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Abstract—Neuromorphic systems, designed to execute Spiking
Neural Networks (SNNs) efficiently, feature a many-core architec-
ture equipped with a Network-on-Chip (NoC) to facilitate spike
communication. The distributed memory and decentralized com-
putation require partitioning SNNs into multiple subnetworks,
each executed on a neuromorphic core in parallel. However, the
increasing scale of SNNs leads to high inter-core spike traffic
and expensive computational cost of partitioning algorithms.
To address these challenges, we propose SNNcut, an efficient
partitioning method for large-scale SNNs using spike-sharing.
This approach fully exploits spike-sharing by using one NoC
packet to deliver multiple spikes of information to reduce spike
traffic. Meanwhile, instead of exhaustively searching over neurons
in SNN, SNNcut indexes neurons based on the layer connection
pattern and clusters sequentially, which significantly reduces the
computational complexity and ensures the efficiency of large-
scale SNN partitioning. Experimental results demonstrate that
SNNcut achieves an average reduction in spike traffic of 98.97%,
compared to 74.98% from state-of-the-art existing methods.
In addition, the SNNs partitioned by SNNcut require only
5.7%~15.7% neuromorphic core consumption of previous works.
In a large-scale scenario, existing methods take more than 100
hours to accomplish the partitioning, while SNNcut only needs
10 minutes. We also validate the scalability of SNNcut by testing
on edge cases with 3.2B neurons and 902B synapses.

Index Terms—Neuromorphic System, Spiking Neural Net-
works, Partitioning, Hilbert Space Filling Curve.

I. INTRODUCTION

Spiking Neural Networks (SNNs) [1], [2] have garnered
increasing attention due to their biological plausibility and
potential for facilitating efficient computing. An SNN consists
of neurons that communicate asynchronously through discrete
spikes via inter-neuron synapses. In recent years, there has
been significant progress in the development of neuromor-
phic systems which are specifically designed for executing
SNN efficiently. Notable examples include Darwin3 [3], Loihi
[4], Loihi2 [5], SpiNNaker [6], SpiNNaker2 [7], Tianjic [8],
TrueNorth [9], and BrainScaleS [10]. These systems typi-
cally feature homogeneous many-core architecture, with each
neuromorphic computing core being identical in resource
configuration (including memory capacity and computational
units) and capable of simulating multiple neurons. The inter-
core communications are facilitated through Network-on-Chip
(NoC) [11] to transmit spike messages, while the localized
memory paradigm ensures all other data required for compu-
tation—including fan-in (dendritic) connections and weights,
fan-out (axonal) connections, and neuron state variables—are
stored exclusively in on-chip memory.

Many neuromorphic systems have developed compilers or
toolkits for deploying SNNs onto neuromorphic hardware
[12]-[14]. The deployment pipeline explicitly or implicitly
works as follows. At first, all neurons of SNN are partitioned
into distinct neuron clusters such that each cluster serves as
an atomic workload unit mapped to a single neuromorphic
computing core. This one-to-one correspondence between
clusters and cores ensures that each cluster’s memory require-
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ments—including axon memory (post-synaptic connections),
dendrite memory (pre-synaptic connections), and neuron state
memory—strictly adhere to the local on-chip memory ca-
pacity constraints of a single neuromorphic computing core.
Then, each cluster is mapped to an available neuromorphic
computing core. The partitioning process must simultaneously
address two optimization objectives: 1) minimizing inter-
core spike traffic, which remains a dominant contributor to
elevated energy consumption and runtime latency [15]-[17];
2) reducing the number of required neuron subnets/clusters.
By minimizing the core count allocated to individual SNNs,
partitioning algorithms free up more cores for the concurrent
execution of multiple neural networks.

The recent studies on SNN partitioning typically treat it
as a generic graph-partitioning task and either employ greedy
strategies [18], [19] or adopt heuristic algorithms for graph-
partitioning like the Kernighan-Lin (KL) algorithm [20]-[22].
However, existing works are primarily developed for relatively
small networks, where the search space is limited and compu-
tational costs remain manageable. This limitation stems from
two critical issues: First, both greedy strategies and KL al-
gorithms rely on exhaustive neuron traversal for optimization.
The KL algorithm incurs prohibitive O(N?3) complexity due
to iterative vertex swapping, while greedy methods face O (V-
C' - Cost) computational overhead (where N is neuron count,
C is cluster count, and Cost represents objective function
complexity). Second, greedy and KL algorithms perform local-
ized searches guided by specific optimization objectives. As
neuron/synapse counts increase, the solution space explodes
exponentially, trapping these methods in suboptimal local
minima due to insufficient exploration capacity. With the rapid
scaling of SNNs [23]-[25], these limitations become critical
bottlenecks. This scale expansion introduces three fundamental
challenges for partitioning: 1) Communication Overhead Ex-
plosion. The surge in inter-neuron spikes causes prohibitively
high inter-core communication demands. [15]-[17]. 2) Pro-
liferation of Neuron Clusters. Massive synaptic connections
in large-scale models exacerbate memory contention, forcing
partitioners to create a large number of clusters. 3) Scalability
Limitations: As neuron/synapse counts grow exponentially,
existing partition strategies based on exhaustive search become
computationally impractical. This necessitates fundamentally
new partitioning approaches with improved time efficiency
while maintaining solution quality.

To address these challenges, this paper presents a novel
partitioning method for large-scale SNNs, named SNNcut,
to reduce communication overhead and lower core consump-
tion. SNNcut greatly exploits the spike-sharing mechanism
of neuromorphic hardware, which allows neurons within the
same core to share the NoC spike packets sent from their
common pre-synaptic neurons [3]-[7]. In the meantime, SNN-
cut is designed to maintain computational efficiency. SNNcut
primarily focuses on clustering neurons with common pre-
synaptic neurons together in order to maximize the utilization
of spike-sharing to reduce spike traffic and core consumption.
To achieve this, SNNcut partitions SNN in a layer-wise manner
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on-Chip. Each core’s distributed, localized on-chip memory (Dendrite, Axon, Neuron Memory) necessitates SNN partitioning,

as the full network often exceeds the capacity of a single core.

and maps neurons into a one-dimensional sequence based on
the layer connection pattern, such that the adjacent neurons
on the sequence would have a higher probability of sharing
the same pre-synaptic neurons. Then, SNNcut clusters neurons
by segmenting along the sequence under resource constraints.
SNNcut significantly reduces the computational complexity
and ensures the efficiency of large-scale SNN partitioning. The
layer-wise partitioning design also provides support for incre-
mental compilation, which is essential for rapid deployment
cycles in model development. The contributions of this paper
are summarized as follows.

o We propose SNNcut, an efficient partitioning method for
large-scale SNNs using spike-sharing. SNNcut primar-
ily maps neurons into a one-dimensional sequence and
segments along the sequence to cluster neurons together.
SNNcut ensures a high-quality solution by leveraging
spike-sharing to a great extent. Meanwhile, SNNcut elim-
inates the exhaustive searching over neurons in SNN
and significantly reduces the computational complexity
of partitioning.

o We propose the indexing rules to map neurons in different
layers in a way that the utilization of spike-sharing can
be fully exploited. For example, we propose to employ
Hilbert Space Filling Curve (HSFC) to index neurons in
convolutional layers since HSFC has the ability to pre-
serve the locality of neurons with common pre-synaptic
neurons. We also propose an FFD-based algorithm to
index neurons of fully-connected layers.

« We have conducted extensive experiments on 6 SNN
workloads with different scales and structures. The ex-
perimental results demonstrate that SNNcut consistently
achieves improved spike traffic reduction and reduced
core consumption over existing methods.

II. BACKGROUND AND RELATED WORKS
A. Preliminary of SNN

In SNN, neurons are the basic computation units with
private states such as membrane potential, and the synapses
connect neurons with different weights. The execution of
SNNs involves multiple timesteps. At each timestep, all neu-
rons 1) update their membrane potentials based on activation
value, 2) send spikes to their post-synaptic neurons if the
membrane potentials reach the threshold, and 3) receive spikes
sent from pre-synaptic neurons and update the activation value
with associated weights. The computation of each timestep
remains consistent, and each neuron computes in parallel.

To obtain a well-trained SNN, ANN-to-SNN conversion is
one of the most prevalent strategies and achieves the best
performance in most tasks [26]. However, since ANN-to-
SNN conversion is essentially derived from rate-coding (e.g.,
representing real value with the number of spikes), neurons in

ANN-converted SNNs often exhibit much higher firing rates
and longer running timesteps [16]. The growing spikes lead to
increased communication demand at runtime, which impairs
the energy efficiency and latency of the neuromorphic system.
B. Neuromorphic System

1) Homogeneous Many-Core Architecture

As shown in Fig. 1, most neuromorphic chips adopt a
homogeneous many-core architecture that arranges cores in
a two-dimensional array, and Network-on-Chip is equipped to
support the inter-core communication. To enable a larger scale
workload as well as to improve parallelism, most neuromor-
phic systems concatenate multiple chips together by building
cross-chip communication channels on the border [3], [6],
[7]. Assuming all cores are arranged in X columns and Y
rows, the neuromorphic hardware can be modeled as a list of
neuromorphic cores with coordinates as follows:

(1

H={(z,y)lz €1, X}y €[1,Y];z,y € N"}

2) Localized On-Chip Memory Model

Most neuromorphic architectures adopt a distributed mem-
ory paradigm where each computing core maintains localized
on-chip memory for complete neuronal connectivity and state
variables. As depicted in Fig. 1, the localized on-chip memory
records dendritic fan-in connections (including pre-synaptic
weights), axonal fan-out routing information, and somatic state
parameters (e.g., membrane potentials, firing thresholds) with
dedicated SRAMs [3]-[7]. Therefore, the capacity of these on-
chip memories decides how many neurons and connections
one core can fit. Before introducing the on-chip memory
organization, let us denote the neurons within a core as
Nyeuron and the union of pre-synaptic neurons of Njeuron
as Npre.

