
6

On Service Migrations in the Cloud for Mobile Accesses:
A Distributed Approach

YANG WANG, Shenzhen Institutes of Advanced Technology
BHARADWAJ VEERAVALLI and CHEN-KHONG THAM, National University of Singapore
SHUIBING HE, Wuhan University
CHENGZHONG XU, Shenzhen Institutes of Advanced Technology

We study the problem of dynamically migrating a service in the cloud to satisfy an online sequence of
mobile batch-request demands in a cost-effective way. The service may have single or multiple replicas,
each running on a virtual machine. As the origin of mobile accesses frequently changes over time, this
problem is particularly important for time-bounded services to achieve enhanced Quality of Service and cost
effectiveness. Moving the service closer to the client locations not only reduces the service access latency but
also minimizes the network costs for service providers. However, these benefits are not free. The migration
comes at a cost of bulk-data transfer and service disruption, and hence, increasing the overall service costs.
To gain the benefits of service migration while minimizing the caused monetary costs, we propose an efficient
search-based algorithm Dmig to migrate a single server, and then extend it as a scalable algorithm, called
mDmig, to the multi-server situation, a more general case in the cloud. Both algorithms are fully distributed,
symmetric, and characterized by the effective use of historical access information to conduct virtual migration
so that the limitations of local search in the cost reduction can be overcome. To evaluate the algorithms,
we compared them with some existing algorithms and an off-line algorithm. Our simulation results showed
that the proposed algorithms exhibit better performance in service migration by adapting to the changes of
mobile access patterns in a cost-effective way.

CCS Concepts: � Networks → Cloud computing; � Computing methodologies → Distributed
algorithms;

Additional Key Words and Phrases: Cloud computing, dynamic service migration, mobile access, dynamic
virtual machine placement, virtual migration

ACM Reference Format:
Yang Wang, Bharadwaj Veeravalli, Chen-Khong Tham, Shuibing He, and Chengzhong Xu. 2017. On service
migrations in the cloud for mobile accesses: A distributed approach. ACM Trans. Auton. Adapt. Syst. 12, 2,
Article 6 (May 2017), 25 pages.
DOI: http://dx.doi.org/10.1145/3050438

This work was supported in part by NSFC under grant No. 61672513, No. 61572377, and No.
61603376, Science and Technology Planning Project of Guangdong Province (No. 2015B010129011 and No.
2016A030313183), Shenzhen Science and Technology Innovation (JSGG20160229200957727), and National
Key Research and Development Program of China (2016YFB1000204).
Authors’ addresses: Y. Wang and C. Xu, Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, No. 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, China, 518055; B. Veeravalli
and C.-K. Tham, Department of Electrical and Computer Engineering, Block E4, Level 5, Room 45, 4
Engineering Drive 3, University of Singapore, Singapore 117583; S. He (corresponding author), Rm B604,
Computer Building, School of Computer, Wuhan University, China 430072.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1556-4665/2017/05-ART6 $15.00
DOI: http://dx.doi.org/10.1145/3050438

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

http://dx.doi.org/10.1145/3050438
http://dx.doi.org/10.1145/3050438
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3050438&domain=pdf&date_stamp=2017-05-25

6:2 Y. Wang et al.

1. INTRODUCTION

Cloud computing, as an emerging driving force of the next innovation wave, has been
forming the basis for many novel applications across a wide range of fields. Among
these fields, the mobile computing, by exploiting the virtue of cloud platforms, is en-
abling a new generation of services for mobile users. These services are, in general,
hard, if not impossible, to achieve using traditional technologies due to the intrinsic
characteristics of large-scale mobile accesses, which are typically sensitive to access
latency, and moreover, always changing with respect to the time and locations of the
mobile users. As such, providing network services without considering these factors
may substantially increase access delays, and much worse, impose a large amount of
network traffic, which may in turn cause service disruption. As a result, traditional
technologies, such as those used by Content Distribution Network (CDN) to fix services
in a set of carefully selected locations, are no longer cost-effective.

To mitigate this problem, migrating the service to some vantage locations in the
network that are close to the users could be an effective way in terms of the minimiza-
tion of access latency and, at the same time, the reduction of network costs for service
providers. A typical example to illustrate the migration benefits is a multi-player mo-
bile game (Figure 1), where a game server may migrate from Site A at 7:30am to Site
B at 9:30am, and finally to Site C at 11:15am (here sites refer to physical machines
located in the same or different data centers), depending on the changing locations of
the dominant access loads at different time frames (from 7:30am to 11:15am). Tradi-
tionally, there is no effective solution available to achieve such benefits. Fortunately,
by the virtue of virtualization technologies in the cloud, encapsulating the service in
a set of virtual machines and migrating them on-demand (aka Live Migration) in the
same, or across different, data centers is a promising way to deploy such a service with
the aforementioned benefits.

