [21] analyzed traces
from Renren social networks and Facebook, and found self-
similarity in the edge creation process of networks. Similarly,
Li et al. [14] demonstrated self-similarity in industrial internet
traffic. Furthermore, Talluri et al. [22] conducted a statistical
analysis of file popularity, read size, arrival interval, reuse
time, etc. using Spark data collected over six months. Their
findings showed that read operations exhibit heavy tails, bursts,
and negative long-range dependence.

C. Motivation

Although Weng et al. [1] observed that the request behaviors
in the PAI workloads are bursty and even exhibit heavy-tailed
properties, they did not further investigate or characterize the
burstiness of request behaviors in the PAI workloads at various
levels. However, accurately characterizing burstiness, as an
important workload characteristic, is crucial for both resource
scheduling and system tuning. This paper aims to fill this
gap by providing an in-depth analysis. Furthermore, given the
distinctive access mode of machine learning platforms [6],
these observations prompt us to investigate whether self-
similarity exists in the PAI workloads.

Anchored on the real-world wild PAI workloads from
Alibaba, timestamps are extracted from the four trace files
(i.e., job, task, instance, and machine). Due to the fact that the
original trace files are not strictly recorded in chronological
sequence during the collection or storage of trace information,
the extracted timestamp are reordered chronologically, then
converted to the time intervals between two adjacent requests
(i.e., inter-arrival times), and the number of requests per
second. No outliers or noise were removed, ensuring that trace
faithfully reflects real-world variability. This work focuses on
the characterization of request burstiness, and the appropri-
ateness of describing request burst behaviors with traditional
distributions. A second focus of this study is the presence of
self-similarity. The third aspect of this work is the synthesis
of the request sequence.

III. PAI WORKLOAD DIAGNOSIS

In this section, we provide an in-depth understanding of
the request activities in typical DL applications by diagnosing
four real levels of Alibaba PAI workloads, namely, job, task,
instance, and machine.

A. Burstiness

To deeply understand the access features in system work-
loads, a useful perspective is to dissect the arrival mode. For
a series of access requests in system workloads, the workload
can be considered a burst workload if the corresponding
request arrival process X is non-stationary and has a large

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 5

variance. Previous works have observed that “burstiness”
exists widely in the workloads of various systems, such as
network [23]–[25], mobile storage [26], and cloud block
storage [27].

To characterize request burstiness in the PAI workloads at
the levels of job, task, instance and machine, this work extracts
the request arrival intervals (RAI) from the corresponding PAI
traces and explores the corresponding empirical distribution
rules. To visually show the features that exist in the arrival
pattern, we present the cumulative distribution function (CDF)
of the request arrival intervals in Figure 2. In Figure 2, the
horizontal axis denotes request arrival intervals in seconds, and
the vertical axis represents the proportion of the corresponding
value in the whole. A point (x, y) in the distribution curve,
indicates that the proportion of request arrival intervals less
than or equal to x in the corresponding time series is y.

For each subplot within Figure 2, we have magnified the
local part involved in the distribution curve, to clearly display
the important observations in the empirical distribution curve,
as shown in the blue box within each subplot. As can be
seen from Figure 2, for the PAI workload at the levels of
job, task, instance, and machine, about 48%, 49%, 88% and
83% of requests arrive within an interval of no more than
1 second, respectively, and even up to 29%, 30%, 78% and
72% of request arrival intervals are 0 second, respectively. The
aforementioned gauges are summarized in Table II.

Non-stationary. These aforementioned observations reveal
that most requests in the PAI workloads at the levels of job,
task, instance, and machine, arrive intensively at some hotspot
moments, thus causing the aggregation effect of requests,
which makes the entire request arrival process non-stationary.

Variance. For the PAI workloads at various levels, as shown
in Table II, the statistical findings show that the variances
of the corresponding request arrival intervals are as high as
4896.4, 4090.5, 1312.2, and 8892.0, respectively, satisfying
another necessary condition to become a burst workload.
Therefore, the concept of “burstiness” can be used to describe
the high variability of the request arrival process in the PAI
workloads at all levels.

TABLE II
SUMMARY OF MEASURES FOR THE REQUEST BURSTINESS IN THE PAI
WORKLOADS AT THE LEVELS OF JOB, TASK, INSTANCE AND MACHINE.

Trace Empirical study Variance CV IDIlevel RAI ≤ 1 RAI = 0

Job ≈ 48% ≈ 29% 4896.4 12.356 152.67
Task ≈ 49% ≈ 30% 4090.5 13.500 182.25

Instance ≈ 88% ≈ 78% 1312.2 34.958 1222.1
Machine ≈ 83% ≈ 72% 8892.0 38.973 1518.8

To strengthen the reliability of observations regarding bursti-
ness, we utilize the coefficient of variation (CV) [28] to assess
the variability of arrival intervals. For a time seires, the CV
is defined as the quotient of standard deviation and mean. A
CV greater than 1 indicates high variability. For the request
arrival intervals in the PAI workloads at the job, task, instance,
and machine levels, we calculated the CVs as 12.356, 13.500,
34.958, and 38.973, respectively, as shown in Table II. All CV

values are much greater than 1, thereby confirming the burst
nature of requests within the PAI workloads.

Previous works have suggested that the strength of bursti-
ness can be quantified by the index of dispersion [29]. The
larger the value of the index of dispersion, the higher the
strength of burstiness. For the PAI workload at each level,
this section utilizes the index of dispersion for intervals (IDI)
proposed in the literature [29], to measure the corresponding
strength of burstiness. For a time seires of arrival intervals, X ,
the IDI is defined as:

IDI =
V ar[X]

E2[X]
, (1)

where the numerator represents the variance of X , and the
denominator is the square of the mean of X . By calculating
Equantion (1), we obtain the indices of dispersion for request
arrival intervals in the PAI workload at various levels as
152.67, 182.25, 1222.1, and 1518.8, respectively, as shown in
Table II. This finding indicates that request arrivals in the PAI
workloads at various levels consistently present a significant
bursty nature, especially for the instance and machine-level
PAI workloads.

Upon examining Table II, the indices of dispersion and
the empirical studies of the request intervals suggest that the
burstiness of requests at the instance and machine levels seems
to be stronger than that at the job and task levels. Moreover, we
observe that the measurements for the burstiness of requests
in the job and task-level workloads are relatively close, which
may be due to the fact that most jobs in PAI have only one
task [1].

The burstiness of job-level requests leads to resource con-
tention and queuing delays under traditional static allocation
strategies. To mitigate these issues, priority scheduling and
preemption mechanisms should be adopted to enable dynamic
resource release. For instance, deep learning algorithms can
be utilized to evaluate task priorities and dynamically adjust
resource allocation strategies in real-time. When the number
of tasks within a single job increases significantly, it becomes
essential to dynamically partition the computing unit and
optimize parallel scheduling. Systems like Flink reduce redun-
dant computation overhead through intermediate state caching
for computed results, while distributed architectures enhance
throughput by coordinating node-level collaborative compu-
tations. For bursty instance-level requests, load rebalancing
can be achieved by integrating hot migration technology with
energy consumption monitoring. Furthermore, research on the
burstiness of machine-level requests supports dynamic cache
management and capacity planning for burst buffers, as well
as the design of adaptive load-balancing algorithms to improve
overall system performance and response efficiency.

Despite its practical value, the index of dispersion has
limitations. A notable limitation is its sensitivity to outliers;
extreme values can disproportionately affect variance, causing
the index of dispersion to be artificially inflated and leading to
misleading results. Moreover, the index of dispersion default
that the mean is a valid measure of central tendency, but this
assumption may not hold in skewed distributions.