In detail, Dendrite Memory is composed of several memory
blocks, each associated with a pre-synaptic neuron n!. €

. pre
Npre. The memory block of Ny Tecords the post-synaptic
connections (i.e., the indices of post-synaptic neurons in
Npeuron and corresponding synaptic weights) of n;,.e. Fig.
1 presents an example, where the Dendrite Memory of core
(1,2) records two blocks, each of which is uniquely identified
by the pre-synaptic neurons (n; and ns), and holds the
associated neuron indices and synaptic weights. For n;, the
block records its connections to ng and n4. The block of ng
follows the same principle.

Axon Memory also comprises several memory blocks, and
each block is indexed by a neuron n' € Nyeuron. For each
neuron n', its corresponding memory block stores the coor-
dinates of neuromorphic cores that contain the post-synaptic
neurons of n'. For example, in Fig. 1, core (1, 2) has two axon
memory blocks. The one indexed by ng records core (1,1)
and core (2,2) at which the post-synaptic neurons of ng are
located. The same applies to ns. Neuron ny does not need
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Fig. 2: Workflow of deploying SNN onto neuromorphic
hardware. The process involves two main stages: (1) SNN
Partitioning, which divides the SNN (V,,) into resource-
constrained clusters (Vjyster), and (2) Cluster-Core Mapping,
which assigns each cluster to a physical core (V4..) on the
hardware.

axon memory since it has no post-synaptic neurons. When
neuron n’ fires, the routing destination of the spike packet is
retrieved from its axon memory block, all neurons share the
Axon Memory, and the total size of their axon memory blocks
must not exceed the capacity of Axon Memory.

Similarly, the state variables of each neuron are stored in
Neuron Memory and identified by the neuron index n' €
Nieuron- The capacity of Neuron Memory is determined by a
specific boundary, limiting it to a fixed number of neurons up
to a predefined maximum(N,,,).

We denote the size of the dendrite memory block of ném as

denn;’m and the size of the axon memory block of neuron n’
as axon,,:. A formal definition of the core memory constraints
can be expressed as follows:

|Nneuron| S Nneu (2)
> denys < Nien 3)
Nl €ENpre
Z axon,: < Nazon 4@
n*ENneuron

where Ny.on and Ny, denote the capacity of Axon Memory
and Dendrite Memory, respectively.

C. Deployment Workflow

To deploy an SNN onto neuromorphic hardware, the net-
work has to be partitioned into smaller workloads since a
single core cannot fit the entire network. The deployment
workflow is illustrated in Fig. 2 and mainly comprises two
steps: 1) partitioning the original SNN into disjoint clusters,
each constrained by the memory capacity of a single neuro-
morphic core, and 2) mapping each cluster to an available core
for runtime computation.

1) Partitioning

SNN can be represented as a Directed Acyclic Graph (DAG)
(SNN (Vneu,ESyn)) with neurons as vertices and synapses
as edges. Formally, SNN partitioning requires partitioning
Vypew into disjoint clusters (Vepuster = {V3, VA, ..., V&) with
each cluster meets the memory constraints presented in Eq.
(2)(3)(4), under two optimization objectives: 1) inter-cluster
spike traffic minimization; and 2) cluster count minimization.

n
Vneu — V::luster = {V]%, V]ga ceey Vfg}a U V]ZD = Vneu (5)
i=1
The partitioned network is denoted as PN (Viyuster; Econn)-
Two clusters are considered connected if there are synapses
across them.

TABLE I: Involved symbols and the definitions

Symbol | Definition
SNN (Vneu, Esyn) DAG of SNN
Vineu neurons in SNN
Esyn synapses in SNN
PN(Veuster, Econn) | DAG of partitioned SNN
Veluster neuron clusters
Vi the j-th neuron cluster in Vjyster
FEconn connections among neuron clusters
NE piron set of neurons in V}
presyn(n) pre-synaptic neurons of neuron n
Nire union of presyn(n) of all neurons in NV _...on
MN (Veore, Econn) the mapped PN
Veore neuron clusters with allocated computing cores
Pi(x;, ) the coordinates of allocated core for cluster V3
N the number of neurons in SN N
f average fan-in of neurons in SN N
C the number of clusters in PN
L the number of layers in SNN
Sn firing rate of neuron n
2) Mapping

After partitioning, each cluster will be allocated to an
available neuromorphic computing core in .

V;:luster — Vrcore = {(Vf}';Pl(Ilayl))a EE) (V£7P"(xn7yn))},
Pl(xlayl)a "'7Pn(xn7yn) ceH
(6)

We denote the mapped network as M N (Veore, Econn ), and its
connections/edges are directly inherited from PN.

D. Related Works

Prior efforts on SNN partitioning can be broadly classified

into heuristic algorithms (often adapted from classical graph
partitioning) and greedy strategies tailored to neuromorphic
systems. We summarize key approaches in both categories
and discuss their limitations in handling large-scale SNNs,
especially under hardware constraints like limited on-chip
memory and spike communication overhead, which motivate
our proposed solution.
Heuristic-Based SNN Partitioning. SNN partitioning can be
viewed as an edge-cut graph partitioning problem on the neu-
ron connectivity graph. The goal is to assign neurons (graph
vertices) to cores such that inter-core synaptic connections
(edge cuts) are minimized [27]-[38]. This problem is NP-
hard, so past SNN compilers [20]-[22] have resorted to graph-
partitioning heuristics, most notably the Kernighan—Lin (KL)
algorithm. KL iteratively swaps pairs of neurons between clus-
ters to reduce a cost function (e.g. inter-cluster spike count).
This heuristic was employed in SNN mapping frameworks
like SpiNeMap [20] and the method by Song et al. [21] with
the number of crossing spikes as the objective. While KL-
based techniques can indeed lower inter-core spike traffic,
they ignore neuromorphic memory constraints. In practice,
moving a single neuron can trigger a cascade of axon memory
overflow checks on all cores hosting its pre-synaptic neurons
(see Fig. 3). As a result, each swap incurs additional overhead
of O(f) memory validations (where f is the neuron’s fan-in)
at least, inflating the algorithm’s complexity to O(NN?3 f). This
exponential increase makes straightforward KL partitioning
infeasible for large networks. Researchers have introduced
more advanced graph partitioning methods (e.g. multi-level
partitioners like METIS [39] and streaming heuristics like
LDG [31] and Fennel [27]) to improve scalability. How-
ever, these generic algorithms focus on balancing partitions
and minimizing cut edges, and they do not account for
neuromorphic-specific issues such as dynamic axon memory
per neuron or the spike-sharing communication mechanism.
In other words, traditional graph partitioners cannot directly
satisfy the unique constraints of SNN partitioning.
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Fig. 3: The checking chain of KL algorithm. The unscalable
validation overhead of KL-based partitioning. This illustrates
how swapping a single neuron (part of the KL algorithm)
triggers a complex cascade of O(f) memory validation checks
across all cores hosting its pre-synaptic neurons, leading to
prohibitive computational complexity.

TABLE II: Comparison with related works

Methods | Neuron DendriteAxon Complexity

KL [20]-[22] v X X O(N3f)
EdgeMap [19] v v X O(NC|Econnl|))
DFSynthesizer [18] v v X O(NC'log(C))
SNNcut v v v O(Llog(Niayer))

Niayer: average # neurons per layer

Greedy SNN Partitioning Approaches. In parallel, several
SNN partitioning methods use greedy, locally optimal strate-
gies to incrementally build a solution. These approaches assign
neurons to clusters based on immediate cost benefits, rather
than exhaustive global optimization. For example, EdgeMap
[19] introduces a dual-objective cost function that balances
inter-core communication latency against computational load.
Likewise, DFSynthesizer [18] prioritizes placing neurons into
clusters with high synaptic connectivity to maximize hardware
resource utilization. By designing such problem-specific cost
metrics, greedy methods can incorporate domain knowledge
(e.g. network topology or hardware limits) into partitioning de-
cisions. Unfortunately, these methods struggle to scale to very
large SNNs. The time complexity grows with both the number
of neurons and clusters, leading to prohibitive runtimes on
big networks. In fact, EdgeMap [19] and DFSynthesizer [18]
reportedly required over 100 hours to partition VGG19 of
16 million neurons (see Section V). Moreover, the quality of
greedy partitions degrades as network size increases: when
scaling from 1 million to 3.5 million neurons, the fraction
of inter-core spike traffic more than doubled (from 10%
to 21%) for DFSynthesizer, and rose from 25.7% to 57.6%
for EdgeMap. This drop in performance is attributed to the
exponential growth of the search space, which causes greedy
optimizers to get trapped in suboptimal local minima.
Our Approach — SNNcut. SNNcut differentiates itself from
prior work by explicitly addressing the above limitations. It
is the first SNN partitioning method to account for the per-
neuron axon memory constraint during clustering. Instead
of relying on iterative swapping or per-neuron greedy as-
signment, SNNcut uses a constructive partitioning strategy
that leverages the spike-sharing mechanism inherent in many
neuromorphic architectures [3]-[7]. In essence, neurons are
clustered sequentially according to their layer-wise connectiv-
ity patterns. By preserving this sequential order, neurons with
similar connectivity naturally form groups, thus maximizing
the chance that neurons sharing the same presynaptic inputs
will be assigned together. This ordered clustering leverages
spike-sharing (delivering a single spike to activate multiple
synapses), significantly reducing inter-core communication
overhead. By co-designing the partitioning algorithm with
SNN-specific characteristics, SNNcut avoids both the heavy
search overhead of KL-style heuristics and the scalability pit-
falls of naive greedy methods, achieving efficient partitioning
even for extremely large SNNs.
III. SNNcuT

