
Dissecting I/O Burstiness in Machine Learning
Cloud Platform: A Case Study on Alibaba’s MLaaS

Qiang Zou1,2, Yuhui Deng3, Yifeng Zhu4, Yi Zhou5, Jianghe Cai3, Shuibing He6

1 School of Artificial Intelligence, Guangxi Minzu University, Nanning, China
2 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Nanning, China

3 Department of Computer Science, Jinan University, Guangzhou, China
4 Department of Electrical and Computer Engineering, University of Maine, Orono, ME, USA

5 TSYS School of Computer Science, Columbus State University, Columbus, GA, USA
6 College of Computer Science and Technology, Zhejiang University, Hangzhou, China

Abstract—With advancements in machine learning (ML) tech-
nology and the availability of large ML-as-a-Service (MLaaS)
clouds, accurately understanding the I/O behaviors in the storage
subsystem of an MLaaS cloud platform is crucial for resource
scheduling and optimization. This study provides valuable in-
sights into the correlation of I/O request arrivals in a repre-
sentative and dynamic MLaaS workload – Alibaba PAI (an ML
platform for artificial intelligence). Regarding the I/O requests in
the PAI workload at the machine level, our burstiness diagnosis
reveals that the I/O arrival process exhibits significant bursts. Ad-
ditionally, our Gaussianity test indicates that the bursty activities
in PAI are non-Gaussian. Our findings highlight the existence of
a certain level of correlation between I/O request arrivals on
long-term time scales. Furthermore, we uncover the self-similar
nature of I/O activities in the Alibaba PAI machine-level MLaaS
workload through visual evidence, the auto-correlation structure
of the aggregated I/O request sequence, and Hurst parameter
estimates. Moreover, we create self-similar workload models to
synthesize I/O request series based on the inputs measured
from the PAI trace. Experimental results demonstrate that both
FARIMA and alpha-stable models outperform existing models in
accurately simulating burstiness.

Index Terms—MLaaS I/O workload, burst, correlation, self-
similar, workload synthesis

I. INTRODUCTION

With ongoing advancements in ML technology, deep learn-
ing (DL) methods are widely used in various scientific fields,
driving scientific discovery and innovation in areas such as
autonomous driving, drug development, and image process-
ing. To meet the increasing computation demands of ML
workloads, major tech companies have invested in expansive
MLaaS clouds, equipped with high-end hardware, such as
GPUs, to handle various types of ML tasks [1].

The storage subsystem plays a fundamental role in MLaaS
platforms, including essential functionalities such as data
ingestion, data access, and scalability. Understanding request
behaviors in the storage subsystem is crucial for resource
scheduling and optimization while accommodating growing
storage needs and maintaining performance and reliability.
To optimize resource scheduling and management of GPU
clusters, it is essential to gain insights into job character-
istics and user behaviors in ML application workloads [2].

Analyzing real workloads and employing stochastic models to
accurately characterize the workload is a judicious first step
in understanding arrival characteristics [3].

Recent researchers have started using traditional distribu-
tions, such as uniform [4] and exponential [5], to approximate
the description of request features in computation-intensive
ML workloads. However, ML researchers have found that
burst phenomena are prevalent in both ML and DL work-
loads [1], [2], [6], which even show heavy-tailed features [1],
[7]. Traditional distributions mentioned above fail to capture
the burst behavior, presenting new challenges in understanding
request behaviors in ML application workloads.

Motivated by these observations, we analyze workload
traces [1] obtained from the ML Platform for Artificial In-
telligence (PAI) – an integrated MLaaS platform provided
by Alibaba Cloud. The PAI workload consist of a mixture
of training and inference jobs using state-of-the-art ML al-
gorithms. For the PAI workload at the machine level, we
diagnose I/O burstiness by conducting a Gaussian test [8] for
the I/O request sequence, and investigating the correlation of
I/O request arrivals. For the PAI workload with certain degrees
of correlation, we present visual and theoretical evidence for
the existence of self-similarity and estimate the self-similarity
parameter using statistical tools. Based on the inputs measured
from the PAI trace, we further employ synthetic models to
accurately generate the I/O request sequence in the machine-
level PAI workload. To the best of our knowledge, there have
been few research works reported in the literature on this
particular topic.

This study makes the following four contributions:
(1) We diagnose the burstiness of I/O activities in the

machine-level PAI workload and reveal that the arrival process
of I/O requests is highly bursty. We investigate the correlation
between I/O request arrivals in the bursty PAI workload. Our
findings uncover that there is a certain degree of correlation
between I/O arrivals, making the use of a traditional distri-
bution unsuitable to describe request activities. Consequently,
these findings assist researchers in accurately describing the
burst behaviors in PAI.

(2) We perform a Gaussianity test for the I/O request



sequence in the PAI workload at the machine level. The test
results show that the burst activities in the PAI workload
appear to be non-Gaussian. This surprising observation differs
significantly from previous studies that employed Gaussian
methods to analyze the traced data obtained from Alibaba’s
production clusters [5]. These findings assist researchers in
accurately describing the burst behaviors in PAI.

(3) We discover that I/O activities in the machine-level PAI
workload exhibit a self-similar nature, as shown through visual
evidence, the auto-correlation structure of an aggregated pro-
cess of request sequence, and Hurst parameter [8] estimates.

(4) Based on the inputs measured from PAI, we employ self-
similar models to generate synthetic I/O request sequences for
PAI at the machine level. Experimental results demonstrate
that both FARIMA and alpha-stable models [8] outperform
existing models in terms of accuracy in emulating burstiness.