Now, let us recap this major observation as

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 6

-5 0 5

Theoretical Quantiles

-100

0

100

200

300

400

A
c
tu

a
l
Q

u
a
n
ti
le

s

Standard Normal

Reference line

Real trace

(a) Job

-5 0 5

Theoretical Quantiles

-100

0

100

200

300

400

A
c
tu

a
l
Q

u
a
n
ti
le

s

Standard Normal

Reference line

Real trace

(b) Task

-5 0 5

Theoretical Quantiles

-200

0

200

400

600

800

1000

A
c
tu

a
l
Q

u
a
n
ti
le

s

Standard Normal

Reference line

Real trace

(c) Instance

-5 0 5

Theoretical Quantiles

-100

0

100

200

300

400

A
c
tu

a
l
Q

u
a
n
ti
le

s

Standard Normal

Reference line

Sample trace

(d) Machine
Fig. 3. Examine the Gaussianity of request activities in the PAI workloads
at the job, task, instance, and machine levels through QQ plots of PAI trace
data versus standard normal, respectively.

Finding (1): In the PAI workloads at each level, approxi-
mately more than half of the requests arrive
no more than 1 second apart, and more than
30% of the request intervals are 0 second.

Finding (2): For PAI, the request arrival process at each
level has a large variance.

Finding (3): For request arrival intervals in the PAI
workloads at various levels, all CV values
are significantly exceed 1.

Finding (4): The index of dispersion for request arrival
intervals in the PAI workloads at the four
levels are particularly large, especially for
the instance and machine levels.

Implications: Request activities in the PAI workloads at
all levels consistently exhibit burstiness,
especially at the instance and machine
levels. Scaling storage subsystems or al-
locating appropriate storage resources in
response to increased computing demands
caused by burstiness can enhance the per-
formance of Alibaba’s MLaaS platform.

B. Gaussianity Study

Previous research [5], [30] suggests that Gaussianity or non-
Gaussianity in system workloads is a concern when building
performance evaluation models. Conducting a Gaussianity
test facilitates the accurate description of tail trends in the
distribution of access characteristics and the construction of

convincing models. Therefore, we deploy the Gaussianity test
to study the request sequences in the PAI workloads.

A Gaussianity test can be performed through quantile-
quantile (QQ) plots. For a random variable X = {Xt : t =
1, 2, . . .}, the quantile refers to the real number x that satisfies
the condition P (Xt ≤ x) = c, where c is a constant. The
quantiles x, y for two random variables X and Y constitute
a coordinate (x, y), and a series of coordinates form the
trajectory a QQ plot. If the two data sets X and Y follow the
same distribution, then the coordinates will fall on a straight
line at a 45-degree angle, and vice versa.

For request activities in the PAI workloads at the job, task,
instance, and machine levels, Figure 3 depicts the correspond-
ing QQ plots of PAI trace data versus the corresponding
standard normal distributions. As shown in Figures 3(a)-
(d), the scatters corresponding to the PAI trace data at the
aforementioned four levels clearly do not fall on a straight line.
All the curves are concavely upward and display a heavy-tailed
trend. Furthermore, we conducted the Kolmogorov-Smirnov
test [31] on each of the four levels of the PAI workloads
previously mentioned. The test results consistently yielded a
statistic of 1, leading to the rejection of the null hypothesis
of standard normal distribution at the 5% significance level.
These observations indicate that the request behaviors appear
to be non-Gaussian at the job, task, instance, and machine
levels.

This finding is surprising because it diverges significantly
from the Gaussian distribution previously used in analyzing
Alibaba’s production cluster data [5]. This phenomenon may
be associated with the greater number of bursts present in the
PAI workload when running state-of-the-art ML algorithms.

We summarize this key observation as

Finding (5): The scatter plots corresponding to the PAI
workload at each level clearly do not fall
on a straight line, and exhibit a heavy-tailed
feature.

Implications: Request behaviors in the PAI workloads at
the job, task, instance, and machine levels
appear to consistently be non-Gaussian.
During busy periods of heavy-tailed be-
haviors, Alibaba’s MLaaS platform can
allocate additional resources to handle in-
creased computing demands, thereby re-
ducing task latency.

C. Correlation Analysis

In the following, we employ a widely used statistical
tool, the auto-correlation function (ACF) [13], [32], [33], to
diagnose the correlation of arrival intervals of requests in the
PAI workloads.

Let a time series be denoted as Y = {Yt : t = 1, 2, · · · , n},
with the expectation θ = E[Yt]; let k denote each time
interval (or lag). Each lag corresponds to an auto-correlation
coefficient independent of the time itself and is denoted as

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 7

R(k). Note yt = Yt − θ, and we have {yt : t = 1, 2, · · · }.
Then, for k ≥ 0, the auto-correlation function with a lag of k
is defined as:

R(k) =
E[yt · yt+k]

E[y2t]
(2)

where R(k) denotes the correlation coefficient at the indepen-
dent variable k. Equation (2) aims to measure the interrela-
tionship between two adjacent elements in a time series. A
comprehensive description of ACF can be found in [32].

The trend of the auto-correlation function curve is closely
related to the patterns of request activities in the PAI work-
loads. If, as the lag increases, the correlation coefficient of the
inter-arrival interval decreases rapidly and approaches zero, the
correlation of request behaviors in PAI will become trivial.
This suggests that the burstiness in the PAI workloads will
be gradually smoothed out over time, making it reasonable
to adopt an independent identically distributed method to
characterize request activities. If the correlation coefficient
does not rapidly approach zero, there exists a certain degree of
correlation between the request arrivals in the PAI workloads.
In this case, to accurately describe the request behaviors in
PAI, it is necessary to consider other approaches, such as long-
range dependence (also known as self-similarity).

0 20 40 60 80 100

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

Job

Task

Instance

Machine

Fig. 4. Auto-correlation functions of request arrival intervals in the PAI
workloads at the job, task, instance and machine levels.

Figure 4 illustrates the auto-correlation functions of arrival
intervals for requests in the PAI workloads at the job, task,
instance, and machine levels, respectively. As the lag increases
from 0 to 500, the correlation coefficients of requests at the
aforementioned four levels, do not sharply approach zero
but show a gradual trend; instead, they exhibit a gradual
decline. At certain lags, the coefficients increase, suggesting
that the correlation persists over longer intervals. Interestingly,
as shown in Figure 4, the trends of curves for the job-level
and task-level workloads are relatively synchronized. This
phenomenon may be related to the fact that most jobs in PAI
have only one task [1].

These observations indicate a significant degree of correla-
tion between request arrivals in the PAI workloads at the job,
task, instance, and machine levels, rendering the use of an
independent identically distributed method to describe request
activities unsuitable. Consequently, request activities in PAI
demonstrate not only bursts and heavy-tailed distributions but
also correlations across extended time scales.

Autocorrelation causes job requests to exhibit periodic or
trend-like characteristics, allowing the scheduling algorithm to
predict future resource demand by analyzing historical data.
For example, GPU resources are pre-allocated based on time
series analysis to reduce delays caused by resource contention.
The autocorrelation of task-level requests can lead to abrupt
surges or drops in resource demands, exacerbating response
delays during elastic scaling. In containerized environments,
integrating predictive maintenance techniques, such as load
prediction through real-time data analysis, is essential for
optimizing elastic resource scheduling. For instance-level re-
quest streams with strong autocorrelation, sharding combined
with algorithms like consistent hashing can direct correlated
requests to the same instance. This approach reduces cross-
instance communication overhead and prevents hotspot issues.
Based on the autocorrelation of machine-level requests, elastic
resource quotas can be reserved for auto-correlated tasks, and
a preemption mechanism for interruptible low-priority tasks
can be designed. When highly auto-correlated workloads are
detected, reserved resources can be rapidly released to smooth
load fluctuations.

The aforementioned observations demonstrate that when
executing state-of-the-art ML algorithms on PAI, there are
new and distinctive characteristics of request behaviors at the
job, task, instance, and machine levels – not merely burstiness
but also a discernible degree of correlation. The observed
correlation of arrival intervals in the PAI workloads compels us
to investigate the presence of self-similarity in the subsequent
section.

We encapsulate this crucial insight as follows:

Finding (6): There exists a certain degree of correlation
between requests in the PAI workload at
each level.

Implications: Exploring self-similarity in the PAI work-
load at all levels becomes essential to ac-
curately understand request behaviors and
improve performance in Alibaba’s MLaaS
platform.