In this section, we present the design of SNNcut. As
shown in Fig. 4 and Algorithm 1, SNNcut consists of three
stages: 1) fopological sorting: According to the definition of
axon memory, the axon memory size of a neuron can be

Algorithm 1: SNNcut Overview

Input: SNN with L layers {layery, ..., layery};
neuromorphic core capacity (Ngen, Nazons Nnew)
Output: Neuron Clusters Vi ster
/+ topologically sort snn layers. */
1 Sort SNN : {layeri, ..., layery } in topological order;
2 V::luster — {}3
/* For each layer, index neurons into
sequence S, each neuron n has
memory sizes (den,,axon,); x/
3 for layer | in sorted layers do

4 if Ltype lies in {convolution, pooling} then
5 L S < index_neurons_with_ HSFC();
6 else if Ltype lies in {fully_connected} then
7 | S <« index_neurons_with_FFD(0);
8 else
9 | S « default_order;
/* segment to fit core capacity. =/
10 chlluster = BS_Segment(S, Nden7 Nawo'm Nneu);
1 | Insert clusters in V.. 10 Viuster;

12 Return Vipysters

determined once its post-synaptic neurons have been clustered.
Therefore, the partitioning process must be conducted in the
topological order of SNN layers; 2) spike-sharing-oriented
neuron indexing: For each layer, to better utilize the spike-
sharing mechanism, neurons are indexed and mapped to a one-
dimensional sequence such that the adjacent neurons in the
sequence have more common pre-synaptic neurons. We design
the HSFC-based and FFD-based neuron indexing algorithms
for convolution layers and fully-connected layers, respectively;
and 3) binary segmentation of neuron sequence: Finally,
we propose binary segmentation (BS_Segment) presented in
Algorithm 2 to efficiently segment the neuron sequence into
multiple clusters under on-chip memory constraints as pre-
sented in Eq. (2)(3)(4).

A. Fundamental Principle

The communication paradigm of representative neuromor-
phic architectures [3]-[7] reveals a common characteristic
that enables a significant reduction of inter-core traffic. This
mechanism operates as follows: For synapses (i.e., their asso-
ciated post-synaptic neurons) sharing a common pre-synaptic
neuron, a single spike packet can trigger activation accu-
mulation across all corresponding synapses, provided they
reside within the same core. We term this mechanism spike-
sharing, denoting that all associated synapses share one spike
packet. The fundamental goal of SNNcut is to maximize the
utilization of the spike-sharing mechanism, which is illustrated
in Fig. 5. We achieve this by co-locating (i.e., clustering) post-
synaptic neurons that share common pre-synaptic neurons.
A higher degree of aggregation for these neurons directly
translates to two key benefits: 1) maximized spike-sharing,
which reduces inter-core spike traffic, and 2) reduced axon
memory consumption for the pre-synaptic layer (as fewer core
destinations need to be stored).

Better utilization of spike-sharing brings more efficient
communication and reduced axon memory. Fig. 6 presents two
partitionings where the second better utilizes spike-sharing.
In the second partitioning, all post-synaptic neurons of ng
are located in the same core, such that when ng fires, only
one spike packet is transmitted on NoC. A neuron’s Axon
memory stores the coordinates of all cores that contain its post-
synaptic neurons (as illustrated in Fig. 5). This creates a key
optimization opportunity: if multiple post-synaptic neurons
(e.g., n1, ng, n3) of a single pre-synaptic neuron (e.g., ng)
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are all clustered into the same destination core (e.g., Core 1),
the Axon memory for ng only needs to store the coordinate
of Core 1 (x1,y1) once.

SNNcut’s strategy of aggregating post-synaptic neurons that
share common pre-synaptic neurons is explicitly designed to
exploit spike-sharing opportunities. By ensuring these sibling
post-synaptic neurons are co-located, our method minimizes
the number of distinct post-synaptic destination cores they are
spread across. This directly collapses the number of coordinate
entries each pre-synaptic neuron must store, alleviating the
Axon memory bottleneck, which we identified as a primary
driver for creating underutilized cores. This allows for a much
higher neuron density per cluster, thereby reducing the total
core consumption. Fig. 7 illustrates this with an example from
our experimental results. Starting from layer [, SNNcut-woS
(a partitioning method without effective utilization of spike-
sharing, see Section IV) results in more cores being used com-
pared to SNNcut. The neuron density of a core (or cluster) is
co-limited by all three primary hardware memory constraints:
Dendrite, Axon, and Neuron memory. A core becomes full
(or bounded) when any one of these memory resources is
exhausted. For each neuron, its Dendrite and Neuron memory
demands are static, fixed by the SNN model. The Axon
memory demand is dynamic, determined by the partitioning of
post-synaptic neurons. SNNcut’s core strategy is to minimize
this dynamic Axon memory demand by aggregating sibling

Algorithm 2: BS_Segment
Input: neuron sequence S; core capacity (Ngen,
Namonv Nneu)
Output: neuron clusters of layer [:
1 ‘/clluster — {}’ start 0;
2 while start < |S]: do

Vl

cluster

3 low < start; high < (|S| — 1); split + start;
4 while [ow < high do
5 mid = floor((low + high)/2);
6 if Y7 (den;) <= Ngen and
Yo (axon;) <= Nagon and
maud — start + 1 <= Ny, then
7 | split = mid low = (mid + 1);
else
| high = (mid —1);
10 | Record neuron cluster S[start : split] in V.
u | start = (split +1);

l .
12 Return Vrcluste’r’

post-synaptic neurons, while SNNcut-woS lacks such axon-
memory-size-oriented optimization.

Layer [ + 1 = Layer [: For neurons in layer [, their post-
synaptic neurons lie in layer [ 4 1. In topological order, layer
I + 1 is partitioned before layer [.

In the SNNcut-woS case (top row), partitioning layer [ + 1
without spike-sharing scatters its sibling post-synaptic neu-
rons. This scattering inflates the Axon memory demands for
layer [ neurons (darker red circles). Consequently, partitioning
layer [ quickly saturates the Axon memory, creating numerous
axon-bounded cores (red squares). These cores are inefficient,
leaving Dendrite and Neuron memory underutilized.

In the SNNcut case (bottom row), our strategy proactively
clusters these sibling neurons, which directly reduces the Axon
memory demand for layer [ neurons (lighter pink circles). This
relieves the Axon memory pressure, ensuring it is no longer
the bottleneck. Thus, SNNcut packs more layer [ neurons
into each core, filling the otherwise underutilized Dendrite or
Neuron memory. This results in higher resource utilization and
a dramatically lower total core count.

Layer | = Layer [ — 1: This benefit propagates to layer
I — 1. The increased core count for layer [ in the SNNcut-
woS case further scatters the post-synaptic neurons of layer
I — 1, drastically increasing its axon memory demands. This
forces SNNcut-woS to generate numerous cores for layer
I — 1, most of which become axon-bounded (red squares). In
contrast, SNNcut’s denser partition of layer /, combined with
its aggregation of sibling post-synaptic neurons, ensures that
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Fig. 7: Illustrations on SNNcut reducing core consumption
by alleviating the axon memory bottleneck. The top row
(SNNcut-woS) shows how failing to cluster post-synaptic
neurons that share common pre-synaptic neurons leads to high
axon memory demands (darker red circles), creating inefficient
axon-bounded cores (red squares). The bottom row (SNNcut)
demonstrates how proactively clustering those sibling neurons
reduces axon demands (lighter pink circles), allowing for
higher neuron density and fewer cores (blue squares). This
advantage propagates from layer [ + 1 to [ — 1. (Note: The
figure is plotted proportionately to experimental data.)

layer [—1 neurons also have a smaller Axon memory footprint.
As a result, SNNcut significantly reduces the core count for
layer [ — 1, creating efficient, non-axon-bounded cores (blue
squares).

Targeted at the challenges of increased scale SNN partition-
ing, the fundamental principle behind SNNcut is fo layerwisely
cluster the (post-synaptic) neurons that have common pre-
synaptic neurons together, with a constructive strategy based
on the layer connection pattern. The reasons are detailed as
follows:

Firstly, neurons of the same layer have the same connection
pattern, which renders strategies searching at the neuron
level redundant and inefficient. For example, the pre-synaptic
connections of neurons in convolution layers lie within a
receptive-field window. To speed up partitioning, we propose a
constructive strategy concerning layer connection patterns and
eliminate the redundant searching over individual neurons.