Although the wide-area live virtual machine (VM) migration, including server mem-
ory image and associated file systems, remains expensive to use because of the band-
width bottleneck, it is still feasible with some advanced technologies to minimize the
migration overhead [Bradford et al. 2007; Liu et al. 2009; Al-Kiswany et al. 2011;
Riteau et al. 2013; Lai et al. 2013]. For example, R. Bradford et al. [2007] showed that
when combining a block-level solution with pre-copying and write throttling strategies,
an entire running web server, including its local file system, can be migrated with
minimal disruption—3s in LAN and 68s over WAN. This impact was further reduced
in follow-up studies by exploiting different features of the migration [Liu et al. 2009;
Al-Kiswany et al. 2011; Riteau et al. 2013; Lai et al. 2013]. With these technologies,
several preliminary results have demonstrated the benefits of service migration over
virtual networks and autonomic networks [Bienkowski et al. 2010; Oikonomou and
Stavrakakis 2010]. However, the trade-off between the benefits and the costs (from the
monetary cost point of view) of the service migration in the cloud to facilitate mobile
accesses has not been thoroughly studied. Given the characteristics and prevalence
of cloud computing, this trade-off is particularly important for cloud service providers
(CSPs) to maximize their profits when deploying services in the cloud. In this article,
we investigate this problem and propose dynamic migration algorithms based on local
search techniques. The proposed algorithms can adapt to user access patterns by mi-
grating the service (hosted by virtual servers) in a cost-effective way, not only satisfying
the service demands but also minimizing the access costs.

To this end, we first propose an efficient distributed algorithm, called Dmig, where a
single virtual server that hosts the service is considered. The algorithm is fully symmet-
ric to allow network nodes to effectively collaborate with each other to migrate the ser-
vice in an efficient way. The efficiency of the algorithm is guaranteed by the virtue of the
fact that, except for some pathological cases (where O(n) messages are needed for n-node

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:3

Fig. 1. A mobile game server is migrated at different time frames from Site A (7:30am) to Site B (9:30am),
and finally to Site C (11:15am) to adapt to the mobile access patterns.

network), Dmig does not incur any global operation in the migration decision. Moreover,
it leverages a concept of virtual migration to overcome the limitation of one-hop local
search in the selection of migration targets. Compared with existing approaches, the
novelty of the proposed algorithm is to allow the service to move to the optimal target
node directly along the multi-hop path found by the virtual migration. We show how the
algorithm eventually migrates a virtual server to the optimal service node and remains
the server there as long as the access pattern is not significantly changed. Although
the single-server case is simple, it is not uncommon in practice and has been studied
in literature [Oikonomou and Stavrakakis 2010; Bienkowski et al. 2010; Arora et al.
2011b; Pantazopoulos et al. 2011] as a baseline before exploring more general cases.

We then extend the single-server results to a more general scenario, where the num-
ber of server replicas κ is greater than one. For this case, we propose a scalable multi-
server Dmig algorithm, denoted by mDmig, which deliberately allows each virtual
server to perform the Dmig algorithm independently. mDmig improves the algorithm
in Wang et al. [2013, 2015] where only a very limited number of servers are allowed to
migrate under a centralized control.

We validated our findings by conducting extensive simulation studies, where the
proposed algorithms, together with their variants, are compared with some existing
online and off-line algorithms under various access patterns and different network
topologies. Our simulation results showed that compared with the existing algorithms,
the proposed algorithms are more cost effectively adaptive to the changes of mobile
access patterns and exhibit better performance in service migration.

The remainder of this article is organized as follows. We review some related work in
Section 2 and formulate the service migration problem in Section 3. Then, we introduce
the proposed dynamic migration algorithm Dmig for single-server migration followed
by its extension mDmig to multi-server case in Section 4. We show the simulation
results in Section 5, and conclude the article in Section 6.