The rest of this paper is organized as follows. Section II
provides an overview of the Alibaba PAI trace investigated
throughout this work and summarizes related research studies.
Section III presents the characterization of burstiness in the
machine-level I/O request arrival process, the Gaussianity test
for I/O requests, and an elaboration on the correlation of the
I/O request arrivals in the machine-level PAI workload. Section
IV presents both visual and statistical evidence of the existence
of self-similarity in I/O activities on PAI. Section V articulates
the implementation of several self-similar workload models to
synthesize request series for PAI. Section VI discusses the im-
portance of gaining insights into the workload characteristics
of ML applications. Finally, Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Alibaba PAI

To enable developers to use ML technology flexibly and
efficiently, Alibaba Cloud launched the ML Platform for Arti-
ficial Intelligence (PAI) – a large production cluster comprising
over 6,500 GPUs across 1,800 machines – to provide a variety
of services covering the entire ML pipeline (see Figure 1 for
an architectural overview). In PAI, users submit ML jobs, in-
cluding training and inference, which are developed in various
frameworks, such as TensorFlow [9], MXNet [10], and Graph-
Learn [11]. Meanwhile, users specify required computational
resources, such as GPUs, CPUs, and memory. Each job is
then split into multiple tasks with different computational
roles: parameter server (PS), workers for training jobs, and
estimators for inference jobs. Each task consists of multiple
instances. Due to cost considerations, only some subclusters
in PAI are equipped with NVLink in multi-GPU servers.
Since PAI’s deployment, it has attracted tens of thousands of
enterprises and individual developers, becoming one of the
leading MLaaS platforms in China.

Alibaba’s PAI is composed of several Alibaba Cloud ser-
vices, including Elastic Compute Service (ECS), etc. Together,
these components provide elastic capacity that can be uti-
lized during I/O burst scenarios. Specifically, the scalable
storage solutions offered by Alibaba’s PAI rely on four key
components: Alibaba Cloud’s OSS, Distributed File System

Fig. 1. PAI architecture overview.

(DFS), Alibaba Cloud’s database solutions (ADBs), and Al-
ibaba Cloud’s Elastic Block Storage (EBS). Among these
components, OSS is used to store training data and other
machine learning assets, DFS (including Network Attached
Storage and Alibaba Cloud File Storage) provides scalable
and shared storage resources for machine learning workloads,
ADBs (such as ApsaraDB, PolarDB, and AnalyticDB) offer
scalable and managed database services, and EBS provides
block-level storage volumes that can be attached to ECS
instances. PAI trace contains requests from all the listed
storage solutions.

TABLE I
SUMMARY OF PAI TRACE AND MACHINE SPECS OF GPU CLUSTERS [1].

#Machines 1800 Duration 2 months
Memory (GiB) 512 512 512 384 512/384

GPU type P100 T4 Misc. V100M32 V100
#GPUs 2 2 8 8 8
#Nodes 798 497 280 135 104

To address the challenges of load balancing and long
queuing delays caused by cluster scheduling on heterogeneous
machines, it is crucial to gain insights into the impacts of
characteristics of workloads on these heterogeneous machines.
To achieve this, Weng et al. [1] conducted training and
inference jobs using state-of-the-art ML algorithms on PAI in
the second half of 2020. They collected application workload
traces over a two-month period on machines with V100M32
and V100 GPUs with NVLink, which are summarized in
Table I. These traces at the job, task, and instance levels
provide launch information, while the machine-level trace
contains information, such as timestamps of every request,
I/O waiting times (iowait), execution times in user and kernel
modes, etc. A more detailed description of the PAI trace can
be found in the referenced literature [1]. However, since our
study aims at studying the arrival process of requests from
a temporal perspective, we only use timestamp information
(in seconds for about two months), without considering other
information.

Previous studies have shown that request behaviors in ML
application workloads are bursty and exhibit heavy-tailed



features [1]. In general, request bursts often exist on different
time scales, and traditional methods (e.g., exponential) will
gradually become smooth at long time scales, making it
difficult to accurately describe the burst behaviors in request
activities [12], posing significant challenges in accurately
understanding request activities in typical ML workloads and
establishing best practices for platform optimization.

These observations inspire us to examine the feasibility and
effectiveness of using traditional methods, such as uniform [4]
and exponential [5] distributions to describe request behaviors
in typical ML workloads. Before doing so, we must address the
following critical issues: Is it appropriate to use independently
and identically distributed methods to describe the bursts
and heavy-tailed behaviors in MLaaS I/O workloads? Do the
request activities in MLaaS workloads also present the self-
similarity observed in other workloads [13], [14]? To find
the answer, we revisit the machine-level PAI workload and
diagnose the temporal behaviors in Section III.

B. Related Work

Recently, the research community has been working to
improve the design of clusters based on the characteristics
of ML application workloads. In this section, we will focus
on previous works most relevant to this study.

Workload Characterization. Paul et al. [6] analyzed the
workload characteristics of ML I/O jobs running on a large-
scale supercomputer to understand how I/O behaviors vary
across different scientific fields and workload scales. Their
analysis provided insights into the usage of parallel file sys-
tems and burst buffers. Wang et al. [15] developed an analysis
framework to study detailed execution time breakdowns to
identify performance bottlenecks. Although they described
training performance under various software frameworks and
hardware configurations, their focus was primarily on training
workloads, without considering general DL workloads.

Since deep neural networks (DNN) are typically trained
on GPUs, Jeon et al. [7] analyzed the workload characteris-
tics of a two-month-long trace from Microsoft’s multi-tenant
GPU clusters. Their aim was to improve cluster utilization
for DNN training workloads in multi-tenant clusters. Li et
al. [4] characterized system operations, job characteristics,
user behaviors, and trends on contemporary GPU-accelerated
production HPC systems. With this analysis, Li sought to aid
in revamping the design of GPU-based large-scale systems
for emerging application workloads, such as AI and machine
learning. By analyzing the real job trace from SenseTime, Hu
et al. [2] conducted a study on the characteristics of DL job
and resource management. This led them to develop a priority
scheduling scheme and a cluster energy-saving strategy.

Moreover, Weng et al. [1] proposed a solution by studying
ML workload features on PAI to address cluster scheduling
issues such as long queuing delays, and load imbalance across
heterogeneous machines. Although they mentioned that the
request behaviors in the PAI workload are bursty and even
exhibit heavy-tailed properties, Weng et al. did not further
investigate and characterize the burstiness of I/O request

behaviors in the machine-level PAI workload. Thus, this study
aims to bridge this gap by providing an in-depth analysis.