Secondly, to better exploit the utilization of spike-sharing,
our constructive strategy encourages clustering post-synaptic
neurons that have more common pre-synaptic neurons together
such that both network latency and energy cost can be opti-
mized through reduced spike traffic.

Lastly, with the aforementioned strategy, axon memory for
the pre-synaptic neurons can be saved since their post-synaptic
neurons are clustered into fewer cores, i.e., their destination
cores decrease. That benefits the on-chip memory utilization
and reduces the partitioned clusters.

B. Layer-wise Partitioning in Topological Order

When clustering neurons, the partitioning strategy must en-
sure that the memory size of the cluster fits within the capacity
of a neuromorphic core. According to the core memory model
introduced in Section II-B, the axon memory size of a neuron
can only be determined once its post-synaptic neurons have
been clustered. Therefore, the partitioning process must be
conducted in the topological order of neurons in the SNN.
Since neurons in the same layer have no connections between
each other, there is no need to sort the entire graph of neurons.
Instead, SNNcut ensures the order by topologically sorting
the layers of the SNN and partitioning them in a layer-wise
manner.

Unlike monolithic graph-partitioning methods (e.g., KL-
based ) that treat the SNN as a flat graph, the layer-wise
partitioning strategy of SNNcut provides strong advantages for
handling the online re-partitioning scenarios. In an adaptive
SNN where the structure might change (e.g., through online
learning), SNNcut would not require a full re-partitioning of
the entire network. Instead, only the modified layers and their
subsequent dependent layers would need to be re-processed.
The partitioning results for all unchanged layers could be
directly reused.

C. Spike-sharing-oriented Neuron Indexing

Unlike existing works that exhaustively search over indi-
vidual neurons, we propose layer-specific strategies that index
and map all neurons of the layer into a sequence and segment
along the neuron sequence under on-chip memory constraints.
Each round of segmentation packs as many neurons as possible
until the memory capacity is reached to avoid memory space
waste.

Based on the connection pattern, layer-specific neuron in-
dexing strategies are proposed to maximize the number of
common pre-synaptic neurons of adjacent neurons in the
sequence. Since segmentation is carried out sequentially, ad-
jacent neurons, i.e., neurons that share more common pre-
synaptic neurons, can reside together in the same cluster to
improve the utilization of spike-sharing.

Before introducing the indexing rules, we define the simi-
larity (formally defined in Eq. (7); the Ly norm)
between two neurons as the number of their common pre-

[presyn(i) N presyn(j)|

synaptic neurons.
sim(i, j) = ()

1) Indexing Rule of Convolution Layers

Neurons in convolution layers are organized in three di-
mensions: width (W), height (H), and channel (C), and let us
discuss the similarity distribution on WH plane first.

The similarity among neurons in the convolution layer
exhibits a peak-shaped distribution, as shown in Fig. 8(a). This
suggests that neurons located closer to each other on the two-
dimensional WH plane tend to have higher similarity. Based
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Fig. 8: Locality-preserving of different space-filling curves. (a) Similarity distribution of neurons in convolution layer. (b)
Distance among points in different curves. (c) Similarity among neurons indexed by different curves (Diagonal values are set
to 0). (d) Locality of different curves on representative configurations. Collectively, the results show HSFC (blue bar in (d))
better preserves locality for high-similarity neurons, validating its use for SNNcut.

on this observation, we propose to employ the Hilbert Space-
Filling Curve (HSFC) to index neurons in convolution layers.
HSFC is a space-filling curve that maps a two-dimensional
array to a one-dimensional sequence while preserving locality;
in other words, items that are adjacent in the two-dimensional
space remain close to each other in the one-dimensional
sequence [40]. It has been mathematically proven that HSFC
exhibits superior locality-preserving properties compared to
other space-filling curves [41]. Therefore, on the WH plane
of the convolution layer, we index neurons according to the
order defined by HSFC so that neurons with higher similarity
are placed in adjacent positions in the resulting sequence, and
thus are more likely to be grouped together during sequence
segmentation.

We conduct a statistical analysis of different space-filling
curves to demonstrate the suitability of HSFC for partitioning
convolution layers. An 8 x 8 array was mapped into sequences
using HSFC, ZigZag, and Circle curves. Fig. 8(b) shows the
2D Euclidean distance between points in those sequences (e.g.,
the distance between the ¢-th and j-th point is displayed
at positions (4,7) and (j,%)). Darker points indicate smaller
distances. Points near the diagonal correspond to distances
between adjacent items in the sequence. In the HSFC heatmap,
these points exhibit smaller distances, reflecting its superior
locality-preserving property.

Furthermore, we index and map neurons in a convolution
layer with 8 x 8 input shape, 3 x 3 kernel size, 1 x 1 stride, and
8 x 8 output shape, using the same curves, and measure the
similarity (7) among neurons in the resulting sequences. The
similarity distribution is shown in Fig. 8(c), where positions
(i,7) and (j,%) represent sim(i,j). Lighter points indicate
higher similarity. For the HSFC-based indexing, points near
the diagonal show higher values, indicating that HSFC effec-
tively maps neurons with high similarity to nearby positions
in the sequence.

Since the segmentation process is sequential, the distribution
in Fig. 8(b) can be interpreted as the probability that two
neurons are clustered together. Based on this, we provide a
quantitative comparison of the effectiveness of different space-
filling curves in facilitating spike-sharing by masking the two
distributions shown in Fig. 8(b) and Fig. 8(c).

T [[1.5

icivigeng 11l

Specifically, we define locality (8) as the sum of the similarity
between each pair of neurons, weighted by the inverse of their
distance in the sequence. The evaluation of representative con-
figurations is illustrated in Fig. 8(d). The results demonstrate
that HSFC is better suited for partitioning convolution layers
compared to other space-filling curves.

locality =

(a) channel-wise convolution

]

(b) non-channel-wise convolution

L]

n+1 2n

@ indexing by HSFC @ indexing along channel
@ indexing along channel @ indexing by HSFC

Fig. 9: Similarity distribution in channel dimension. (a)
channel-last order: Used for channel-wise convolution. After
indexing neurons in WH plane by HSFC, the sequences
are concatenated along the channel dimension. (b) channel-
first order: Used for non-channel-wise convolution. Clustering
neurons with the same (w, h) together and then indexing the
groups by HSFC.

For the channel dimension, the indexing rule depends on
whether the connection is channel-wise. Fig. 9 shows the sim-
ilarity distribution along the channel dimension. In channel-
wise convolution layers (e.g., DepthwiseConv2D in Keras
[42]), neurons across different channels do not share pre-
synaptic neurons. These are indexed in a channel-last order
(Fig. 9(a)), where the WH plane is first indexed using HSFC,
and the sequences of different channels are then concatenated
to form the final sequence. In contrast, for non-channel-wise
layers, neurons with the same WH coordinates (w,h) but
different channels share the same set of pre-synaptic neurons.
Therefore, we adopt a channel-first indexing order (Fig. 9(b)),
where neurons with the same WH coordinates (w, h) across
different channels are grouped together first due to their high
similarity, and these pre-clustered groups are subsequently
indexed by HSFC based on their (w, h). This indexing strategy
ensures that neurons with higher similarity are consistently
placed close to each other in the sequence.

2) Indexing Rule of FC Layers

In fully connected (FC) layers, all neurons share the same
set of pre-synaptic neurons, i.e., each neuron n has the same
presyn(n). Consequently, fewer clusters result in greater
spike-sharing utilization and reduced axon memory usage. To
maximize this benefit, neurons should be indexed such that
the number of clusters is minimized after segmentation.

Since each neuron in an FC layer has the same number of
pre-synaptic connections, the dendrite memory consumption
den,, is uniform across neurons. Therefore, clustering neurons
based on their varying axon memory demands axon, while
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TABLE III: Hardware Configurations

TABLE V: Evaluation Parameters

Hardware | Ngen Npeu Nazon # Cores Parameter | EN, EN, LAy, LA,
Darwin3 [3] 3 x 219 212 214 220 Value | 1 0.1 le=* le=5
Loihi [4] 217 210 212 3 x 215
TABLE IV: Workloads 2 S s

Model | #Neurons #Synapses| Model | #Neurons #Synapses ST, — Vi€Veiuster nEVE (10)
AlexNet | 864K 908M VGG19 16M 198 ob = By
CNN2M*|  2.5M 1.5B ResNet152|  35M 11B . -
ResNetl8|  3.5M 1.7B CNN3B* 3.2B 902B 2) Core Consumption
¥ synthet dels.

synthetic models NC = |Viuster| (11D

minimizing the number of clusters is essential for reducing
both spike traffic and neuromorphic core usage. This problem
corresponds to a variant of the one-dimensional bin-packing
problem, which is NP-hard.

Several approximation algorithms and metaheuristics have
been proposed for bin packing [43], [44]. To maintain com-
putational efficiency, we index neurons in the FC layer in
descending order of their axon memory sizes, inspired by the
First-Fit-Decreasing (FFD) strategy [44].

D. Binary Segmentation of Neuron Sequence

The neuron sequence generated using the proposed indexing
rules ensures that adjacent neurons in the sequence share more
pre-synaptic neurons. Consequently, segmenting the sequence
and grouping neurons within each segment leads to improved
spike-sharing, thereby reducing runtime spike packet traffic
and neuromorphic core consumption.