IV. SELF-SIMILARITY STUDY

In this section, we explore the self-similarity in the PAI
workloads at the job, task, instance and machine levels from
the following three aspects: (1) showing the visualization,
(2) providing theoretical evidence through the auto-correlation
structures of the aggregation processes of request sequences,
and (3) estimating the self-similarity parameter through clas-
sical tools and making the corresponding judgments.

A. Self-similar Process

First, let us outline the basic knowledge of the self-similar
process involved in this work. A detailed introduction can be
found in the literature [34].

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 8

Consider a stochastic process X = {Xt : t = 1, 2, 3, · · · },
then X(m) = {X(m)

t : t = 1, 2, 3, · · · } is referred to as the
m-order aggregated process corresponding to X , if

X
(m)
t =

1

m

∑m−1

i=0
Xtm−i. (3)

Hence, we have the ACF corresponding to X(m) as R(m)(k).
For the traditional stochastic process such as Poisson, the ACF
for X(m) degenerates with an increasing m, and converges to
0, i.e.,

R(m)(k) → 0, as m → ∞. (4)

If the structure of R(m)(k) does not degenerate with the
increase of m and tends to be the same function structure
(i.e., as m → ∞), we have

R(m)(k) → 1

2

[
(k + 1)2−λ − 2k2−λ + (k − 1)2−λ

]
, (5)

and the process X is said to be self-similar with the Hurst
parameter H (H = 1− λ

2 , 0 < λ < 1). The Hurst parameter
is the sole parameter describing the degree of self-similarity,
and a value in the range of (0.5, 1) indicates the presence
of self-similarity, which is also called long-range dependence
(LRD).

Lemma 1 [35]. For a stochastic process X with covariance
stationarity, X is self-similar and the two propositions below
are equivalent if the process X matches any of the following
two conditions:
(1) X has an auto-correlation function in the form

R(k) =
1

2

[
(k + 1)2−λ − 2k2−λ + (k − 1)2−λ

]
. (6)

(2) the m-order aggregated process for X matches

V ar(X(m)) = σ2m−λ, for 0 < λ < 1. (7)

B. Visualization

A self-similar workload is predominantly characterized by
the persistence of bursts and burst aggregations at diverse
timescales, with the persistent pattern itself exhibiting notably
similar traits.

Therefore, at different timescales, we examine request be-
haviors in the PAI workload at the levels of job, task, instance,
and machine, observing analogous patterns of activity. To
intuitively demonstrate the findings, we depict the task-level
request sequences at three disparate timescales in the left
column of Figure 5, and in the right column, we draw the
machine-level request sequences on the same time scale as in
the left column, respectively.

In Figure 5, the left column includes subplots (a)-(c), and
the right column encompasses subplots (a’)-(c’), with each
subsequent timescale being an order of magnitude larger
than the one preceding it. On the horizontal axis, we plot
the timescale, and the vertical axis indicates the number of
requests per time unit.

In Figure 5, for three subplots within each column, each sub-
plot originates from a subinterval randomly selected from the
time range represented in the succeeding subplot and amplifies
the temporal resolution by a factor of 10. For instance, subplot

(a) in the left column delineates a brief span (100,000 seconds)
sampled randomly from subplot (b), which in turn portrays a
concise interval (1,000,000 seconds) randomly chosen from
subplot (c), and similarly for the subplots (a’)-(c’) in the right
column.

Evident in each column of Figure 5, each subplot exhibits
numerous “spikes” (i.e., bursts), which are sequences of in-
tervals marked by pronounced fluctuations – larger bursts
intermingling with smaller ones. Across the three subplots in
both the left and right columns, these “spikes” within the PAI
workload at the task (or machine) level, manifest a consistent
pattern, unvarying across different timescales.

The aforementioned patterns indicate that the temporal span
of bursty request activities in PAI is composed of nested subin-
tervals, each characterized by bursty behavior. In turn, these
subintervals are comprised of further subintervals reflecting
similar burst-like dynamics. This implies that sequences of
requests in PAI exhibit the characteristics of a self-similar
process over extended timescales.

Comparing the left and right columns in Figure 5, it is
readily apparent that the requests in the machine-level PAI
workload are more intensive than those at the task level – a
trend that aligns fully with the test results given in Section
III-A and supports the burstiness diagnosis results.

The aforementioned critical observations are encapsulated
as

Finding (7): The time range in which requests are bursty
consists of nested subintervals that are
made up of even smaller subintervals with
similar burst behaviors.

Finding (8): Requests in the instance and machine-level
PAI workloads are more intensive than
those at the job and task levels.

Implications: Request activities in the PAI workload at
each level exhibit characteristics of self-
similarity. This offers an opportunity to
enhance load balancing by incorporating
the factor of self-similarity when dynam-
ically and reasonably distributing com-
puting tasks, thereby avoiding bottlenecks
during bursty periods.

C. Theoretical Evidence

The discussion about the structure of R(m)(k) in Section
IV-A provides a theoretical basis for detecting the existence
of self-similarity. Specifically, self-similar workloads exhibit
burstiness at different time scales due to similar scale-invariant
properties.

For requests in the PAI workloads at the levels of job,
task, instance, and machine, we examine the auto-correlation
functions of the aggregated time series of request sequences at
multiple aggregation levels. Firstly, taking the request series at
the machine level as an example, we draw the auto-correlation
functions of the time series at three aggregation levels in

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 9

0 2000 4000 6000 8000 10000

Unit Time = 10 Seconds

(a')

0

5

10

R
E

Q
U

E
S

T
s/

U
n
it

 T
im

e

10
1

0 2000 4000 6000 8000 10000

Unit Time = 100 Seconds

(b')

0

1

2

3

4

R
E

Q
U

E
S

T
s/

U
n
it

 T
im

e

10
2

0 2000 4000 6000 8000 10000

Unit Time = 1000 Seconds

(c')

0

0.5

1

1.5

2

2.5

R
E

Q
U

E
S

T
s/

U
n
it

 T
im

e
10

3

0 2000 4000 6000 8000 10000

Unit Time = 10 Seconds

(a)

0

1

2

3

4

5
T

A
S

K
s/

U
n
it

 T
im

e
10

1

0 2000 4000 6000 8000 10000

Unit Time = 100 Seconds

(b)

0

1

2

3

T
A

S
K

s/
U

n
it

 T
im

e

10
2

0 2000 4000 6000 8000 10000

Unit Time = 1000 Seconds

(c)

0

0.5

1

1.5

2

T
A

S
K

s/
U

n
it

 T
im

e

10
3

Fig. 5. Visualization of request sequences in the PAI workloads at the levels of task and machine: Left plots depict the number of requests at the task level
(TASKs) per unit time for three different time scales (a)-(c), and right plots illustrate the number of requests at the machine level (REQUESTs) per unit time
for the same time scales (a′)-(c′). Each plot has ten thousand buckets.

0 200 400 600 800 1000

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

A
C

F
s

m=1

m=10

m=100

(a) Job

0 200 400 600 800 1000

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

A
C

F
s

m=1

m=10

m=100

(b) Task

0 200 400 600 800 1000

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

A
C

F
s

m=1

m=10

m=100

(c) Instance
Fig. 6. Auto-correlation functions of the aggregated time series for request sequences in the PAI workloads at the levels of: (a) job, (b) task, and (c) instance,
respectively.

Figure 7(a) and plot the auto-correlation functions of the
corresponding artificial Poisson workloads in Figure 7(b). The
aggregation levels (m) are 1, 10, and 100, respectively.