Self-similarity. Self-similarity means that the attributes of
a given process remain consistent across different time scales.
Recently, researchers have been examining self-similarity in
various domains, such as cloud workloads [13], social network
dynamics [16], and internet traffic [14]. For instance, Gupta et
al. [13] studied Google cluster traces and found self-similarity
and heavy-tailed behaviors in cloud workloads using auto-
correlation analysis and R/S analysis. Liu et al. [16] analyzed
traces from Renren social networks and Facebook, and found
self-similarity in the edge creation process of networks. Sim-
ilarly, Li et al. [14] demonstrated self-similarity in industrial
internet traffic.

Furthermore, Talluri et al. [17] conducted a statistical anal-
ysis of file popularity, read size, arrival interval, etc. using
Spark data collected over six months. Their findings showed
that read operations exhibit heavy tails, bursts, and negative
long-range dependence. Given the distinctive I/O mode of
machine learning platforms [6], these observations prompt
us to investigate whether self-similarity exists in the PAI I/O
workload, particularly in representative MLaaS workloads
that exhibit bursty and heavy-tailed request behaviors [1].

Based on the real-world machine-level PAI workload1,
this study focuses on the following three aspects. First, it
examines the appropriateness of characterizing I/O behaviors
with traditional distributions. Second, it explores the presence
of self-similarity. Lastly, it delves into the synthesis of I/O
request sequences.

III. PAI WORKLOAD DIAGNOSIS

This section aims to provide a thorough understanding of
the I/O request activities in Alibaba’s MLaaS cloud platform
by diagnosing the PAI workload.

A. Burstiness

To gain a deep understanding of the access features in
system workloads, it is useful to analyze the arrival mode. A
workload is considered bursty if its request arrival process X
is non-stationary and has a large variance. Previous research
has shown that “burstiness” is prevalent in various system
workloads, such as Ethernet [12], mobile storage [18], and
cloud block storage [19].

To characterize the I/O burstiness in the PAI workload, this
study extracts the request arrival intervals from the PAI trace
of about two months and analyzes the corresponding empirical
distribution patterns. To visualize the features present in the
arrival pattern, we present the cumulative distribution function
(CDF) of the request arrival intervals in Figure 2. The hori-
zontal axis in Figure 2 represents I/O request arrival intervals
in seconds, while the vertical axis denotes the proportion of
the corresponding value in the entire dataset. A point (x, y)
on the distribution curve indicates that the proportion of I/O

1Unless specifically stated otherwise, the PAI workload (or trace) referred
to in the subsequent sections pertains to the machine-level



0 5 10 15 20

Request Intervals (seconds)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

0 1 2 3 4 5

0.7

0.75

0.8

0.85

Fig. 2. Empirical CDF of request arrival intervals in the PAI workload.

arrival intervals less than or equal to x in the corresponding
time series is y.

Non-stationary. In order to clearly illustrate our empirical
observations, we have magnified a specific region outlined
by the blue box in Figure 2. From this, it is apparent that
approximately 83% of I/O requests arrive within an interval
of no more than 1 second. Furthermore, up to 72% of I/O
request arrival intervals are observed to be 0 seconds. These
findings indicate that the majority of I/O requests in the PAI
workload arrive at peak moments, resulting in the aggregation
effect of I/O request arrivals and making the entire I/O arrival
process non-stationary.

Variance. In addition, for I/O arrival intervals in the PAI
workload, our statistical findings show that the variance of the
corresponding time series is as high as 8892, which satisfies
another necessary condition for categorizing the PAI workload
as a burst workload. Based on the aforementioned observations
and analyses, it can be affirmed that the concept of “burstiness”
accurately describes the high variability of the I/O arrival
process in the PAI workload.

Previous studies have demonstrated that the strength of
burstiness can be quantified by the index of dispersion for
intervals (IDI) [20]. Specifically, a larger value of the index
of dispersion indicates stronger burstiness. Therefore, in this
study, we employ the index of dispersion to measure the
strength of burstiness. By applying the following formula,

IDI =
V ar[X]

E2[X]
, (1)

we calculate the IDI for I/O arrivals in the PAI workload as
1519. This value suggests that the I/O arrivals in the PAI
workload exhibit a significant bursty pattern.

Now, let us recap this major observation as

Finding (1): I/O request arrival process in the PAI work-
load exhibits significant burstiness.

Implications: Scaling storage subsystems or allocating
appropriate storage resources in response
to increased computing demands caused
by burstiness can enhance the perfor-
mance of Alibaba’s MLaaS platform.

-5 0 5

Standard Normal Quantiles

-100

0

100

200

300

400

Q
u
a
n
ti
le

s
 o

f 
T

ra
c
e

Fig. 3. Examine the Gaussianity of I/O request activities in the PAI workload
through QQ plot of the PAI trace data versus standard normal, respectively.

B. Gaussianity Test

Previous research [5], [21] suggests that adherence of a
system workload to the Gaussian property is beneficial when
building performance evaluation models. In particular, con-
ducting a Gaussianity test helps accurately describe the tail
trend in the distribution of access characteristics and construct
a convincing model. Therefore, we perform a Gaussianity test
to study the I/O request sequence in the PAI workload.

A Gaussianity test can be conducted using a quantile-
quantile (QQ) plot. For a random variable X = {Xt : t =
1, 2, . . .}, a quantile is a real number x that satisfies the
condition P (Xt ≤ x) = c, where c is a constant. Quantiles x
and y for two random variables X and Y form a coordinate
(x, y), and a series of coordinates form the trajectory of a QQ
plot. If two data sets X and Y follow the same distribution, the
corresponding coordinates will approximately fall on a straight
line at a 45-degree angle, and vice versa.

For the I/O request activities in the PAI workload, Figure 3
depicts the corresponding QQ plot of PAI trace data compared
to a standard normal distribution. As shown in Figure 3, the
scatter points corresponding to the PAI trace data mentioned
above clearly do not fall on a straight line; instead, the curve is
concave upward, indicating a heavy-tailed trend. This suggests
that the I/O behaviors in the PAI workload are non-Gaussian.

This observation is surprising as it differs significantly
from the Gaussian distribution previously used to analyze
Alibaba’s production cluster data [5]. The reason behind this
phenomenon may be the presence of a greater number of
request bursts in the PAI workload when running state-of-the-
art ML algorithms.

Here, we summarize the key observations from our Gaus-
sianity test as follows:

Finding (2): I/O request behaviors in the PAI workload
appear be non-Gaussian and heavy-tailed.