To ensure that each cluster fits within the on-chip mem-
ory constraints of a neuromorphic core as presented in Eq.
(2)(3)(4), we propose a binary-search-based segmentation
method (BS_Segment). As shown in Algorithm 1, starting from
the beginning of the sequence, the method identifies the first
neuron where the cumulative memory demand exceeds the
core capacity. The sequence is split at this position, and the
process is repeated on the remaining part until all neurons are
assigned to clusters. BS_Segment ensures that at least one of
the on-chip memory types—Dendrite Memory, Axon Memory,
or Neuron Memory—is fully utilized in each cluster.

IV. EXPERIMENTAL SETUP
A. Experimental Environment and Workloads

The experiments were conducted with the configurations
of representative neuromorphic systems [3], [4] as illustrated
in Table III. We have built a simulator in Python and con-
ducted the experiments on an Ubuntu 20.04.6 LTS work-
station with 40 CPU cores (Intel(R) Xeon(R) Silver 4210R
CPU@2.40GHz) and 256GB memory. We have modified
SNNToolbox [45] to convert ANN models in Keras into SNN
models. Table IV lists the SNN models at different scales
(number of neurons and synapses). We employ the method
from [40] for mapping PN onto hardware due to its state-of-
the-art performance and suitability for large-scale models.

B. Metrics

Due to the inaccessibility of neuromorphic hardware, we
reference the evaluation methodology of [40] to evaluate the
runtime performance of neuromorphic systems, covering the
network interconnect energy and latency of spike communica-
tions. The metrics are briefly introduced in the following for
clarification.

1) Spike Traffic

E Z Sn

(i,j)eEconn neV}; ﬂ/\/ﬁrc

ST = )]
syn|

sn denotes the firing rate of neuron n. ST represents the
overall traffic of spike packets normalized for evaluation. In
the ideal situation, only one spike packet instead of duplicate
traffic is transmitted when a neuron is activated, i.e., the
optimal bound of ST

NC denotes the number of neuromorphic cores necessary for
SNN simulation.
3) Spike Packet Latency

LT(P',P?) = Lat(P", P?) x (||P" — P?||; x LA,+

(IPF = PPy +1) x LA,)
o (12)
||||1 indicates the L1 norm. LT'(P*, P7) models the latency of
transmitting a packet from core P* to core P’, which consists
of two parts: the latency for NoC path transmitting and router
forwarding. And LA, and LA, are the respective scaling
factors. Lat(P?, P7) represents the unit-hop-latency of all
possible paths from P* to P?. The definition of Lat(P", P?)
is shown in the Appendix.
4) Interconnect Energy

D

(P*,PI)EEconn

Wy X (|[P* = P?[li + 1) x EN,)
(13)
EC' accounts for the NoC interconnect energy for spike traffic
transmission. EN,, and EN, stand for the unit-hop energy of
link transmission and router forwarding, respectively.

We set the evaluation parameters in L7 (12) and EC (13) to
the unit values listed in Table V for simplified implementation.
C. Approaches for Comparison

We evaluated the following approaches.

o EdgeMap [19]: EdgeMap iterates over neurons in SNN.
For each neuron, it calculates an intricate cost function
on every cluster and selects the one with the lowest cost.
If no cluster is found, a new cluster is created.

o DFSynthesizer (referred as DFSy for convenience) [18]:
DFSy also iterates over neurons in SNN and searches for
the cluster with the highest resource utilization to pack
the current neuron into. When there is no cluster that can
accommodate the neuron, a new cluster is created.

o SNNcut-woS (SNNcut without spike-sharing): It is
for comparison with the proposed method. SNNcut-woS
indexes neurons in all layers in default order instead of
utilizing the proposed indexing rules.

e SNNcut: The proposed method that partitions SNN in
a layer-wise manner, indexes neurons according to the
rules in Section III, and segments the sequence with
BS_Segment to produce the partitioned network.

V. RESULTS AND ANALYSIS

A. Performance Evaluation

1) Spike Traffic

As shown in Table VI, our method reduces spike traffic
by 98.97% on average, while the best of existing methods
achieves a 74.98% average reduction. The reasons are dis-
cussed as follows. Firstly, existing greedy-based methods are
primarily designed for models with limited scales (e.g., the
largest model in [19] is no larger than AlexNet and is way
much smaller than workloads in our experiments.). As the
model scale increases, their performance degrades because of

EC = (wy, X | P* = Py x EN,+
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Fig. 10: Results of average/maximum latency (first column and mid column) and energy consumption (last column) under
different hardware configurations (different rows). The values are normalized ratios to EdgeMap.

TABLE VI: Results of Spike Traffic(ST') (x1072)

Hardware] Model | EdgeMap DFSy SNNcut-woS  SNNcut
AlexNet 25.73 10.01 6.96 0.3
Darwin3 | CNN2M | 42.32 22.31 15.32 0.32
ResNetl8| 57.61 21.01 10.91 0.43
AlexNet 71.51 28.61 25.21 2.11
Loihi CNN2M 60.42 31.35 27.05 1.31
ResNet18| 63.13 36.82 29.58 1.68
TABLE VII: Results of Core Consumption(/NC')
Hardware| Model | EdgeMap DFSy SNNcut-woS  SNNcut
AlexNet 14,362 5,602 4,268 693
Darwin3 CNN2M 37,901 20,128 14,366 1,161
ResNet18 | 59,391 21,782 11,931 1,531
AlexNet 137,425 63,787 76,574 10,009
Loihi CNN2M | 226,113 113,741 106,026 12,645
ResNetl18 | 280,740 153,041 140,235 16,544

TABLE VIII: Scalability Experiments - Results of Spike
Traffic(ST) (x10~2)

Model | EdgeMap DFSy SNNcut-woS SNNcut

VGG19 36.41 28.00 26.51 0.31
ResNet152 36.2 38.83 30.54 1.00

CNN3B 28.04 28.03 27.95 0.54

the explosion of solution space. Secondly, the cost function
design is simplistic and lacks specificity for optimizations
toward communication reduction, providing limited guidance
for the searching process. We observed that under certain cost
functions [18], existing methods tend to scatter neurons that
could have shared spike packets into different clusters. In
contrast, the superiority of SNNcut stems from its emphasis on
reducing spike traffic through the spike-sharing mechanism.

2) Cores Consumption

Table VII shows that the core consumption of SNNcut is
only 5.7%~15.7% of those required by the SOTA of existing
approaches. As discussed in Section III-A, SNNcut saves core
consumption since the cores that originally suffered from
insufficient axon memory space could contain more neurons
with reduced axon memory size.

3) Latency and Energy Consumption

Fig. 10 presents the evaluation of partitioned SNNs under
different configurations in terms of average latency, max
latency, and energy consumption, respectively. The Y-axes
record the normalized values relative to the results of SNNcut.
Based on the above discussions, SNNcut significantly reduces
spike traffic and core consumption. The former promises fewer
NoC spike packets, and the latter allows for mapping the
connected cores to hardware positions with shorter distances
[40]. With fewer spike packets traveling shorter distances, it is
straightforward that SNNcut demonstrates better latency and
interconnect energy cost.

4) Scalability

To verify the scalability of SNNcut, we conducted experi-
ments on SNNs with 16M ~ 3.2B neurons and 198 ~ 9028

TABLE IX: Scalability Experiments - Results of Core
Consumption(/NC')

Model | EdgeMap DFSy SNNcut-woS SNNcut
VGG19 457,659 333,913 321,580 13,433
ResNet152 237,048 253,637 208,315 15,208
CNN3B 16,000,334 15,993,447 15,950,202 1033,301

TABLE X: Impact of Hardware Configurations on Spike
Traffic(ST) (x1072)

Config | EdgeMap DFSy SNNcut-woS  SNNcut

Axon 4,096 56.14 17.80 12.72 0.31
7,168 52.63 13.84 10.43 0.30

(Nawon) | 10:240 39.86 11.82 8.82 0.30
azon) | 13312 34.58 11.13 7.64 0.30
. 131,072 | 3823 19.51 16.39 2.06
Dendrite | 491’550 | 37.62 14.23 11.75 0.65
(Ny) | 851968 | 3371 12.23 9.93 0.44
den 1212,416] 29.75 11.13 8.41 0.35
Nenron 1,024 2573 10.08 7.56 0.32
1,792 25.73 10.07 7.50 0.31

(Noow) 2,560 25.73 10.06 7.47 0.30
new 3,328 25.73 10.03 7.22 0.30
Default (Darwin3) | 25.73 10.01 6.96 0.30

synapses that are much larger than the workloads in existing
works. We include CNN3B as an edge case, on which the
number of partitioned clusters using SNNcut approaches the
maximum core count of the existing neuromorphic system [3]
as far as we are aware. In practice, it takes more than 100
hours for DFSynthesizer and EdgeMap to process those SNNs.
Thus, we stop them early and continue partitioning the rest of
the layers using SNNcut-woS. The results are presented in
Table VIII, Table IX, and Fig. 11. SNNcut maintains a good
performance in spike traffic, core consumption, latency, and
energy consumption, even on CNN3B.
B. Impact of Hardware Configurations