2. RELATED WORK

Service migration in different forms has been studied in a number of related areas, each
with similar or different goals [Chroboak et al. 1991; Oikonomou and Stavrakakis 2010;
Bienkowski et al. 2010; Pantazopoulos et al. 2011; Phan et al. 2012; Bienkowski et al.
2014]. A typical related problem is the service location problem (SLP) in transportation
and supply networks, which has inspired a broad range of research works. In this
problem, some vantage locations of service facilities need to be found in the network

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:4 Y. Wang et al.

so the (off-line) demands made at a subset of the nodes can be served with minimum
total distance cost [Farahani and Hekmatfar 2009].

There are two most common forms of SLP, namely κ-median problem [Jain and
Vazirani 2001] and facility location problem [Swamy and Kumar 2002], depending on
whether the number of facilities (i.e., κ) is given or the open cost for each facility is
pre-defined. Both problems are NP-hard [Farahani and Hekmatfar 2009] and have a
large number of variants in practice [Friggstad and Salavatipour 2011; Farahani et al.
2010; Görtz and Klose 2012], which are typically addressed by different approximation
or heuristic algorithms.

Among these variants and highly related to our problem is the mobile facility location
problem [Friggstad and Salavatipour 2011], where a rendezvous node for each client
(or demand) and some facility need to be selected in the network to conduct the service
so the total distances traveled by both the clients and the facilities are minimized.
Although they considered the movements of the servers (facilities) and achieved a
better 8-approximation algorithm, the problem is still static in nature, since the clients
are still pre-defined, each with a fixed start node. Our results hence can be viewed as
an extension to this problem, where the locations of the servers in a network can be
changed to adapt to time-varying demand patterns.

As for its dynamic nature, our problem is related to the classic κ-server problem
that allows κ mobile servers at some nodes of a graph to move on-site to serve request
sequence in an online fashion so the total moving distance of these servers is mini-
mized [Manasse et al. 1988; Chroboak et al. 1991]. Our problem is a variant of the
κ-server problem in that the mobile servers cannot only be accessed remotely, but they
can also be moved simultaneously for a batch request. In this sense, it is also related
to the dynamic servers problem [Charikar et al. 1998], first proposed and studied by
Charikar et al. [1998]. In this problem, the number of servers is not fixed beforehand,
instead, the algorithm has freedom to increase and decrease the number of servers
at will for the optimality. In contrast, the number of servers κ is pre-determined in
our problem, and on the other hand, we consider the remote services to online batch
requests, which is also different from the dynamic servers problem.

Service migration has been studied in the context of virtual networks (VNets) [Yu
et al. 2008; Chowdhury and Boutaba 2010] to minimize service access latency.
Bienkowski et al. [2010] presented a randomized online algorithm for a single-server
migration in an n-node network in a centralized way and advocated the competitive
analysis on the worst case of the algorithm. Their results, together with other exten-
sions and findings, were later summarized in Bienkowski et al. [2014]. Unlike their
research, our work concentrates on the distributed approach and its general perfor-
mance in cloud environments.

As in VNets, service migration is also studied in autonomic network environ-
ments [Dobson et al. 2006] as a self-managing mechanism to overcome the rapidly
growing complexity of networks. Oikonomou and Stavrakakis [2010] proposed a scal-
able algorithm for service migration in autonomic networks. By observing the differen-
tial demand traffic on each link between the node hosting the service and its opposite
neighbors, the algorithm performs a number of local searches to repeatedly find the
next one-hop migration target along the shortest-path tree to the optimal location.
Although this algorithm has certain merits for service migration, it suffers from slow
convergence due to the inefficient one-hop migration. Pantazopoulos et al. [2011] over-
come this downside in their most recent centrality-driven migration algorithm, named
cDSMA. However, this algorithm only targets a single server and, moreover, lacks the
notion of migration cost.

Although our algorithm for the single-server migration is still based on local search
techniques, it takes into account both the access costs and the migration costs, thereby
accelerating the migration process. Dmig attains this by exploiting a novel concept of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:5

virtual migration that could identify the target node by mimicking the service to the
incoming requests. On the other hand, unlike cDSMA, Dmig is fully symmetric with a
low message complexity of �(n).

In contrast to the above studies, which are not directly conducted in the cloud, Phan
et al. [2012] proposed a framework, called Green Monster, to leverage dynamic ser-
vice migration across internet data centers (IDCs) for energy efficiency in the cloud
computing. A similar effort was made by Wang et al. [2013], who presented a decen-
tralized approach to virtual machine migration inside data centers for energy saving
while maintaining the quality of service. The major difference between our results
with these two studies is that we focus on the service migration strategies for total
monetary cost minimization for CSPs, instead of developing a new migration mecha-
nism. Although our problem and theirs are orthogonal at the first sight, they could be
connected inherently as the monetary cost could also be used to measure the energy
consumption as well. However, this extension is still an open problem to our algorithm.