As observed in Figure 7(a), with the increase of lag from
1 to 1000, the correlation coefficients of the machine-level
request sequence fluctuate and do not approach zero. This

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 10

0 200 400 600 800 1000

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

A
C

F
s

m=1

m=10

m=100

(a) Machine

0 200 400 600 800 1000

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

A
C

F
s

m=1

m=10

m=100

(b) Poisson workload
Fig. 7. Auto-correlation functions of the aggregated time series for (a) the
request sequence in the machine-level PAI workload, and (b) an artificial
Poisson workload.

suggests that the corresponding request behaviors exhibit long-
range dependence. Additionally, the auto-correlation curves
at various aggregation levels appear to converge to a similar
function structure. In contrast, as seen in Figure 7(b), the auto-
correlation coefficients of artificial Poisson workloads at each
aggregation level are generally very small and almost equal
to zero. These observations indicate that the auto-correlation
structure of the request sequence in the machine-level PAI
workload behaves in a manner akin to the self-similar process,
distinctly different from the Poisson series.

Similarly, we examine the request sequences in PAI work-
loads at the job, task, and instance levels. Figures 6(a)-(c)
depict the auto-correlation curves at three aggregation levels,
respectively. As seen in Figures 6(a)-(c), as the lag increases
from 1 to 1000, the auto-correlation coefficients of the ag-
gregated time series for request sequences at the job, task,
and instance levels do not converge to zero either, indicating
long-range dependence. Furthermore, the trends of the auto-
correlation curves at various aggregation levels in Figure 6 also
seem to approach a similar function structure. This feature is
similar to a self-similar process.

In summary, all request sequences in the PAI workloads at
the job, task, instance, and machine levels, appear to be self-
similar. We summarize this key observation as

Finding (9): For the PAI workload at each level, the
auto-correlation curves of the request se-
quence at different aggregation levels ap-
pear to converge to a similar function struc-
ture.

Implications: Request activities in the PAI workload
at each level exhibit characteristics of
a self-similar process. Incorporating the
knowledge of self-similarity into work-
load modeling can better forecast resource
requirements for ML tasks.

D. Estimating the Hurst Parameter

In the open interval (0.5, 1), the greater the Hurst parameter,
the higher the degree of self-similarity. In this study, for
the request sequences in the PAI workloads at the levels of

job, task, instance, and machine, we employ two well-known
analytical tools – the variance-time plot [12] and R/S analysis
(also called Pox plot) [36] – to estimate the Hurst parameters,
as shown in Figure 8. Both the variance-time plots and the
Pox plots are widely used to estimate the Hurst parameter of
data samples and provide faithful test results.

Using the variance-time plot as an example, we can cal-
culate the variance of the corresponding m-order aggregated
process X(m) for a given set of sample trace data X using
Equation (7). By taking the logarithm of both sides of Equation
(7), we get:

log10(V ar(X(m))) = log10(α
2)− λlog10(m), (8)

where the constant log10(α
2) is independent of m. If

log10(V ar(X(m))) is considered as a function of log10(m),
we draw the curve of log10(V ar(X(m))) versus log10(m), and
obtain a series of scattered points which can usually fit a linear
regression straight line with a slope of −λ = 2(H − 1). Then
we can calculate the Hurst parameter H .

Figure 8(a) illustrates the variance-time plots for request
activities in the PAI workloads at the levels of job, task, in-
stance, and machine. Figure 8(a) where log10(V ar(X(m))) is
abbreviated as log10(variances), yields a line of slope −λ =
2(H − 1) by depicting the scatter plots of log10(variances)
versus log10(m). The corresponding Hurst parameter is es-
timated to be 0.636, 0.629, 0.548, and 0.563, respectively.
Furthermore, the Pox plots generated from the R/S analysis
of the PAI traces are depicted in Figure 8(b). As shown in
Figure 8(b), through a least squares linear fitting, the Hurst
parameter is estimated to be 0.529, 0.558, 0.567, and 0.504,
respectively.

According to the above observations, for requests in the PAI
workloads at the levels of job, task, instance, and machine,
the Hurst parameter estimates are all greater than 0.5, which
further proves the existence of self-similarity quantitatively.
We summarize this key observation as

Finding (10): For the PAI workloads at various levels,
all Hurst parameter estimates are greater
than 0.5.

Implications: These Hurst parameter estimates for PAI
quantitatively confirm the existence of
self-similarity. This makes it possible to
take into account and apply self-similarity
as evaluating and optimizing the perfor-
mance of Alibaba’s MLaaS platform.

V. PAI WORKLOAD SYNTHESIS

Generally, in the research community, synthetic request
workloads can be applied to actual systems to simulate request
sequences and evaluate system performance. By performing
burstiness diagnosis, correlation study, Gaussianity test, and
self-similarity analysis for the PAI workloads at the job, task,
instance, and machine levels, we have obtained the following

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 11

 !"#$%&'"'()$)"%*#$+('$),%

-./01

PAI_Machine

 !"#$%&'"'()$)"%*#$+('$),%

-./01

PAI_Task

 !"#$%&'

 !
"

#
$

%(
)

*+
)

,
-

.
/

'

$ # 0 1 2 3

40
5$

4#
53

4#
5$

4$
53

$
5$

 !"#$%&'

 !
"

#
$

%(
)

*+
)

,
-

.
/

'

$ # 0 1 2 3

40
53

40
5$

4#
53

4#
5$

4$
53

$
5$

 !"#$%&'

 !
"

#
$

%(
)

*+
)

,
-

.
/

'

$ # 0 1 2 3

41
5$

40
53

40
5$

4#
53

4#
5$

4$
53

$
5$

 !"#$%&'"'()$)"%*#$+('$),%

-./01

PAI_Instance

 !"#$%&'

 !
"

#
$

%(
)

*+
)

,
-

.
/

'

$ # 0 1 2 3

40
5$

4#
53

4#
5$

4$
53

$
5$

 !"#$%&'"'()$)"%*#$+('$),%

-./0/

PAI_Job

(a) The variance-time plots

 !"#$%&'

 !
"

#
$

%(
)*

'

$ # + , - . /

$
#

+
,

- !"#$%&'"'()$)"%

*#$+('$),%-./-0

 !"#$%&'

 !
"

#
$

%(
)*

'

$ # + , - . /

$
#

+
,

-

 !"#$%&'"'()$)"%

*#$+('$),%-.//1

 !"#$%&'

 !
"

#
$

%(
)*

'

$ # + , - . /

$
#

+
,

-

 !"#$%&'"'()$)"%

*#$+('$),%-./23

 !"#$%&'
 !

"
#

$
%(

)*
'

$ # + , - . /

$
#

+
,

- !"#$%&'"'()$)"%

*#$+('$),%-./45

PAI_Job PAI_Task PAI_Instance PAI_Machine

(b) The Pox plots
Fig. 8. Estimating Hurst parameters for request activities in the PAI workloads at the job, task, instance, and machine levels using (a) variance-time plots,
and (b) Pox plots, respectively.

observations: (1) All the request arrival processes in the four-
level PAI workloads are significantly bursty. (2) Traditional
methods may be inadequate to accurately describe the PAI
workloads in which request arrivals show a certain degree
of correlation. (3) Self-similarity seems to exist in the PAI
workloads at various levels. (4) Request activities in the PAI
workload at each level appear to be non-Gaussian.

Inspired by these findings, this section proposes a workload
model to faithfully synthesize request series in the self-similar
PAI workloads at the aforementioned four levels.

A. Workload Modeling

To faithfully synthesize request sequences in PAI, the gen-
erator not only needs to efficiently describe self-similarity, but
also accurately capture the bursts and heavy-tailed properties
under non-Gaussian conditions. Since the alpha-stable process
perfectly matches the generator’s requirements, we extend the
alpha-stable model proposed in the referenced literature [8] by
redefining model parameters to generate request sequences at
the job, task, instance, and machine levels, respectively.

A random variable X that follows an alpha-stable distribu-
tion is denoted by X ∼ Sα

σ,β,µ [8]. For PAI, we can formalize
the alpha-stable workload model as:

REQUEST (i) = v ·Nα,β,H(i) + δ (9)

where REQUEST (i) denotes the number of requests in the
ith unit time; α is the degree of heavy tail (0 < α ≤ 2); β
denotes the skewness parameter (−1 ≤ β ≤ 1); viariables σ
(> 0) and µ (∈ R) measure the scale and location parameters,
respectively.