Implications: During busy periods of heavy-tailed be-
haviors, Alibaba’s MLaaS platform can
allocate additional resources to handle in-
creased computing demands, thereby re-
ducing task latency.



0 10 20 30 40 50 60 70 80 90 100

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

Fig. 4. Auto-correlation function of I/O request arrivals in the PAI workload.

C. Correlation Analysis

In this section, we use the auto-correlation function
(ACF) [13], [22], [23] as a statistical tool to diagnose the
correlation of I/O request arrivals in the PAI workload.

Let Y = {Yt : t = 1, 2, · · · , n} to be a time series with an
expectation θ = E[Yt]. Each time interval (or lag) is denoted
as k. Each lag corresponds to an auto-correlation coefficient,
denoted as R(k), which is independent of the time itself. By
defining yt = Yt−θ, we obtain {yt : t = 1, 2, · · · }. Therefore,
the auto-correlation function with a lag of k (k ≥ 0) can be
defined as:

R(k) =
E[yt · yt+k]

E[y2t ]
, (2)

Here, R(k) represents the correlation coefficient at the in-
dependent variable k. This equation (Equation 2) measures
the interrelationship between two adjacent elements in a time
series. For a detailed description of ACF, please refer to [22].

The trend of the autocorrelation function curve is closely
related to the patterns of I/O request activities in the PAI
workload. Specifically, as the lag increases, the correlation
coefficient of the inter-arrival interval rapidly decreases and
approaches zero. This signifies that the correlation of I/O
request behaviors in PAI becomes less significant over time.
In other words, the burstiness in the PAI workload gradually
smooths out over time, making it reasonable to use an in-
dependently identically distributed model to characterize I/O
request activities. However, if the correlation coefficient does
not rapidly approach zero, there will be a certain degree of
correlation between I/O request arrivals in the PAI workload.
In such cases, considering other approaches, such as long-
range dependence (also known as self-similarity), becomes
necessary to accurately describe the I/O behaviors in PAI.

Figure 4 illustrates the auto-correlation functions of arrival
intervals for I/O requests in the PAI workload. As the lag
increases from 0 to 100, the correlation coefficients of I/O
requests do not approach zero sharply; instead, they exhibit a
gradual declining trend. We can also observe that at some lags
(e.g., 15, 35, etc.), the coefficients increase, suggesting that
the correlation persists over longer intervals. These findings
provide evidence for the existence of a correlation between
I/O request arrivals in the PAI workload, making the use of
an independently identically distributed method unsuitable to

describe I/O request activities. In short, I/O request activities in
PAI demonstrate not only bursts and a heavy-tailed distribution
but also correlations across extended time scales.

The observations mentioned above show that when state-of-
the-art ML algorithms are executed on PAI, there are distinct
characteristics of I/O behaviors at the machine level. These
characteristics include not only burstiness but also a noticeable
degree of correlation. The correlation of request arrivals in the
PAI workload motivates us to investigate self-similarity in the
following section.

We summarize the important insight about the correlation
between I/O requests as follows:

Finding (3): There is observable correlation between I/O
requests in PAI.

Implications: Exploring self-similarity in the PAI work-
load becomes essential to accurately un-
derstand request behaviors and improve
performance in PAI.

IV. SELF-SIMILARITY STUDY

In this section, we will explore the self-similarity of the
PAI workload in the following three aspects: (1) showing the
visualization, (2) providing theoretical evidence through the
auto-correlation structures of the aggregation processes of I/O
request series, and (3) estimating the self-similarity parameter
using classical tools.

A. Self-similar Process

First, let us outline the self-similar process involved in
this study. A detailed introduction can be found in the lit-
erature [24].

Considering a stochastic process X = {Xt : t =

1, 2, 3, · · · }, X(m) = {X(m)
t : t = 1, 2, 3, · · · } is then

referred to as the m-order aggregated process corresponding
to X , if

X
(m)
t =

1

m

∑m−1

i=0
Xtm−i. (3)

Hence, we have the auto-correlation function (ACF) cor-
responding to X(m) as R(m)(k). For traditional stochastic
processes such as Poisson, the ACF for X(m) degenerates
with an increasing m, and converges to 0, that is,

R(m)(k) → 0, as m → ∞. (4)

If the structure of R(m)(k) does not degenerate with the
increase of m and tends to be the same function structure
(i.e., as m → ∞), we will have

R(m)(k) → 1

2

[
(k + 1)2−λ − 2k2−λ + (k − 1)2−λ

]
, (5)

and the process X will be said to be self-similar with the Hurst
parameter H (H = 1− λ

2 , 0 < λ < 1). The Hurst parameter
is the sole parameter describing the degree of self-similarity,
and a value in the range of (0.5, 1) indicates the presence of
self-similarity, which is also called long-range dependence.



0 2000 4000 6000 8000 10000

Unit Time = 1000 Seconds

(c)

0

1

2

R
eq

u
es

ts
/U

n
it

 T
im

e

10
3

0 2000 4000 6000 8000 10000

Unit Time = 10 Seconds

(a)

0

5

10

R
eq

u
es

ts
/U

n
it

 T
im

e
10

1

0 2000 4000 6000 8000 10000

Unit Time = 100 Seconds

(b)

0

1

2

3

4

R
eq

u
es

ts
/U

n
it

 T
im

e

10
2

Fig. 5. Visualization of I/O request sequence in the PAI workload. The plots
(a)-(c) illustrate the number of requests per unit time for three different time
scales, respectively. Each plot has ten thousand buckets.

Lemma 1 [25]. For a stochastic process X with covariance
stationarity, X is self-similar, and the two propositions below
are equivalent if process X matches any of these two:
(1) X has an auto-correlation function in the form

R(k) =
1

2

[
(k + 1)2−λ − 2k2−λ + (k − 1)2−λ

]
. (6)

(2) the m-order aggregated process for X matches

V ar(X(m)) = σ2m−λ, for 0 < λ < 1. (7)

B. Visualization

A self-similar workload is mainly characterized by the per-
sistence of bursts and burst aggregations at various timescales,
with the pattern itself showing similar traits.