We systematically evaluate SNN runtime performance un-
der three key neuromorphic core configurations: axon capac-
ity (Nazon), dendrite capacity (Ngey), and neuron capacity
(Npew)- The experiment adopts a single-variable methodology,
varying one parameter while keeping others fixed, to assess
four partitioning algorithms on AlexNet. Fig. 12, Table X,
and Table XI illustrate the performance across different con-
figurations. The results reveal that SNNcut demonstrates supe-
rior adaptability, significantly outperforming baseline methods
across all hardware configurations. Another observation is that,
like most SNN partitioning methods, SNNcut favors abundant
memory resources. It is straightforward since the abundant
memory space can contain more neurons and more synapses,
such that inter-core spike traffic can be decreased with spike-
sharing by clustering more neurons with common pre-synaptic
connections together.
C. Spike-Sharing-Constrained Scenarios Analysis

A potential degradation case occurs when static constraints
(Dendrite or Neuron Memory) become the bottleneck, restrict-
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TABLE XI: Impact of Hardware Configurations on Core

Consumption(NC')
Config | EdgeMap DFSy SNNcut-woS  SNNcut
Axon 4,096 110,673 39,742 33,135 1,005
7,168 69,363 17,629 14,130 793
(N, ) 10,240 35,720 10,548 8,307 737
axon 13,312 23,766 7,645 5,655 711
. 131,072 21,363 10,869 13,949 7,685
Dendrite | 451550 | 211116 7,976 7,810 2072
(Ngon) 851,968 18,863 6,838 6,266 1,221
den 1,212,416 16,554 6,176 5,183 875
1,024 14,362 5,657 4,803 1,045
Newron | 1795 | 14362  5.640 4652 834
(Nnew) 2,560 14,362 5,632 4,592 756
new 3,328 14,362 5,616 4,425 718
Default (Darwin3) | 14,362 5,602 4,268 693
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ing the aggregation of post-synaptic neurons, thus limiting the
benefits of spike-sharing. We conduct experiments to analyze
the advantages of SNNcut in these spike-sharing-constrained

scenarios.

To quantify this, we have expanded our analysis. In section
V-B, the sensitivity analyses for dendrite memory capacity
(from 1 x 10° to 16 x 10°) and neuron memory capacity

(from 1 x 102 to 4 x 103) were based on configurations from
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actual neuromorphic hardware [3]-[5]. We now focus on more
constrained scenarios where Dendrite memory capacity ranges
from 1024 to 8192, and Neuron memory capacity ranges from
128 to 1024.

Dendrite Memory Capacity: We conduct a sensitivity anal-
ysis on Dendrite memory capacity. The results are presented
in Fig. 13. As dendrite capacity decreases, it becomes the
primary bottleneck, which limits the density of post-synaptic
neuron aggregation and thus restricts the benefits derived from
spike-sharing. However, even at a 1024 capacity, SNNcut still
demonstrated a 33x (28.3x) speedup on average (maximum)
latency and 28.5x energy efficiency over SOTA methods.

Neuron Memory Capacity: We conducted a similar anal-
ysis for the Neuron memory capacity (Fig. 14). We observed
an identical trend. As neuron memory becomes the bottle-
neck, it limits the neuron density of cores, which constrains
the potential gains from spike-sharing. Nevertheless, even at
the 128-neuron limit, SNNcut maintained a 142x (129.5x%)
speedup on average latency (maximum latency) and 118.1x
energy efficiency.

Fanout: We further analyzed the impact of high fan-out,
as this directly strains Dendrite Memory. While the fan-out
of typical SNNs is approximately 1000 [6], we configured the
fan-out to range from 10 to 2000 to explore the impact of high
fan-out on SNNCcut. The results in Fig. 15 show that as fan-out
increases, the performance of all methods, including SNNCcut,
degrades. This is due to two factors: 1) high fan-out inher-
ently limits spike-sharing opportunities, and 2) it unavoidably
increases the total volume of spike communication. However,
even at a fanout of ~ 2000, SNNcut still demonstrated a 18.2 x
(17.8x) speedup on average (maximum) latency and 20.3x
energy efficiency over SOTA methods.

In summary, the experiments confirm that while static
memory bottlenecks do restrict the gains of spike-sharing, our
method remains highly effective and significantly outperforms
existing SOTA approaches even in these highly constrained
scenarios.
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D. Results on Execution Time

Fig. 16 illustrates the elapsed time that the evaluated ap-
proaches take to accomplish the partitioning of SNNs with
different scales (indicated by the number of neurons). In
practice, some methods fail to finish within a reasonable time,
and the corresponding data points in the grey area above 100
hours in Fig. 16 represent our estimates rather than actual
measurements. These estimates are calculated by stopping the
algorithms at 100 hours and dividing the elapsed time by the
percentage of layers partitioned up to that point. Note that
these estimates might underestimate the actual execution time
because as the number of clusters increases during partitioning,
methods like DFSynthesizer [18] and EdgeMap [19] tend to
spend more time on the rest iterations due to a larger searching
space.

The results indicate that SNNcut is significantly more
efficient than existing methods. For models with no more than
3.5M neurons, existing methods require hours or tens of hours
to finish SNN partitioning, while SNNcut accomplishes it in
under 1 minute. For models with more than 16M neurons,
existing approaches fail to provide a solution within 100 hours,
while SNNcut takes approximately 10 minutes and requires
about 9.5 hours for partitioning SNN with 3.2B neurons.

E. Sensitivity on Mapping Strategies

To validate that SNNcut maintains advantages when it is
integrated with any mapping strategy to build the complete
workflow of SNN deployment, we conducted the experi-
ments with different mapping approaches. In addition to
the three mapping strategies introduced in [40] (Hilbert_FD,
ZigZag_FD, and Circle_FD), PSO [21] and two greedy algo-
rithms [46] and [18] are employed to map the AlexNet [47]
processed by different partitioning methods.

Fig. 17 illustrates the evaluations of latency and energy
consumption of four partitioning methods, each with six map-
ping strategies. The performance variations brought by map-
ping strategies are relatively small compared with partitioning
strategies. Even in the worst case, SNNcut, in combination
with PSO mapping [21], still outperforms the other partitioning
methods with any mapping approaches.

F. Sensitivity on Firing Rates (Spike Patterns)

We theoretically analyze and experimentally evaluate the
performance of SNNcut to validate its advantages across
diverse SNNs exhibiting different firing rates or spike patterns.
Traffic Modeling. SNNcut is a compile-time optimization that
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strategically clusters neurons sharing common pre-synaptic
neurons onto the same core. This strategy fundamentally
reduces the number of NoC packets generated per neuron
activation. We can model the total NoC spike traffic (T") as

T oc S0 WO (K, x firing_rate;), illustrated in Fig. 5,
where K; is the number of post-synaptic destinations (or
cores) for neuron ¢. Our analysis in Fig. 18 confirmed that
existing methods result in a high scatter (K; = M), while
SNNCcut aims to reduce this to K; = N, with N < M. This
model theoretically guarantees that SNNcut has lower traffic
(N x firing_rate < M x firing_rate) for any firing rate > 0.
Experimental Evaluation. To verify this, we conducted a new
sensitivity analysis on the spike firing rate, setting the range
covering typical firing rates of practical SNNs [48]. SNNcut
achieves a 16.2x (14.1x) speedup on average (maximum)
latency and 26x energy efficiency improvement across all
firing rates. The results (Fig. 19) demonstrate two key points:
1) Even at a very low firing rate (~ 1%), SNNcut still achieves
a 17.7x (15x) speedup on average (maximum) latency and
a 27.5x energy efficiency improvement over SOTA methods,
confirming its effectiveness in low firing rate scenarios. 2)
As the firing rate increases, SNNcut’s performance degrades
at a significantly slower rate than SOTA methods. This ex-
perimentally validates the above traffic modeling, confirming
that SNNcut’s reduced packet generation per spike (N < M)
provides a compounding benefit as spike activity increases.

In summary, the traffic modeling and experimental evalua-
tion collectively demonstrate that: 1) SNNcut holds advantages
in high-firing-rate scenarios, as its performance degrades more
slowly with increasing activity; and 2) SNNcut’s advantage at
low firing rates is guaranteed, as it fundamentally generates
fewer NoC spike packets per neuron activation.

G. Evaluation on Heterogeneous Neuromorphic Platforms

For scenarios where cores share the same architecture but
have different on-chip memory capacities, SNNcut can be
naturally generalized by enhancing BS_Segment (Algorithm
2) to become aware of the available counts of different core
types, thereby dynamically generating clusters of varying sizes
(all types of memories) to match this hardware heterogeneity.

We evaluated SNNcut’s performance in heterogeneous neu-
romorphic platforms containing multiple neuromorphic hard-
ware. Configurations mirrored mainstream chip specifica-
tions, including Loihi, Loihi2, SpiNNaker2, TrueNorth, Brain-
ScaleS2, Darwin3 [3]-[5], [7], [9], [49]. The partitioning
algorithms dynamically adjust on-chip memory constraints
based on the available quantity of each core type. As shown
in Fig. 20, SNNcut achieved an 49.9x (49.3x) speedup on
average (maximum) latency and a 128x energy efficiency
improvement over SOTA methods on the heterogeneous neu-
romorphic platforms.