The distribution morphology and tail behavior in synthetic
workloads are driven by parameters α and β. As α approaches
2, the distribution gradually converges to a Gaussian form with
thinner tails. This underestimates the probability of extreme
events, resulting in reduced accuracy in reproducing spike
states (such as request bursts) within synthetic workloads.
When α decreases (e.g., α < 1.5), the tails thicken signifi-
cantly. This enables more accurate simulation of heavy-tailed
characteristics, thereby enhancing fidelity in peak generation.
Meanwhile, parameter β modulates the asymmetry of the
distribution. When β approaches 1, the distribution becomes
right-skewed, amplifying the weight of the right tail – a
configuration particularly useful for synthesizing positively
shifted workloads (e.g., sudden surges in service requests).
When β approaches -1, the distribution exhibits left-skewed
characteristics, accentuating the left tail weight to simulate
anomalies with low values in workload. The deviation of β
distorts the temporal distribution of event occurrence probabil-
ities, reducing temporal alignment accuracy between synthetic
sequences and actual workloads.

In addition, variable v is referred to as the mean number
of requests per unit time in a request series, H denotes the
degree of self-similarity, δ measures the standard deviation of
the number of requests per unit time relative to the mean,
and detailed description of Nα,β,H(i) can be found in the
literature [8]. All the above parameters can be measured and
obtained by the maximum likelihood estimation from real PAI
trace datasets at the job, task, instance, and machine levels,
respectively. More specifically, for a sample series X = {xi}
of the PAI trace at each level, we simplify the alpha-stable
parameters to be represented by a vector θ = (α, β, σ, µ), with

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 12

-10 -5 0 5

Logscale of request series

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n

Real trace

Proposed

FBM

FARIMA

(a) Job

-10 -5 0 5

Logscale of request series

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n

Real trace

Proposed

FBM

FARIMA

(b) Task

-5 0 5 10 15 20

Logscale of request series

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n

Real trace

Proposed

FBM

FARIMA

(c) Instance

-5 0 5 10 15 20

Logscale of request series

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n

Real trace

Proposed

FBM

FARIMA

(d) Machine
Fig. 9. Comparison of CDFs between synthetic sequence and real one for the PAI workloads at the job, task, instance and machine levels, respectively.

the corresponding density denoted as f(xi|θ). The parameter
space is Θ = (0, 2] × [−1, 1] × (0,∞) × (−∞,+∞). The
log-likelihood function for X can be expressed as L(Θ) =∑n

i=1 log(f(xi|θ)). Then, using the pre-computed spline ap-
proximation method [37], the maximum likelihood estimation
of stable parameters is computed, and the stability is verified.
Table III summarizes the estimated results for each parameter.

TABLE III
ESTIMATES OF THE PARAMETER OF ALPHA-STABLE MODEL BASED ON

MAXIMUM-LIKELIHOOD ESTIMATE.

Trace Alpha-stable parameter
v δlevel α β σ µ

Job 1.17084 1.00000 0.24957 –0.36245 1.01 2.73
Task 0.99094 1.00000 0.18884 –0.35424 1.16 2.91

Instance 0.60134 0.64731 0.23627 0.89549 3.63 14.6
Machine 0.61770 1.00000 0.03200 –0.28233 2.12 47.1

Each row of Table III includes the trace level, the estimates
of v, δ, and four alpha-stable parameters. As shown in Table
III, the estimates of the parameter α are all less than 2,
indicating that the request behaviors in the PAI workloads at
the job, task, instance, and machine levels are not Gaussian.
This observation aligns completely with the test results in
Section III-B, effectively verifying the accuracy of the test
results in Section III-B.

Additionally, for the aforementioned four alpha-stable pa-
rameters, i.e., α, β, σ and µ, the sensitivity levels are high,
medium, medium, and low, respectively. Among them, param-
eter α has a significant impact on the model’s robustness –
when the value of α approaches 1, the model exhibits higher
tolerance to noise and outliers.

B. Trimmed Mean of Errors

For the PAI workloads, based on the parameters estimated
in Table III, we employ the alpha-stable workload model to
synthesize request sequences at the job, task, instance, and
machine levels, respectively. To evaluate the error between the
synthetic request sequence and the actual one, we leverage the
trimmed mean of errors [8].

The trimmed mean is the arithmetic average calculated after
truncating a smaller proportion of data at both ends of a
sample. It is more robust to outliers than the usual sample
mean, such as the arithmetic average. The smaller the trimmed

mean of the errors, the higher the matching degree between
the synthetic sequence and the real one.

Given the existence of self-similarity in PAI, we also
employ two typical self-similar workload models – fractional
Brownian motion (FBM) [38] and fractional auto-regressive
integrated moving average (FARIMA) [39] – to synthesize
the request sequences at the job, task, instance, and machine
levels. Furthermore, we use FBM and FARIMA to com-
pare the fit of alpha-stable request sequences. The FARIMA
model is capable of describing both long-range and short-
range dependencies, while the FBM model is suitable for
characterizing self-similarity under Gaussian conditions. A
detailed comparison of the advantages and disadvantages of
the proposed model versus representative self-similar models,
including FBM and FARIMA, is summarized in Table IV.

Table V summarizes the trimmed mean of errors for the
three workload models, namely, FBM, FARIMA, and our
proposed model. According to Table V, for the PAI workloads
at the job, task, instance, and machine levels, the trimmed
means of errors between the actual request sequences and the
corresponding alpha-stable request sequences are minimal.

Moreover, our alpha-stable request sequences improve the
matching degrees of FBM by 99%. In Table V, our scheme
also shows improvements in the matching degree of FARIMA
by varying degrees. However, the matching degrees of our
scheme (i.e., 0.84, 0.88, 1.28, and 0.78) are very close to those
of FARIMA (i.e., 1.28, 1.34, 1.39, and 1.26), respectively. This
indicates that our proposed approach is at least one of the best
scenarios.

C. An Empirical Study

For the four levels of PAI workloads – namely, job, task,
instance, and machine – to intuitively compare the matching
degree of the various synthetic request sequences with the
actual ones, we depict the cumulative distribution functions
(CDFs) of both the actual and the synthetic sequences in
Figure 9.

In Figure 9, the horizontal axis denotes the log scale of
the number of requests per unit time, while the vertical axis
represents the proportion of the corresponding values in the
whole request sequence. Each coordinate (x, y) indicates that
the proportion of logarithms less than or equal to x in the
corresponding time series is y.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 13

TABLE IV
COMPARISON OF ADVANTAGES AND DISADVANTAGES BETWEEN THE PROPOSED MODEL AND THE REPRESENTATIVE SELF-SIMILAR MODELS, INCLUDING

FBM AND FARIMA.

Model Advantage Disadvantage Applicable scenario
FBM Simple parameters make the model tractable, and it

can describe self-similarity under Gaussian condi-
tions.

Cannot simultaneously describe both
long-range and short-range dependence.

Suitable for real-time system modeling,
simulation, and performance analysis.

FARIMA Highly flexible, capable of characterizing both long-
range and short-range dependence simultaneously.

Overly complex, computationally inten-
sive, and does not account for tail char-
acteristics in workload.

Applicable to complex system modeling
and non-real-time performance analysis.

Proposed Parsimonious and capable of characterizing burstiness
and tail characteristics in workloads under both Gaus-
sian and non-Gaussian conditions, capturing both
long-range and short-range dependence simultane-
ously.

Lacks a closed-form expression for the
probability density function, hindering
further performance analysis.

Investigating self-similarity, burstiness,
and variations of tail characteristics in
workloads under Gaussian and non-
Gaussian conditions.

TABLE V
THE TRIMMED MEANS OF ERRORS FOR SYNTHESIZING REQUEST

SEQUENCES IN THE PAI WORKLOADS AT THE JOB, TASK, INSTANCE AND
MACHINE LEVELS.