Therefore, we examine I/O request behaviors in the PAI
workload at different timescales and observe similar patterns
of activity. To visually illustrate our findings, we present I/O
request sequences at three different timescales in Figure 5,
consisting of subplots (a)-(c), with each subsequent timescale
being ten times larger than the previous one. The horizontal
axis represents the timescale, and the vertical axis shows the
number of requests per unit of time.

Each subplot within Figure 5 is derived from a subinterval
randomly selected from the time range depicted in the follow-
ing subplot and it enhances the temporal resolution by a factor
of 10. For instance, subplot (a) delineates a brief span (100,000
seconds) randomly sampled from subplot (b), which, in turn,
represents a concise interval (1,000,000 seconds) randomly
chosen from subplot (c).

As shown in Figure 5, each subplot displays multiple
“spikes” or bursts, which are request activities characterized by
significant fluctuations – larger bursts mingling with smaller
ones. These “spikes” within the PAI workload consistently
follow the same pattern across the three subplots, regardless
of the timescale. These patterns suggest that the bursty I/O
request activity in PAI spans across nested subintervals, each
exhibiting bursty behavior, and these subintervals, in turn,
display similar dynamics. This indicates that the sequences
of I/O requests in PAI exhibit self-similarity over extended
periods of time. This important observation can be summarized
as follows.

Finding (4): The time range characterized by bursty re-
quests consists of nested subintervals, each
is made of even smaller subintervals with
similar burst behaviors.

Implications: I/O requests in the PAI workload exhibit
characteristics of self-similarity. This of-
fers an opportunity to enhance load bal-
ancing by incorporating the factor of self-
similarity when dynamically distributing
computing tasks, thereby avoiding bottle-
necks during bursty periods.

C. Theoretical Evidence

In this section, we focus on the theoretical evidence that
supports the presence of self-similarity in the PAI workload.
The statements regarding the structure of R(m)(k) in Section
IV-A provide a theoretical basis for detecting the existence of
self-similarity. In other words, self-similar workloads exhibit
burstiness at different time scales due to their similar scale-
invariant properties.

For I/O requests in the PAI workload, we examine the auto-
correlation functions of the aggregated time series of the I/O
request sequence at multiple aggregation levels. Specifically,
we draw the auto-correlation functions of the time sequences
at three aggregation levels in Figure 6(a) and plot the auto-
correlation functions of the corresponding artificial Poisson
workloads in Figure 6(b). The aggregation levels (m) are 1,
10, and 100, respectively.

As seen in Figure 6(a), as the lag increases from 1 to
1000, the correlation coefficients of the I/O request sequence
fluctuate and do not approach 0. Consequently, the correspond-
ing I/O request behaviors exhibit long-range dependence. We
can also observe that the auto-correlation curves at various
aggregation levels appear to converge to a similar function



0 200 400 600 800 1000

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

A
C

F
s

m=1

m=10

m=100

(a) PAI workload

0 200 400 600 800 1000

Lag

0

0.1

0.2

0.3

0.4

0.5

0.6

A
C

F
s

m=1

m=10

m=100

(b) Poisson workload

Fig. 6. Autocorrelation functions of the aggregated time series for (a) I/O
request sequence in the PAI workload, and (b) artificial Poisson workload.

structure. In contrast, Figure 6(b) demonstrates that the auto-
correlation coefficients of artificial Poisson workloads at each
aggregation level are generally very small and almost equal
to zero. These observations reveal that the auto-correlation
structure of the I/O request sequence in the PAI workload
behaves similarly to a self-similar process, which is quite
different from a Poisson series.

In summary, I/O request activities in the PAI workload
behave like a self-similar process. We summarize this key
observation as follows.

Finding (5): The auto-correlation curves of the I/O se-
quence at different aggregation levels seem
to converge to a similar function structure.

Implications: I/O request activities in the PAI workload
behave like a self-similar process. Incor-
porating the knowledge of self-similarity
into workload modeling can better fore-
cast resource requirements for ML tasks.

D. Estimating Hurst Parameter

In this part of the study, we use the Hurst parameter to
quantitatively estimate self-similarity. The Hurst parameter
signifies the degree of self-similarity within an open interval

 !"#$%&'

 !
"

#
$

%(
)

*+
)

,
-

.
/

'

$ # 0 1 2 3

40
53

40
5$

4#
53

4#
5$

4$
53

$
5$

 !"#$%&'"'()$)"%*#$+('$),%

-./01

(a) The variance-time plot

 !"#$%&'

 !
"

#
$

%(
)*

'
$ # + , - . /

$
#

+
,

-  !"#$%&'"'()$)"%*#$+('$),%

-./-0

(b) The Pox plot

Fig. 7. Estimating Hurst parameters for I/O requests in the PAI workload by
(a) Variance-time plot, and (b) Pox plot, respectively.

from 0.5 to 1: the greater the Hurst parameter, the higher the
degree of self-similarity. For the I/O request sequence in the
PAI workload, we use two well-known analytical tools – the
variance-time plot [12] and the R/S analysis (also called Pox
plot) [26] – to estimate the Hurst parameters in Figure 7. Both
the variance-time plot and the Pox plot are widely used to
estimate the Hurst parameter for accurate test results.

Using the variance-time plot as an example, we can cal-
culate the variance of the corresponding m-order aggregated
process X(m) for a given set of sample trace data X using
Equation (7). By taking the logarithm of both sides of Equation
(7), we get:

log10(V ar(X(m))) = log10(α
2)− λ log10(m), (8)

where the constant log10(α
2) is independent of m. If we

consider log10(V ar(X(m))) as a function of log10(m), we can
plot a curve of log10(V ar(X(m))) versus log10(m) to obtain a
series of scattered points, which can be approximately fit with
a linear regression line having a slope of −λ = 2(H − 1).
This allows us to calculate the Hurst parameter H .

We plot the variance-time plot for I/O request activi-
ties in the PAI sample workload in Figure 7(a), where
log10(V ar(X(m))) is abbreviated as log10(variances). Fig-
ure 7(a) shows a line with a slope of −λ = 2(H−1) by repre-
senting the scatter of log10(variances) versus log10(m). The
estimated Hurst parameter for this case is 0.563. Meanwhile,



Figure 7(b) illustrates the Pox plot generated from the R/S
analysis of the PAI sample trace. As shown in Figure 7(b),
the Hurst parameter is estimated to be 0.504.