H. Evaluation on Real-World Hardware Platform

To validate our analytical metrics, we have added exper-
iments on the Darwin3 hardware platform. We deployed the
partitioned AlexNet [47] (using SNNcut and baseline methods)
onto the hardware and measured the actual runtime latency and
energy consumption.

The hardware results, presented in Table XII, corroborate
the findings from our analytical model. SNNcut consistently
demonstrates advantages. This real-world improvement is at-
tributed to: 1) a drastic reduction in inter-core communication

Method | # Cores | Time (ms) (Darwin3@400M Hz,1.8W)
EdgeMap 14362 2688651
DFSy | 5602 | 816595
SNNcut-woS | 4268 | 618389
SNNcut | 693 | 23929

TABLE XII: Real-world deployment results on the Darwin3
hardware platform. This table presents the measured latency
for the partitioned AlexNet model. The results validate SNN-
cut’s real-world performance advantage, which corroborates
the findings from our analytical model.

costs, achieved by maximizing spike-sharing, and 2) a reduced
number of active cores, which is a direct consequence of our
efficient, memory-aware clustering.

VI. DISCUSSION
A. Distinction from Runtime Re-partitioning Methods

The compile-time optimization provided by SNNcut and
runtime re-partitioning strategies [50] (which adapt to dynamic
spike patterns during learning) are parallel and complemen-
tary: SNNcut focuses on providing a one-time SNN parti-
tioning based on SNN topology at compile-time; A runtime
adaptation would aim to further refine the partition based
on live spiking activity. For the latter techniques, SNNcut
provides two key benefits:

1) It serves as an excellent initial partition, offering a high-
quality starting point that vastly reduces the search space and
potential overhead for any subsequent runtime optimizer.

2) SNNcut’s layer-wise partitioning localizes re-partitioning
to affected layers, dramatically reducing runtime adaptation
costs by avoiding a full-network re-evaluation.

SNNCcut’s primary focus is to provide the best possible par-
tition under a one-time compile-time cost, while also ensuring
this partition is highly robust across dynamic spike patterns.
The sensitivity analysis on firing rates (Fig. 19) validates
this, demonstrating that SNNcut maintains its advantages over
SOTA methods across diverse spike patterns.

B. Distinction from Packet Coalescing and Packet Transmis-
sion Scheduling

SNNcut is neither “packet coalescing” [51]-[53], which
bundles multiple spikes into one packet, nor “packet trans-
mission scheduling” [54], which delays the transmission time
of spike packets; therefore, it introduces neither additional
latency nor congestion bottlenecks. Fundamentally, SNNcut is
a compile-time optimization that reduces NoC communication
load without altering the runtime behavior of the NoC or the
neuromorphic hardware.

VII. CONCLUSION

This paper presents SNNcut, an efficient partitioning
method for large-scale SNNs on neuromorphic systems that
significantly reduces runtime spike traffic and core consump-
tion by innovatively utilizing spike-sharing. SNNcut offers
a scalable solution for deploying large-scale SNNs on neu-
romorphic systems, maintaining high performance and ef-
ficiency as model scale increases. Extensive experimental
results demonstrate the superiority of SNNcut over existing
approaches in terms of task runtime performance and compu-
tational efficiency. In future work, we will focus on refining
more partitioning rules and exploring additional optimization
techniques to enhance the applicability and performance of
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our method across diverse neuromorphic architectures and
applications.
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APPENDIX
DEFINITION OF Lat(P*, P7)
Denoting Rec(P*, P7) as the rectangle region with P? and
PJ as the two endpoints of the diagonal, Lat(P?, P7) is

defined as follows:
i i EPeRec(Pi,PJ) Con(P)
Lat(P*, P?) = - — (14)
size(Rec(P?, P
where size(Rec) gives the area of rectangle Rec and Con(P)
is the function that computes the congestion on the core at

position P. The definition of C'on(P) is shown in Algorithm
3.

Algorithm 3: Function Con(P), spike traffic of neu-
romorphic core at P : (z,y)

Illpllt: P (LI'I, y>’ MN(‘/corea Econna kat)
Output: Con(P)
1 Define array A with the same shape as the minimum
bounding rectangle of V,c;
2 for point P* in A do
3 | A[P]=0;
4 for e(Ps, Py) in Econy and weight w in Wy, do
5 G =[G4, Gy, ...,G ] < Group all cores within
Rec(Ps, Py) according to their Manhattan
Distance to P,
6 for G,, € G : do
7 for core P? in G,, : do

| A[P] = AP+ s

9 Return A[P!, ];

REFERENCES

[11 W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659-1671, 1997.

[2] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607-617, 2019.

[3] D. Ma, X. Jin, S. Sun, Y. Li, X. Wu, Y. Hu, F. Yang, H. Tang, X. Zhu,
P. Lin et al.,, “Darwin3: a large-scale neuromorphic chip with a novel
isa and on-chip learning,” National Science Review, vol. 11, no. 5, p.
nwael02, 2024.

[4] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” leee Micro, vol. 38, no. 1,
pp. 82-99, 2018.

[5] G. Orchard, E. P. Frady, D. B. D. Rubin, S. Sanborn, S. B. Shrestha, F. T.
Sommer, and M. Davies, “Efficient neuromorphic signal processing with
loihi 2,” in 2021 IEEE Workshop on Signal Processing Systems (SiPS).
IEEE, 2021, pp. 254-259.

[6] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652-665, 2014.

[71 S. Hoppner, Y. Yan, A. Dixius, S. Scholze, J. Partzsch, M. Stolba,
F. Kelber, B. Vogginger, F. Neumirker, G. Ellguth et al., “The spin-
naker 2 processing element architecture for hybrid digital neuromorphic
computing,” arXiv preprint arXiv:2103.08392, 2021.

[8] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou,
Z. Wu, W. He et al., “Towards artificial general intelligence with hybrid
tianjic chip architecture,” Nature, vol. 572, no. 7767, pp. 106-111, 2019.

[9] M. V. DeBole, B. Taba, A. Amir, F. Akopyan, A. Andreopoulos, W. P.

Risk, J. Kusnitz, C. O. Otero, T. K. Nayak, R. Appuswamy et al.,

“Truenorth: Accelerating from zero to 64 million neurons in 10 years,”

Computer, vol. 52, no. 5, pp. 20-29, 2019.

C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber, Y. Strad-

mann, J. Weis, A. Leibfried, E. Miiller, and J. Schemmel, “The

brainscales-2 accelerated neuromorphic system with hybrid plasticity,”

Frontiers in Neuroscience, vol. 16, p. 795876, 2022.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

(35]

13

X. Liu, W. Wen, X. Qian, H. Li, and Y. Chen, “Neu-noc: A high-efficient
interconnection network for accelerated neuromorphic systems,” in 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2018, pp. 141-146.

C.-K. Lin, A. Wild, G. N. Chinya, T.-H. Lin, M. Davies, and H. Wang,
“Mapping spiking neural networks onto a manycore neuromorphic
architecture,” ACM SIGPLAN Notices, vol. 53, no. 4, pp. 78-89, 2018.
Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen, “Neu-
trams: Neural network transformation and co-design under neuromorphic
hardware constraints,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2016, pp. 1-13.

F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber, “A
hierachical configuration system for a massively parallel neural hardware
platform,” in Proceedings of the 9th conference on Computing Frontiers,
2012, pp. 183-192.

S. Li, S. Guo, L. Zhang, Z. Kang, S. Wang, W. Shi, L. Wang, and W. Xu,
“Sneap: A fast and efficient toolchain for mapping large-scale spiking
neural network onto noc-based neuromorphic platform,” in Proceedings
of the 2020 on Great Lakes Symposium on VLSI, 2020, pp. 9-14.

B. Han and K. Roy, “Deep spiking neural network: Energy efficiency
through time based coding,” in European conference on computer vision.
Springer, 2020, pp. 388—404.

X. Du, M. Wang, Z. Lu, Q. Duan, Y. Liu, J. Feng, and H. Wang, “Hrcm:
A hierarchical regularizing mechanism for sparse and imbalanced com-
munication in whole human brain simulations,” IEEE Transactions on
Parallel and Distributed Systems, 2024.

S. Song, H. Chong, A. Balaji, A. Das, J. Shackleford, and N. Kandasamy,
“Dfsynthesizer: Dataflow-based synthesis of spiking neural networks to
neuromorphic hardware,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 21, no. 3, pp. 1-35, 2022.

J. Xue, L. Xie, F. Chen, L. Wu, Q. Tian, Y. Zhou, R. Ying, and P. Liu,
“Edgemap: an optimized mapping toolchain for spiking neural network
in edge computing,” Sensors, vol. 23, no. 14, p. 6548, 2023.

A. Balaji, A. Das, Y. Wu, K. Huynh, F. G. Dell’Anna, G. Indiveri, J. L.
Krichmar, N. D. Dutt, S. Schaafsma, and F. Catthoor, “Mapping spiking
neural networks to neuromorphic hardware,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 76-86, 2019.
S. Song, M. L. Varshika, A. Das, and N. Kandasamy, “A design
flow for mapping spiking neural networks to many-core neuromorphic
hardware,” in 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 2021, pp. 1-9.

Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen, “Neu-
trams: Neural network transformation and co-design under neuromorphic
hardware constraints,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1-13.

Y. Hu, L. Deng, Y. Wu, M. Yao, and G. Li, “Advancing spiking neural
networks toward deep residual learning,” IEEE Transactions on Neural
Networks and Learning Systems, 2024.