Trace FBM ① FARIMA ② Proposed Improvement
level vs ① vs ②

Job 166.72 1.28 0.84 99.5% 34.4%
Task 293.79 1.34 0.88 99.7% 34.3%

Instance 156.13 1.39 1.28 99.2% 7.9%
Machine 109.46 1.26 0.78 99.3% 38.1%

As shown in Figure 9, for each level of PAI workload,
the alpha-stable synthetic sequence matches well with the
actual sequence, particularly at the instance level, echoing the
corresponding trimmed mean of errors, 0.84, 0.88, 1.28 and
0.78, as shown in Table V.

Furthermore, Figure 9 demonstrates that the FARIMA syn-
thetic sequences also seem to match well with the actual se-
quences, even being non-inferior to the alpha-stable synthetic
sequences at the job, task, and machine levels. This observa-
tion is consistent with the findings presented in Table V.

However, the alpha-stable synthetic sequences have one
advantage over the FARIMA synthetic ones, as shown in
Figures 9(a)-(d), the alpha-stable synthetic sequences bet-
ter characterize the heavy-tailed features of the actual se-
quences, especially for the instance-level request series. This
phenomenon may be associated with the fact that, while
FARIMA is capable of describing both long-range and short-
range dependence, it struggles to accurately represent the tail
characteristics in self-similar workloads, as illustrated in Table
IV.

Furthermore, Figure 9 reveals that the matching degree of
the alpha-stable synthetic sequences is much better than that of
the FBM ones. The aforementioned observation may be caused
by the following reasons: although FBM can characterize self-
similarity under Gaussian conditions, it fails to faithfully de-
scribe self-similarity under non-Gaussian conditions, as shown
in Table IV. This suggests that the request behaviors in the PAI
workloads at the job, task, instance, and machine levels, do
not tend to be Gaussian. This observation is fully consistent
with the test results presented in Section III-B and supports
the Gaussianity test results.

To summarize, for the PAI workloads at the job, task,
instance, and machine levels, the alpha-stable synthetic se-

quences yield convincing matching degrees.

VI. DISCUSSION

To facilitate the design of next-generation hardware archi-
tectures, it is crucial to gain insights into ML application work-
loads and assess access patterns in the execution stack [40].
In this section, we discuss the significance of characterizing
ML application workloads for building an MLaaS platform.

A. Performance Evaluation

Characterizing the access patterns of ML workloads is
an effective means of evaluating the performance of ML
clusters. For example, Paul et al. [6] analyzed I/O behaviors
of ML I/O workloads based on a Darshan log of 23,000
HPC ML I/O jobs. Paul’s analysis provided insights into
potential performance optimization efforts and offered support
for assessing I/O trends across the entire HPC cluster. Li et
al. [4] studied system operations, job characteristics, and user
behaviors of contemporary GPUs in HPC systems. Li observed
that when HPC systems encounter GPU-accelerated AI and
ML workloads, a significant number of users perform low-
utilization development and idle work. Based on an operation-
level empirical analysis of various CNNs, Hafeez et al. [41]
proposed a model-driven method called Ceer to determine the
optimal GPU instance(s) for any given CNN.

Moreover, Wang et al. [42] studied DL training work-
loads from Alibaba’s AI platform and evaluated the achiev-
able performance of the workload on various potential soft-
ware/hardware mappings. They revealed that weight/gradient
communication during training accounts for almost 62% of
the total execution time.

B. Resource Management

Resource management in data centers often relies on study-
ing job features and user behaviors. Yeung et al. [43] proposed
a predictive resource manager based on the GPU utilization of
heterogeneous DL jobs inferred from the computational graph
features of DL models. Weng et al. [1] characterized a two-
month-long workload trace collected in an Alibaba production
model cluster containing more than 6,000 GPUs, revealing
challenges of heterogeneous GPU clusters, such as low GPU
utilization, long queuing delay, and load imbalance across

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 14

heterogeneous machines. Hu et al. [2] analyzed a real job trace
from SenseTime and designed a quasi-shortest service priority
scheduling service that minimized the average job completion
time of clusters.

Additionally, Jeon et al. [7] analyzed the workload char-
acteristics of a two-month-long trace from Microsoft’s multi-
tenant GPU clusters to study the factors influencing cluster
utilization of DNN-trained workload on multi-tenant clusters
and provided a design guide for next-generation cluster sched-
uler. Jiang et al. [5] investigated a cluster-trace-v2018 trace of
an Alibaba production cluster. Jiang’s study observed daily
periodic fluctuations of workload characteristics in the pro-
duction clusters and suggested that performance bottlenecks in
collocated clusters are caused by the memory system, which
data centers can use to establish efficient scheduling strategies.

C. Self-similarity

The utilization of self-similarity in request behavior can
significantly enhance system optimization across multiple di-
mensions [22]. For machine learning cloud platforms, this
manifests in the following specific aspects:

First, accelerated model training. Understanding and model-
ing the self-similar characteristics in training tasks enables the
implementation of dynamic caching strategies. For example,
prioritizing the caching of frequently accessed training dataset
segments can improve iteration speeds for typical tasks.

Second, elastic resource scheduling. Constructed predic-
tion models based on the self-similarity of workload, help
cloud platforms anticipate computational resource demands
in advance, automatically pre-warm GPU instances, and pre-
allocate storage bandwidth.

Finally, enhanced simulation testing. A virtual workload
generator designed with self-similar properties can simulate
real-world stress scenarios, ranging from small-scale image
classification tasks to training trillion-parameter large-scale
models.

D. Synthetic Model

Trace-driven simulators, often used to evaluate the GPU
cluster performance in deep learning systems [43], benefit
from synthetic models in several ways. Synthetic models
offer three main advantages over trace-driven simulators. First,
synthetic models provide a deeper understanding of offline
workloads, such as bursty activities and heavy-tailed proper-
ties. Second, they contribute to evaluating specific subsystems
rather than the entire system by providing workloads for
various isolated subsystems. Third, synthetic models enable
hypothetical performance analysis by modifying input param-
eters, helping to identify key factors influencing outcomes.

The modeling method directly affects performance evalua-
tion and system design verification. In this study, the proposed
synthetic models, based on inputs measured from the PAI
traces, can faithfully capture the characteristics of the PAI
workloads at the job, task, instance, and machine levels. This
is vital for system design and performance optimization in
MLaaS.

Due to the fact that PAI, a typical cloud-based ML plat-
form for Artificial Intelligence, adheres to generic cloud
construction principles similar to other ML platforms such
as Amazon SageMaker, Google Vertex AI, and Microsoft
Azure Machine Learning, these cloud ML platforms share
identical characteristics. For instance, they all provide hybrid
CPU/GPU computing resources, support on-demand auto-
scaling, and integrate batch processing with real-time inference
capabilities. Consequently, our proposed method is applicable
for studying the burstiness of request activities in other MLaaS
platforms.

VII. CONCLUSION

With the continued advances and widespread use of machine
learning technologies, major tech companies are deploying
MLaaS clouds equipped with GPU clusters to run various
types of ML application workloads. To effectively schedule
and manage GPU clusters, it is imperative to deeply under-
stand request behaviors in MLaaS workloads.

For requests in the PAI workloads – a representative and
real-word MLaaS workload – at the job, task, instance, and
machine levels, we gauged the burstiness and unveiled that the
request arrival process is highly bursty. We then performed the
Gaussianity tests and observed that bursty request activities in
the PAI workload at each level appear to be non-Gaussian.

We also investigated the correlation of request arrivals
and discovered that correlations exist among the requests in
the PAI workloads at various levels. This finding led us to
reveal the self-similar nature of the PAI workloads through
visual evidence, the auto-correlation structure of an aggregated
process of request sequences, and Hurst parameter estimates.

Furthermore, based on the inputs measured from the PAI
traces, we have implemented an alpha-stable workload model
to generate synthetic request sequences for the PAI workloads
at all levels. Experimental results demonstrate that our model
outperforms typical self-similar workload models in faithfully
simulating burstiness and heavy-tailed characteristics. More-
over, we are designing a burst-aware scheduler embedded
with this proposed model, which enables predicting when
bursts are likely to occur in advance. This allows finding an
appropriate time to proactively activate backup servers and
smoothly handle burst requests. This approach both reduces
system latency and saves energy consumption.