The aforementioned observations indicate that the Hurst
parameter estimates for I/O requests in the PAI workload
are all greater than 0.5, which quantitatively confirms the
presence of self-similarity. We summarize this key observation
as follows.

Finding (6): For the PAI workload, all Hurst parameter
estimates are greater than 0.5.

Implications: These Hurst parameter estimates for PAI
quantitatively confirm the existence of
self-similarity. This makes it possible to
take into account and apply self-similarity
when evaluating and optimizing the per-
formance of Alibaba’s MLaaS platform.

V. WORKLOAD SYNTHESIS

Synthetic I/O workloads are used to simulate request se-
quences and evaluate I/O performance in actual storage sys-
tems. By diagnosing burstiness, conducting correlation stud-
ies, Gaussian tests, and self-similarity analysis of the PAI
workload, we have made the following findings: (1) The
arrival process of I/O requests is highly bursty. (2) Traditional
methods struggle to accurately characterize the PAI workload,
as the I/O arrivals show a certain degree of correlation. (3)
There seems to be self-similarity in the PAI workload. (4)
The I/O request activities in PAI appear to be non-Gaussian.

These findings inspire us to use several methods to generate
I/O request series for the self-similar PAI workload.

A. Trimmed Mean of Errors

To synthesize I/O request sequences in the PAI work-
load, we employ two typical self-similar workload models –
fractional Brownian motion (FBM) [27] and fractional auto-
regressive integrated moving average (FARIMA) [28]. These
models are chosen due to the existence of self-similarity in I/O
activities. The FARIMA model is well-known for its ability to
describe both long-range and short-range dependences, while
the FBM model is adept at characterizing self-similarity under
Gaussian conditions.

In order to faithfully describe the bursts and heavy-tailed
properties under non-Gaussian conditions, we extend the ver-
satile alpha-stable model [8] by redefining its model param-
eters to generate I/O request series for PAI. All the inputs
for these models can be measured and obtained from the
real PAI trace dataset. Specifically, for the PAI trace, we
use the maximum likelihood estimation to measure the trace
dataset. This enables us to derive parameter estimates for the
aforementioned workload models, and generate synthetic I/O
request sequences for PAI.

To evaluate the error between the synthetic I/O request
sequence and the actual one, we use the trimmed mean

-5 0 5 10 15 20

Logscale of Request Series

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n

PAI trace

Alpha-stable

FBM

FARIMA

Fig. 8. Comparison of CDFs between synthetic I/O sequence and real one
for PAI.

of errors [8]. The trimmed mean is the arithmetic average
after truncating a smaller proportion of data at both ends
of a sample, which is more robust to outliers compared to
the conventional sample mean (i.e., the arithmetic average).
The smaller the trimmed mean of the errors, the higher the
matching degree between synthetic sequence and real one.

The trimmed mean of errors for FBM, FARIMA, and alpha-
stable models is 109.46, 1.26, and 0.78, respectively. In other
words, the trimmed mean of the errors between the alpha-
stable synthetic sequence and the real one is minimal. This
improves the matching degree of FBM and FARIMA by
99% and 38%, respectively. However, the trimmed mean of
the errors for the alpha-stable synthetic sequence (i.e., 0.78)
is very close to that for the FARIMA synthetic one (i.e.,
1.26). This observation indicates that both the FARIMA and
alpha-stable approaches can faithfully generate the synthetic
sequence for the PAI workload.

B. An Empirical Study
To intuitively compare the matching degree of the various

synthetic I/O request sequences with the actual one in the
PAI workload, we depict the cumulative distribution functions
(CDF) of the actual series and the synthetic ones in Figure 8.

In Figure 8, the horizontal axis represents the log scale of
the number of requests per unit time, while the vertical axis
represents the proportion of the corresponding values in the
entire request sequence. Each coordinate (x, y) indicates that
the proportion of logarithm values less than or equal to x in
the corresponding time series is y.

As shown in Figure 8, the alpha-stable synthetic sequence
matches the actual sequence well for the PAI workload, and
this is corroborated by the corresponding trimmed mean of
errors of 0.78.

Furthermore, Figure 8 demonstrates that the FARIMA syn-
thetic I/O sequence also closely matches the actual sequence,
displaying a comparable level of precision to the alpha-stable
synthetic sequence. This supports the observations presented
in Section V-A.

However, one advantage of the alpha-stable synthetic se-
quence over the FARIMA synthetic sequence is its ability to
better capture the heavy-tailed feature of the actual sequence.



Moreover, Figure 8 reveals that both the alpha-stable and
FARIMA synthetic sequences have significantly better match-
ing degrees than the FBM series. This suggests that the I/O
request behaviors in the PAI workload do not conform to the
Gaussian condition. This observation aligns perfectly with the
test results presented in Section III and lends support to our
Gaussianity test results.

To summarize, for the PAI workload, both the FARIMA
synthetic sequence and the alpha-stable synthetic sequence
exhibit convincing matching degrees.

VI. DISCUSSION

To facilitate the design of next-generation hardware archi-
tectures, it is crucial to gain insights into ML application
workloads and assess patterns in the execution stack [29]. In
this section, we will discuss the significance of characterizing
ML application workloads when building an MLaaS platform.

A. Performance Evaluation

Characterizing the access patterns of ML workloads is an
effective way to evaluate the performance of ML clusters.
For instance, Paul et al. [6] analyzed the I/O behaviors
of ML workloads by using a Darshan log of 23,000 HPC
ML I/O jobs. Paul’s analysis provided insights into potential
performance optimization efforts and supported the assessment
of I/O trends across an entire HPC cluster. Li et al. [4]
studied the system operations, job characteristics, and user
behaviors of contemporary GPUs in HPC systems. Li observed
that when HPC systems encounter GPU-accelerated AI and
ML workloads, a significant number of users engage in low-
utilization development and idle work. Based on an operation-
level empirical analysis of various CNNs, Hafeez et al. [30]
proposed a model-driven method called Ceer to determine the
optimal GPU instance(s) for any given CNN.