Z. Huang, X. Shi, Z. Hao, T. Bu, J. Ding, Z. Yu, and T. Huang, “Towards
high-performance spiking transformers from ann to snn conversion,” in
Proceedings of the 32nd ACM International Conference on Multimedia,
2024, pp. 10688-10697.

K. You, Z. Xu, C. Nie, Z. Deng, Q. Guo, X. Wang, and Z. He, “Spikezip-
tf: conversion is all you need for transformer-based snn,” in Proceedings
of the 41st International Conference on Machine Learning, 2024, pp.
57367-57383.

T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang, “Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural
networks,” arXiv preprint arXiv:2303.04347, 2023.

C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proceedings
of the 7th ACM international conference on Web search and data mining,
2014, pp. 333-342.

Y. Akhremtsev, P. Sanders, and C. Schulz, “High-quality shared-memory
graph partitioning,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 11, pp. 2710-2722, 2020.

L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a billion-
node graph,” in 2014 IEEE 30th International Conference on Data
Engineering. 1EEE, 2014, pp. 568-579.

F. Bourse, M. Lelarge, and M. Vojnovic, “Balanced graph edge parti-
tion,” in Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2014, pp. 1456-1465.

I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2012, pp. 1222—
1230.

G. Karypis and V. Kumar, “Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1997.

W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning
of graphs,” IBM Journal of Research and Development, vol. 17, no. 5,
pp. 420425, 1973.

M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering a scalable high
quality graph partitioner,” in 2010 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS). 1EEE, 2010, pp. 1-12.
S. Gong, Y. Zhang, and G. Yu, “Hbp: Hotness balanced partition for pri-
oritized iterative graph computations,” in 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1EEE, 2020, pp. 1942-1945.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:39:40 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

(541

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3648616

C. Martella, D. Logothetis, A. Loukas, and G. Siganos, “Spinner: Scal-
able graph partitioning in the cloud,” in 2017 IEEE 33rd international
conference on data engineering (ICDE). leee, 2017, pp. 1083—-1094.

W. Fan, M. Liu, P. Lu, and Q. Yin, “Graph algorithms with partition
transparency,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 2, pp. 1554-1566, 2021.

G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme
for irregular graphs,” in Proceedings of the 1996 ACM/IEEE Conference
on Supercomputing, 1996, pp. 35—es.

, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM Journal on scientific Computing, vol. 20, no. 1,
pp. 359-392, 1998.

0. Jin, Q. Xing, Y. Li, S. Deng, S. He, and G. Pan, “Mapping very
large scale spiking neuron network to neuromorphic hardware,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2023, pp. 419-432.

M. Bader, Space-filling curves: an introduction with applications in
scientific computing. Springer Science & Business Media, 2012, vol. 9.
A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd,
2017.

C. Munien, S. Mahabeer, E. Dzitiro, S. Singh, S. Zungu, and A. E.-
S. Ezugwu, “Metaheuristic approaches for one-dimensional bin packing
problem: A comparative performance study,” IEEE Access, vol. 8, pp.
227 438-227465, 2020.

C. Munien and A. E. Ezugwu, “Metaheuristic algorithms for one-
dimensional bin-packing problems: A survey of recent advances and
applications,” Journal of Intelligent Systems, vol. 30, no. 1, pp. 636—
663, 2021.

B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in Neuroscience, vol. 11,
p. 682, 2017.

J. Sawada, F. Akopyan, A. S. Cassidy, B. Taba, M. V. Debole, P. Datta,
R. Alvarez-Icaza, A. Amir, J. V. Arthur, A. Andreopoulos et al.,
“Truenorth ecosystem for brain-inspired computing: scalable systems,
software, and applications,” in SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1EEE, 2016, pp. 130-141.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

J.-J. Lee, W. Zhang, and P. Li, “Parallel time batching: Systolic-
array acceleration of sparse spiking neural computation,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 1EEE, 2022, pp. 317-330.

C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber,
Y. Stradmann, J. Weis, A. Leibfried, E. Miiller, and J. Schemmel,
“The brainscales-2 accelerated neuromorphic system with hybrid
plasticity,” CoRR, vol. abs/2201.11063, 2022. [Online]. Available:
https://arxiv.org/abs/2201.11063

M. Rizk, K. J. Martin, and J.-P. Diguet, “Run-time remapping algo-
rithm of dataflow actors on noc-based heterogeneous mpsocs,” [EEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 12, pp.
3959-3976, 2022.

X. Zhao, D. Kaeli, Z. Wang, L. Eeckhout et al., “Intra-cluster coalescing
and distributed-block scheduling to reduce gpu noc pressure,” leee
Transactions on Computers, vol. 68, no. 7, pp. 1064-1076, 2019.

K. H. Kim, R. Boyapati, J. Huang, Y. Jin, K. H. Yum, and E. J. Kim,
“Packet coalescing exploiting data redundancy in gpgpu architectures,”
in Proceedings of the International Conference on Supercomputing,
2017, pp. 1-10.

J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski,
T. Mudge, and S. Mahlke, “Warppool: Sharing requests with inter-
warp coalescing for throughput processors,” in Proceedings of the 48th
International Symposium on Microarchitecture, 2015, pp. 433-444.

D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,”
in 25 years of the international symposia on Computer architecture
(selected papers), 1998, pp. 195-201.

Qinghui Xing is currently pursuing a PhD degree
in School of Computer Science and Technology,
Zhejiang University. His research interests focus on
neuromorphic computing and computer architecture.

Ouwen Jin is currently a doctoral student at the
College of Computer Science and Technology, Zhe-
jiang University. His research interests include brain-
inspired computing and neuromorphic computing
hardware architectures. His work focuses on opti-
mizing the compilation, deployment, and execution
efficiency of spiking neural networks on neuromor-
phic hardware. He has published as the first author
at ASPLOS.

ed licensed use limited to: Zhejiang Lab. Downloaded on January.04,202 0
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

Zhuo Chen is currently a Ph.D. student in the
School of Computer Science at Zhejiang University.
His research focuses on neuromorphic computing
systems, with particular emphasis on the design,
implementation, and application of neuromorphic
chips. His work aims to bridge the gap between
biological neural processing and artificial intelli-
gence hardware through brain-inspired computing
architectures.

Xin Du is an Assistant Professor at School of
Software Technology, Zhejiang University, China.
He received a Ph.D. computer science degree from
Fudan University in 2024. His research interests
include service computing, distributed systems, and
brain-inspired computing. He has published several
papers in flagship conferences and journals, includ-
ing IEEE ICWS, the IEEE Transactions on Parallel
and Distributed Systems, etc. He has received the
Best Student Paper Award of IEEE ICWS 2020 and
IEEE ICWS 2023.

Ming Zhang is a software engineer with College of
Computer Science and Technology, Zhejiang Univer-
sity, China. He received his Ph.D. in computer sci-
ence from Zhejiang University in 2019. His research
interests focus on building basic software tools for
neuromorphic computers.

Shuiguang Deng (Senior Member, IEEE) received
the B.S. and PhD degrees in computer science
from Zhejiang University, China, in 2002 and 2007,
respectively. He is currently a full professor at
the College of Computer Science and Technology,
Zhejiang University. He previously worked with the
Massachusetts Institute of Technology in 2014 and
Stanford University in 2015 as a visiting scholar. His
research interests include edge computing, service
computing, cloud computing, and business process
management. He serves for the journal IEEE Trans-
actions on Services Computing, Knowledge and
Information Systems, Computing, and IET Cyber-Physical Systems: Theory
& Applications as an associate editor.

Shuibing He is a Professor with the College of
Computer Science and Technology at Zhejiang Uni-
versity (ZJU), China, where he leads the Intelligent
Storage and Computing Systems (ISCS) Laboratory.
He also serves as the Vice President of Zhejiang
Lab and the Deputy Director of the Zhejiang Key
Laboratory of Big Data Intelligent Computing. His
research interests include storage systems, intelli-
gent computing, computer architecture, and high-
performance computing. Dr. He serves as an Asso-
ciate Editor for the IEEE Transactions on Computers
(TC) and previously held the same role for the IEEE
Transactions on Parallel and Distributed Systems (TPDS) from 2018 to 2022.
Additionally, he has served as the Program Chair of NAS 2024, General Chair
of ChinaSys 2024, and a Program Committee Member for conferences such
as ICDCS, SRDS, ICPP, IPDPS, and CLUSTER.

Ying Li received the B.S., M.S., and Ph.D. de-
grees in computer science from Zhejiang University,
China, in 1994, 1997, and 2000, respectively. He
is currently an Associate Professor at the College
of Computer Science, Zhejiang University. He is
leading several research projects supported by the
National Natural Science Foundation of China. His
research interests include service computing, process
mining, and compiler technology.

Gang Pan received the B.Sc. and Ph.D. de-
grees in computer science from Zhejiang University,
Hangzhou, China, in 1998 and 2004, respectively.
He is currently a Professor at the College of Com-
puter Science and Technology, Zhejiang University.
He has published more than 100 refereed papers and
was a visiting scholar at the University of California,
Los Angeles, from 2007 to 2008. His research inter-
ests include pervasive computing, computer vision,
and pattern recognition.

40 UTC from IEEE Xplore. Restrictions apply.

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