Wang et al. [2015] once studied the co-migration service problem in the cloud where κ
virtual servers are coordinately migrated together via a centralized control to minimize
the total service cost. However, the co-migration algorithm is complicated and also
suffers from some limitation on the number of servers κ (i.e., κ ≤ O(log n

log(1+�)), where �

is the maximum node degree). Our proposed algorithm is fully distributed, addressing
all these issues by taking simplicity and scalability as a goal.

A more comprehensive study on virtual machine migration in cloud computing en-
vironments with respect to the benefits, challenges, and approaches can be found in a
recent work by Boutaba et al. [2014].

3. SERVICE MIGRATION MODEL

We consider an arbitrary n-node network G(V, E) as a service infrastructure, where
the provided service has κ ≥ 1 replicas, each running on a VM that is hosted by a
compute node. The set of virtual machines consist of a configuration, denoted by L,
which is accessed by a sequence of batch requests σ = σ1σ2 · · · σm issued from a set
of external machines (i.e., mobile terminals). The requests arrive in an online fashion
and are served by triggering the migration of the virtual servers in L. As a result, the
subset of the server locations in the network could be frequently changed over time.
We denote L at time ti as Li.

Charging Model. A request is routed to the service over a wireless link, first to enter
the network via an access point and then based on some (overlay) routing algorithm
(e.g., the shortest-path-based routing) to reach the service. In this model, we assume
the (wireless) connection cost is μ, and the transfer cost between a pair of nodes u and
v is Cuv. According to the charging model adopted by most current cloud infrastructure
services, it is reasonable to assume that both types of the costs are available from the
infrastructure service providers (ISPs) to the overlaying CSPs.

Access Cost. In our model, a batch request σi is denoted by a set σi = ∪ jσi j , where σi j
is a sub-request of σi sent to the network via access point aj at time ti. Clearly, to satisfy
σi, each sub-request r ∈ σi will be eventually routed to a certain h ∈ Li. This is typically
achieved by the underlying routing function determined by ISPs. As a consequence,
the total access cost of batch request σi can be simply written as

Costacc(L, σi) = |σi|μ +
∑
r∈σi

Carφ(r), φ(r) ∈ L, (1)

where ar is request r’s nearest access point and φ(r) is r’s service node determined by
the (overlay) routing function φ(.), given configuration L. In this definition, |σi|μ is the
total cost of σi to connect its nearby access points and

∑
r∈σi

Carφ(r) define the cost for

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:6 Y. Wang et al.

σi to access the service replicas from the access points along the paths determined by
φ(.). Note that in this formulation, we implicitly assume that the size of requests is so
small that the network bandwidth is never the bottleneck, rather, the link latency is
the issue.

Migration Cost. In contrast to the requests, which are rather light-weight, the traffic
volume of migrating servers usually cannot be neglected due to the large size of server
states. Unlike the access cost, which is dominated by the access latency, the migration
cost Costmig of a virtual server depends a great deal upon the server size and the
available bandwidth on the migration path. Therefore, we equip each node v with a
migration cost set βv = {βvu|u ∈ N (v)} (βvv = 0) to reflect the server migration overhead
from v to a corresponding target u, u ∈ N (v), where N (v) represents the neighbor set of
v. Again, βv is also given by ISPs in advance as local knowledge for each node v in the
network.

To minimize the migration cost, we need to identify a matching function π that can
figure out the migration target node in Li for each server in Li−1. To this end, we denote
Li−1 = {u1, u2, . . . , uκ} and Li = {v1, v2, . . . , vκ} and have

Costmig(Li−1,Li) = min
π

⎧⎨
⎩

∑
uj∈Li−1

βujvπ(j)

⎫⎬
⎭ , (2)

where π is a permutation of {1, 2, . . . , κ}, while Costmig(Li−1,Li) is the minimum cost to
transfer Li−1 to Li.