Furthermore, Wang et al. [15] studied DL training work-
loads from Alibaba’s AI platform and evaluated the achiev-
able performance of the workload on various potential soft-
ware/hardware mappings. They revealed that weight/gradient
communication during training accounts for almost 62% of
the total execution time.

B. Resource Management

Resource management in data centers often relies on study-
ing job features and user behaviors. Yeung et al. [31] proposed
a predictive resource manager based on GPU utilization of
heterogeneous DL jobs inferred from computational graph
features of DL models. Weng et al. [1] characterized a two-
month-long workload trace collected from an Alibaba produc-
tion model cluster comprising more than 6,000 GPUs. They
revealed challenges of heterogeneous GPU clusters, such as
low GPU utilization, long queuing delay, and load imbalance
across heterogeneous machines. Hu et al. [2] designed a
quasi-shortest service priority scheduling service that strives
to minimize the average job completion time of clusters by
analyzing a real job trace from SenseTime. Additionally, Jeon

et al. [7] analyzed the workload characteristics of a two-
month-long trace from Microsoft’s multi-tenant GPU clusters
to study the factors influencing cluster utilization of DNN-
trained workload on multi-tenant clusters. This analysis pro-
vided a design guide for next-generation cluster schedulers.
Jiang et al. [5] investigated the cluster-trace-v2018 trace
obtained from an Alibaba production cluster. Jiang’s study
observed daily periodic fluctuations in workload characteristics
in the production clusters and suggested that performance
bottlenecks in collocated clusters are caused by the memory
system, which can be used by data centers to establish more
efficient scheduling strategies.

C. Synthetic Model

Trace-driven simulators, often used to evaluate GPU cluster
performance in deep learning systems [31], benefit from
synthetic models in several ways. Synthetic models offer three
main advantages over trace-driven simulators. First, synthetic
models provide a deeper understanding of offline workloads,
such as bursty activities and heavy-tailed characteristics. Sec-
ond, by providing workloads for various isolated subsystems,
synthetic models excel in evaluating specific subsystems rather
than the entire system. Third, modifying input parameters
enables synthetic models to perform hypothetical performance
analysis, which facilitates the identification of key factors
influencing outcomes.

The modeling method directly affects performance eval-
uation and system design verification. In this study, the
FARIMA and alpha-stable synthetic models based on the
inputs measured from the PAI trace, can faithfully capture the
characteristics of the PAI workload. This is vital for system
design and performance optimization in MLaaS.

Due to the fact that PAI – a typical cloud-based ML platform
for artificial intelligence – adheres to generic cloud construc-
tion principles similar to other ML platforms like Amazon
SageMaker, Google Cloud AI Platform, and Microsoft Azure
Machine Learning, our proposed method is applicable for
studying the burstiness of requests in other MLaaS platforms.

VII. CONCLUSION

With the continuous advancements and widespread usage
of machine learning technologies, major tech companies are
deploying MLaaS clouds equipped with GPU clusters to run
various types of ML application workloads. It is crucial to
have a deep understanding of the request behaviors in MLaaS
workloads in order to effectively schedule and manage the I/O
subsystem in GPU clusters.

To achieve this, we investigated the burstiness of the I/O
requests in a representative and real-world MLaaS workload
– the PAI workload. Our findings revealed that the arrival
process of I/O requests is highly bursty. We conducted tests
for Gaussianity and discovered that the bursty I/O activities
in PAI appear to be non-Gaussian. Additionally, we analyzed
the correlation of I/O request arrivals and found that there
are correlations among the I/O requests in the PAI workload.
These discoveries led us to uncover the self-similar nature



of the PAI I/O workload through visual evidence, the auto-
correlation structure of an aggregated process of I/O request
sequences, and Hurst parameter estimates.

Furthermore, based on the inputs measured from real trace
data, we implemented self-similar workload models to syn-
thesize I/O request sequences for the PAI workload. The
experimental results demonstrate that both the FARIMA and
alpha-stable models can accurately capture the workload char-
acteristics of PAI.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and our
shepherd, Dr. Vasily Tarasov, for their helpful comments in
reviewing this paper. This work was supported in part by
the National Key Research and Development Program of
China under Grant 2021ZD0110700, in part by the National
Natural Science Foundation of China under Grant 62072214
and 62172361, in part by the Guangdong Basic and Applied
Basic Research Foundation under Grant 2021B1515120048,
in part by the specific research fund of The Innovation
Platform for Academicians of Hainan Province under Grant
YSPTZX202410, and in part by the Program of Zhejiang
Province Science and Technology under Grant 2022C01044.

REFERENCES

[1] Q Weng, W Xiao, Y Yu, W Wang, C Wang, J He, Y Li, L Zhang, W
Lin, Y Ding, “MLaaS in the Wild: Workload Analysis and Scheduling
in Large-Scale Heterogeneous GPU Clusters,” Proceedings of the 19th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), Renton, WA, 2022.

[2] Q Hu, P Sun, S Yan, Y Wen, T Zhang, “Characterization and prediction
of deep learning workloads in large-scale GPU datacenters,” Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), St. Louis, MO, USA, 2021.

[3] M Wajahat, A Yele, T Estro, A Gandhi, E Zadok, “Distribution fitting
and performance modeling for storage traces,” Proceedings of the 27th
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2019, pp.
138–151.

[4] B Li, R Arora, S Samsi, T Patel, W Arcand, D Bestor, C Byun, RB Roy,
B Bergeron, and et al, “AI-Enabling Workloads on Large-Scale GPU-
Accelerated System: Characterization, Opportunities, and Implications,”
Proceedings of the 28th Annual IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2022, pp. 1224–1237.

[5] C Jiang, Y Qiu, W Shi, Z Ge, J Wang, S Chen, C Cérin, Z Ren, G
Xu, J Lin, “Characterizing Co-located Workloads in Alibaba Cloud
Datacenters,” IEEE Transactions on Cloud Computing, vol. 10, pp.
2381–2397, 2020.

[6] AK Paul, AM Karimi, F Wang, “Characterizing Machine Learning I/O
Workloads on Leadership Scale HPC Systems,” Proceedings of the 29th
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), Houston,
TX, USA, 2021.