When the research community studies the characteristics
of computer system workloads, the specific application sce-
narios may lead to diverse timeframes for datasets, including
months [22], days [27], hours or even minutes [44]. We utilize
the PAI trace data primarily for the following reasons: (1)
The trace data we use was collected by Wengâs group [1],
with a maximum length of two months, and this two-month
timeframe has already captured sufficient characteristics. (2)
The job types in the PAI workloads are representative and
have been recognized by the community [1]. Furthermore,
should longer traces of machine learning cloud platform
covering more job types become available in the future, we are
willing to conduct further analysis over longer time periods
to investigate whether any previously unseen characteristics
emerge.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 15

In the MLaaS architecture, the burst buffer mechanism, a
core component for handling high-concurrency I/O requests,
has made intelligent optimization of resource allocation essen-
tial for building high-performance distributed training systems.
Therefore, we plan to dynamically adjust read/write cache
allocation in the burst buffer based on quantitative analysis of
ML I/O burst intensity in the near future. This approach aims
to enhance the storage subsystemâs throughput efficiency for
intermittent data surges through elastic resource scheduling.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their helpful comments in reviewing this paper. This research
was supported by Guangxi Natural Science Foundation under
Grant No. 2025GXNSFAA069426. This work was supported
in part by the National Key Research and Development
Program of China under Grant 2021ZD0110700, in part by
the National Natural Science Foundation of China under
Grants 62072214 and 62172361, in part by the Guangdong
Basic and Applied Basic Research Foundation under Grant
2021B1515120048, in part by the specific research fund of
The Innovation Platform for Academicians of Hainan Province
under Grant YSPTZX202410, and in part by the Program
of Zhejiang Province Science and Technology under Grant
2022C01044.

REFERENCES

[1] Q. Weng, W. Xiao, Y. Yu, and et al, “MLaaS in the Wild: Workload
Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters,”
in Proceedings of the 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’22), Renton, WA, April 2022.

[2] Q. Hu, P. Sun, S. Yan and et al, “Characterization and prediction of
deep learning workloads in large-scale GPU datacenters,” in Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC’21), St. Louis, MO, USA, November
2021.

[3] M. Wajahat, A. Yele, T. Estro and et al, “Distribution fitting and
performance modeling for storage traces,” in Proceedings of the 27th
IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), October 2019,
pp. 138–151.

[4] B. Li, R. Arora, S. Samsi, and et al, “AI-Enabling Workloads on Large-
Scale GPU-Accelerated System: Characterization, Opportunities, and
Implications,” in Proceedings of the 28th Annual IEEE International
Symposium on High-Performance Computer Architecture (HPCA), April
2022, pp. 1224–1237.

[5] C. Jiang, Y. Qiu, W. Shi, Z. Ge, J. Wang, S. Chen, C. Cerin, Z. Ren, G.
Xu and J. Lin, “Characterizing Co-located Workloads in Alibaba Cloud
Datacenters,” IEEE Transactions on Cloud Computing, October 2020,
DOI: 10.1109/TCC.2020.3034500

[6] A. K. Paul, A. M. Karimi, and F. Wang, “Characterizing Machine Learn-
ing I/O Workloads on Leadership Scale HPC Systems,” in Proceedings
of the 29th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
Houston, TX, USA, November 2021.

[7] M. Jeon, S. Venkataraman, A. Phanishayee, and et al, “Analysis of
Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads,”
in Proceedings of the 2019 USENIX Annual Technical Conference
(ATC), Renton, WA, USA, July 2019, pp. 947–960.

[8] D. Feng, Q. Zou, H. Jiang, and Y. Zhu, “A novel model for synthesizing
parallel I/O workloads in scientific applications,” in Proceedings of the
2008 IEEE International Conference on Cluster Computing (CLUSTER),
2008.

[9] M. Abadi, P. Barham, J. Chen, and et al, “TensorFlow: A System for
Large-Scale Machine Learning,” in Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2016, pp. 265–283.

[10] T. Chen, M. Li, Y. Li, and et al, “MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems,”
2015, arXiv preprint arXiv:1512.01274.

[11] R. Zhu, K. Zhao, H. Yang, and et al, “AliGraph: a comprehensive graph
neural network platform,” in Proceedings of the VLDB Endowment,
2019.

[12] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of ethernet traffic (extended version),” IEEE/ACM Transactions
on Networking, vol. 2, pp. 1–15, February 1994.

[13] S. Gupta, and A. D. Dileep, “Long range dependence in cloud servers:
a statistical analysis based on google workload trace,” Computing, vol.
102, pp. 1031–1049, 2020.

[14] Q. Li, S. Wang, Y. Liu, and et al, “Traffic self-similarity analysis
and application of industrial internet,” Wireless Networks, 2020, DOI:
10.1007/s11276â?20â?2420â?.

[15] Z. Li, L. Zheng, Y. Zhong, and et al, “AlpaServe: Statistical Multiplexing
with Model Parallelism for Deep Learning Serving,” in Proceedings
of the 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, USA, July 2023: 663â?79.

[16] B. Zhang, S. Li, and Z. Li, “MIGER: Integrating Multi-Instance GPU
and Multi-Process Service for Deep Learning Clusters,” in Proceedings
of the 53rd International Conference on Parallel Processing (ICPP),
Gotland, Sweden, August 2024: 504â?13.

[17] W. Chen, Z. Mo, H. Xu, and et al, “Interference-aware Multiplexing
for Deep Learning in GPU Clusters: A Middleware Approach,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SCâ?3), Denver, CO,
USA, Nov. 2023.

[18] V. Saxena, K. R. Jayaram, S. Basu, and et al, “Effective Elastic
Scaling of Deep Learning Workloads,” in Proceedings of the 28th
IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), Nice, France,
Nov. 2020.

[19] Q. Zou, Y. Deng, Y. Zhu, and et al, “Dissecting I/O Burstiness in
Machine Learning Cloud Platform: A Case Study on Alibaba’s MLaaS,”
in Proceedings of the 38th International Conference on Massive Storage
Systems and Technology (MSST’24), Santa Clara, CA, June 2024.

[20] Z. Li, W. Xing, S. Khamaiseh, and D. Xu, “Detecting saturation attacks
based on self-similarity of OpenFlow traffic,” IEEE Transactions on
Network and Service Management, vol. 17, no. 1, pp. 607–621, Mar.
2020.

[21] Q. Liu, X. Zhao, W. Willinger, and et al, “Self-similarity in social
network dynamics,” ACM Transactions on Modeling and Performance
Evaluation of Computing Systems, vol. 2, 2016.

[22] S. Talluri, A. Luszczak, C. Abad, and A. Iosup, “Characterization of
a Big Data Storage Workload in the Cloud,” in Proceedings of the
2019 ACM/SPEC International Conference on Performance Engineering
(ICPE), April 2019, pp. 33–44.

[23] A. Yu, H. Yang, K. K. Nguyen, J. Zhang, and M. Cheriet, “Burst traffic
scheduling for hybrid E/O switching DCN: An error feedback spiking
neural network approach,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 882–893, Mar. 2021.

[24] T. Yu, H. Yang, Q. Yao, and et al, “Multi-visual-GRU-based survivable
computing power scheduling in metro optical networks,” IEEE Trans-
actions on Network and Service Management, vol. 21, no. 1, pp. 1302–
1315, February 2024.

[25] Q. Shi, F. Wang, and D. Feng, “IntFlow: Integrating per-packet and per-
flowlet switching strategy for load balancing in datacenter networks,”
IEEE Transactions on Network and Service Management, vol. 17, no.
3, pp. 1377–1388, Sept. 2020.

[26] C. Ji, R. Pan, L. Chang, and et al, “Inspection and Characterization of
App File Usage in Mobile Devices,” ACM Transactions on Storage, vol.
16, no. 4, September 2020.