[7] M Jeon, S Venkataraman, A Phanishayee, J Qian, W Xiao, F Yang,
“Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Train-
ing Workloads,” Proceedings of the 2019 USENIX Annual Technical
Conference (ATC), Renton, WA, USA, 2019, pp. 947–960.

[8] D Feng, Q Zou, H Jiang, and Y Zhu, “A novel model for synthesizing
parallel I/O workloads in scientific applications,” Proceedings of the
2008 IEEE International Conference on Cluster Computing (CLUS-
TER), 2008.

[9] M Abadi, P Barham, J Chen, Z Chen, A Davis, and et al, “TensorFlow:
A System for Large-Scale Machine Learning,” Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2016, pp. 265–283.

[10] T Chen, M Li, Y Li, M Lin, N Wang, M Wang, T Xiao, B
Xu, C Zhang, Z Zhang, “MXNet: A Flexible and Efficient Ma-
chine Learning Library for Heterogeneous Distributed Systems,”
https://doi.org/10.48550/arXiv.1512.01274, 2015.

[11] R Zhu, K Zhao, H Yang, W Lin, C Zhou, B Ai, Y Li, J Zhou, “AliGraph:
a comprehensive graph neural network platform,” Proceedings of the
VLDB Endowment, 2019.

[12] W Leland, M Taqqu, W Willinger, and D Wilson, “On the self-similar
nature of ethernet traffic (extended version),” IEEE/ACM Transactions
on Networking, vol. 2, pp. 1–15, February 1994.

[13] S Gupta and AD Dileep, “Long range dependence in cloud servers: a
statistical analysis based on Google workload trace,” Computing, vol.
102, pp. 1031–1049, April 2020.

[14] Q Li, S Wang, Y Liu, H Long, J Jiang, “Traffic self-similarity analysis
and application of industrial internet,” Wireless Networks, July 2020.

[15] M Wang, C Meng, G Long, C Wu, J Yang, W Lin, Y Jia, “Characterizing
Deep Learning Training Workloads on Alibaba-PAI,” Proceedings of
the 2019 IEEE International Symposium on Workload Characterization
(IISWC), 2019, pp. 189–202.

[16] Q Liu, X Zhao, W Willinger, X Wang, BY Zhao, H Zheng, “Self-
similarity in social network dynamics,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 2, October 2016.

[17] S Talluri, A Luszczak, C Abad, and A Iosup, “Characterization of a Big
Data Storage Workload in the Cloud,” Proceedings of the International
Conference on Performance Engineering (ICPE), 2019, pp. 33–44.

[18] C Ji, R Pan, LP Chang, L Shi, Z Zhu, Y Liang, TW Kuo, CJ Xue,
“Inspection and Characterization of App File Usage in Mobile Devices,”
ACM Transactions on Storage, vol. 16, no. 4, September 2020.

[19] J Li, Q Wang, PPC Lee, C Shi, “An In-Depth Comparative Analysis
of Cloud Block Storage Workloads: Findings and Implications,” ACM
Transactions on Storage, vol. 19, no. 2, 2023.

[20] R Gusella, “Characterizing the variability of arrival processes with
indexes of dispersion,” IEEE Journal on Selected Areas in Commu-
nications, vol. 9, no. 2, pp. 203–211, February 1991.

[21] ZL Li, CJM Liang, W He, L Zhu, W Dai, J Jiang, G Sun, “Metis:
Robustly Optimizing Tail Latencies of Cloud Systems,” Proceedings of
the 2018 USENIX Annual Technical Conference (ATC), Boston, MA,
USA, 2018, pp. 981–992.

[22] J Zhang, A Sivasubramaniam, H Franke, N Gautam, Y Zhang, S Nagar,
“Synthesizing representative I/O workloads for TPC-H,” Proceedings
of the 10th International Symposium on High Performance Computer
Architecture (HPCA), Madrid, Spain, 2004.

[23] B Schroeder and GA Gibson, “Disk failures in the real world: what
does an MTTF of 1,000,000 hours mean to you?” Proceedings of the
5th USENIX Conference on File and Storage Technologies (FAST’07),
Berkeley, CA, USA, 2007, pp. 1–16.

[24] J Beran, R Sherman, MS Taqqu, W Willinger, “Long-range dependence
in variable-bit-rate video traffic,” IEEE Transactions on Communica-
tions, vol. 43, pp. 1566–1579, March 1995.

[25] P Embrechts and M Maejima, “Self-similar processes,” Princeton Uni-
versity Press, 2002.

[26] S Gribble, G Manku, and E Brewer, “Self-similarity in high-level
file systems: Measurement and applications,” Proceedings of the ACM
SIGMETRICS’98, Madison, WI, 1998, pp. 141–150.

[27] Norros, “On the use of fractional Brownian motion in the theory of
connectionless networks,” IEEE Journal of Selected Areas in Commu-
nications, vol. 15, pp. 200–208, 1997.

[28] MW Garrett and W Willinger, “Analysis, modeling and generation of
self-similar VBR video traffic,” Proceedings of the ACM Conference on
Special Interest Group on Data Communication (SIGCOMM), 1994.

[29] M Jain, S Ghosh, and SP Nandanoori, “Workload Characterization of a
Time-Series Prediction System for Spatio-Temporal Data,” Proceedings
of the 19th ACM International Conference on Computing Frontiers (CF),
Torino, Italy, 2022.

[30] U Hafeez and A Gandhi, “Empirical Analysis and Modeling of Compute
Times of CNN Operations on AWS Cloud,” Proceedings of the 2020
IEEE International Symposium on Workload Characterization (IISWC),
2020, pp. 181–192.

[31] G Yeung, D Borowiec, R Yang, A Friday, R Harper, P Garraghan,
“Horus: Interference-Aware and Prediction-Based Scheduling in Deep
Learning Systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, pp. 88–100, 2022.


	Introduction
	Background and Motivation
	Alibaba PAI
	Related Work

	PAI Workload Diagnosis
	Burstiness
	Gaussianity Test
	Correlation Analysis

	Self-similarity Study
	Self-similar Process
	Visualization
	Theoretical Evidence
	Estimating Hurst Parameter

	Workload Synthesis
	Trimmed Mean of Errors
	An Empirical Study

	Discussion
	Performance Evaluation
	Resource Management
	Synthetic Model

	Conclusion
	References