[27] J. Li, Q. Wang, P. Lee, and C. Shi, “An In-Depth Comparative Analysis
of Cloud Block Storage Workloads: Findings and Implications,” ACM
Transactions on Storage, vol. 19, no. 2, 2023.

[28] M. Shahrad, R. Fonseca, I. Goiri, and et al, “Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider,” in Proceedings of the 2020 USENIX Annual Technical
Conference (ATC), July 2020, pp. 205–218.

[29] R. Gusella, “Characterizing the variability of arrival processes with
indexes of dispersion,” IEEE Journal on Selected Areas in Commu-
nications, vol. 9, no. 2, pp. 203–211, February 1991.

[30] Z. Li, C. Liang, W. He, and et al, “Metis: Robustly Optimizing Tail
Latencies of Cloud Systems,” in Proceedings of the 2018 USENIX
Annual Technical Conference (ATC), Boston, MA, USA, July 2018, pp.
981–992.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMEN, VOL. X, NO. X, XX 2024 16

[31] D. Tiwari, S. Gupta, J. Rogers, and et al, “Understanding GPU errors
on large-scale HPC systems and the implications for system design and
operation,” in Proceedings of the 21st IEEE International Symposium
on High-Performance Computer Architecture (HPCA), Burlingame, CA,
USA, February 2015.

[32] J. Zhang, A. Sivasubramaniam, H. Franke, and et al, “Synthesizing
representative I/O workloads for tpc-h,” in Proceedings of the 10th
International Symposium on High Performance Computer Architecture
(HPCA), Madrid, Spain, 2004.

[33] B. Schroeder, and G. A. Gibson, “Disk failures in the real world: what
does an MTTF of 1,000,000 hours mean to you?” Proceedings of the
5th USENIX Conference on File and USENIX Association Storage
Technologies (FAST’07), Berkeley, CA, 2007, pp. 1–16.

[34] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, “Long-range
dependence in variable-bit-rate video traffic,” IEEE Transactions on
Communications, vol. 43, pp. 1566–1579, March 1995.

[35] P. Embrechts and M. Maejima, “Self-similar processes,” Princeton
University Press, 2002.

[36] S. Gribble, G. Manku, and E. Brewer, “Self-similarity in high-level file
systems: Measurement and applications,” in Proceedings of the Joint
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS/Performance), Madison, Wisconsin, 1998.

[37] J. P. Nolan, “Maximum Likelihood Estimation and Diagnostics for
Stable Distributions,” LÃ©vy Processes, pp. 379–400, 2001.

[38] Norros, “On the use of fractional brownian motion in the theory of
connectionless networks,” IEEE Journal of Selected Areas in Commu-
nications (JSAC), vol. 15, pp. 200–208, 1997.

[39] M. W. Garrett, and W. Willinger, “Analysis, modeling and generation of
self-similar VBR video traffic,” in Proceedings of SIGCOMMâ?4.

[40] M. Jain, S. Ghosh, and S. P. Nandanoori, “Workload Characterization
of a Time-Series Prediction System for Spatio-Temporal Data,” in
Proceedings of the 19th ACM International Conference on Computing
Frontiers (CF), Torino, Italy, May 2022.

[41] U. U. Hafeez, and A. Gandhi, “Empirical Analysis and Modeling of
Compute Times of CNN Operations on AWS Cloud,” in Proceedings of
the 2020 IEEE International Symposium on Workload Characterization
(IISWC), October 2020, pp. 181–192.

[42] M. Wang, C. Meng, G. Long, and et al, “Characterizing Deep Learning
Training Workloads on Alibaba-PAI,” in Proceedings of the 2019
IEEE International Symposium on Workload Characterization (IISWC),
November 2019, pp. 189–202.

[43] G. Yeung, D. Borowiec, R. Yang, and et al, “Horus: Interference-Aware
and Prediction-Based Scheduling in Deep Learning Systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 1, pp.
88–100, 2022.

[44] D. Zhou, W. Pan, W. Wang, and T. Xie, “I/O characteristics of
smartphone applications and their implications for eMMC design,” in
Proceedings of the 2015 IEEE International Symposium on Workload
Characterization (IISWC), October 2015, pp 12–21.

Qiang Zou received his Ph.D. in Computer Ar-
chitecture and M.S. in Applied Mathematics from
Huazhong University of Science and Technology
(HUST) in 2009 and 2006 respectively. He is As-
sociate Professor with the School of Artificial Intel-
ligence, Guangxi Minzu University, Nanning, China.
Before that, he worked as Associate Professor in
the Department of Computer Science of the School
of Computer and Information Science at Southwest
University, Chongqing, China. His current research
interests include workload characterization, model-

ing, performance evaluation, and applications of deep learning.

Yuhui Deng received the Ph.D. degree in computer
science from the Huazhong University of Science
and Technology, in 2004. He is currently a Pro-
fessor with the Department of Computer Science,
Jinan University. Before joining Jinan University,
he worked with the EMC Corporation as a Senior
Research Scientist from 2008 to 2009. He worked
as a Research Ofı̈¬cer with Cranı̈¬eld University,
U.K., from 2005 to 2008. His research interests
cover green computing, cloud computing, informa-
tion storage, computer architecture, and performance

evaluation.

Yifeng Zhu is Professor in the Department of Elec-
trical and Computer Engineering of the College of
Engineering at the University of Maine. He received
his Ph.D. and M.S. in Computer Science and En-
gineering from the University of Nebraska in 2005
and 2002 respectively. Before that, he received B.S.
in Electrical Engineering from Huazhong University
of Science and Technology in China. His current
research interests include computer architecture and
systems, data storage systems, energy-efficient mem-
ory systems, parallel/distributed computing, embed-

ded systems, and applications of deep learning.

Yi Zhou received the BS and MS degrees in elec-
tronic engineering all from Beijing University of
Technology, Beijing, in 2006 and 2010, respectively.
He received the PhD degree in computer science
from Auburn University, in 2018. He is currently
an assistant professor with the TSYS School of
Computer Science at Columbus State University.
Prior to joining Columbus State University in 2018,
he has been a software engineer in Alcatel-Lucent
Technologies (China) Co., Ltd. for four years from
2010 to 2014. His research interests include energy-

saving techniques, database systems, big data techniques and parallel com-
puting.

Jianghe Cai received his BS degree in software
engineering from the College of Computer Science
and Technology at Huaqiao University, Xiamen,
China, in 2021. He is currently pursuing the MS
degree in Computer Architecture from the College
of Information Science and Technology at Jinan
University, Guangzhou, China. His research interests
include Granular computing, data mining, and fuzzy
computing.

Shuibing He received the PhD degree in computer
science and technology from Huazhong University
of Science and Technology, in 2009. He is now a
ZJU100 Young Professor with the College of Com-
puter Science and Technology, Zhejiang University,
China. His research areas include intelligent com-
puting, memory and storage systems, processing-in-
memory. He is a member of the IEEE and ACM.

Lina Ge received the Ph.D. degree in computer sci-
ence and technology from the South China Univer-
sity of Technology, Guangzhou, China, in 2009. Be-
fore that, she received the M.S. degree in computer
science and technology from Guangxi University,
Nanning, in 2004. She is currently a Professor with
the School of Artificial Intelligence, Guangxi Minzu
University, Nanning, China. Her research interests
include intelligent computing and network security.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3640771

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:40:45 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background and Motivation
	Alibaba PAI
	Related Work
	 Workload Characterization
	Self-similarity

	Motivation

	PAI Workload Diagnosis
	Burstiness
	Gaussianity Study
	Correlation Analysis

	Self-similarity Study
	Self-similar Process
	Visualization
	Theoretical Evidence
	Estimating the Hurst Parameter

	PAI Workload Synthesis
	Workload Modeling
	Trimmed Mean of Errors
	An Empirical Study

	Discussion
	Performance Evaluation
	Resource Management
	Self-similarity
	Synthetic Model

	Conclusion
	References
	Biographies
	Qiang Zou
	Yuhui Deng
	Yifeng Zhu
	Yi Zhou
	Jianghe Cai
	Shuibing He
	Lina Ge