Migration Goal. Given Cost(L0) = 0, for a sequence of batch requests σ = σ1σ2 · · · σm,
the goal of the service migration is to determine L1,L2, . . . ,Lt to minimize the total
service cost defined as

Cost(Li) = Cost(Li−1) + Costacc(Li−1, σi) + Costmig(Li−1,Li). (3)

Note that in this model, to emphasize the network cost and simplify the discussion,
we do not consider the workloads of the target hosts as well as their runtime cost
for the service. Instead, we assume the target hosts are always available and have
equal runtime cost rate. These factors, although important to determine the service
migration, do not change the nature of the problem and can be easily processed without
impact on our proposed algorithms.

4. DYNAMIC MIGRATION

In this section, we present our dynamic migration algorithms to service an online
request sequence. We first consider the single-server migration and then extend it to
the multi-server case. The frequently used symbols are summarized in Table I.

4.1. Single Server Migration

We concern ourselves with a single-server migration (i.e., κ = 1) and introduce a
distributed migration algorithm, called Dmig. We first overview Dmig by defining some
concepts and data structures, then introducing the basic idea, and finally describing
the algorithm in a more formal way.

4.1.1. Some Concepts and Definitions. Given a batch-request σi and a server node v (the
server is located at node v) at time ti, the concepts used in the algorithm are defined in
the following descriptions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:7

Table I. Notation Frequently Used in the Model and Algorithm

Symbol Meaning

n the number of nodes
δ the minimum node degree
� the maximum node degree
ω ω = �/δ

Diam(G) the diameter of graph G
m the number of batch requests
Cuv transmission cost between node u and v

Cv Cv = {Cuv |∀u ∈ V as a connect point}
λ λ = maxu,v∈V {Cuv}
βuv migration cost between node u and v

βv βv = {βvu|u ∈ N (v)}
β β = maxu,v∈V {βuv}
β ′ β ′ = minu,v∈V {βuv}
γ γ = β/β ′

μ wireless link cost
α migration parameter ≥ 1
κ the number of server replicas
σ the given request sequence σ = σ1σ2 · · · σm.
σE the total served sequence in epoch E
σi the ith request σi = ∪ j{(aij , σi j)}
aij the access point of the jth request in σi

ar the access point of request r
σi j the jth request in σi

Li the configuration at time i
N (v) neighbor nodes of node v

w(v) access counter at node v

d(v) profile recorder at node v

q(v) the set of visited nodes in Dmig at node v

c(a) the number of requests (not batch) accepted
by access point a, which is recorded in d(.)

φ(r) r’s service node determined by φ, the routing function

Local Knowledge. For the sake of simple presentation, we assume the following infor-
mation is available to node v as its local knowledge1: (1) Local Space N (v), which is de-
fined as node v’s one-hop neighbors, (2) Access Cost Cv = {Cuv|∀u ∈ V as an access point},
and (3) Migration Cost βv = {βvu|u ∈ N (v)}. Both Cv and βv are pre-defined and pro-
vided by ISPs or computed implicitly by the algorithm. For example, if each hop has a
constant cost, Cv can be computed by exploiting the IP source route information from
v to the access point (or vice versa) for each request.

Epoch & Phase. The algorithm operates on a per-epoch basis along the time-line.
The time-line is further divided into a sequence of phases. Each phase (except for the
initial one) defines a migration followed by a period of time, called time stage, within
which no migration is triggered to serve a sub-sequence of requests. As such, a phase is
identified by the server node called pivot node, denoted by p-node, which is created at
the beginning of the phase. The epoch, which is composed of one or multiple phases, is

1This information may depend on the parameters, such as the employed routing strategy, available band-
width, and so on, which may not always be available from ISPs. However, in this article, we assume it is still
desired for the ISPs to consider to disclose some infrastructure information in a certain extent as a trade-off
to implement some new profitable application.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:8 Y. Wang et al.

Fig. 2. The relationships between epochs, phases, and time stages in our algorithms.

delimited at certain time instance, when some properties are held by the neighbors of
the p-node (discussed later). An example of the relationships between epochs, phases,
and time stages is shown in Figure 2, where an epoch consists of three phases, Phase1
spans across time stage [ti−1, ti] without migration (the initial phase in an epoch).
Whereas in Phase2 and Phase3 a migration is followed by a time stage.

Data Structure. For node v, the algorithm maintains two main data structures for
each node in N (v) on a per-epoch basis. One is an Access Counter (AC), a scalar used to
monitor and accumulate the access costs in an epoch. The other is a Profile Recorder
(PR), which is a vector indexed by the request’s access point to record the number of
requests from each access point in the same epoch. During the service, the algorithm
progressively accumulates and records (or samples) for the p-node v the access costs
and the request profiles in the AC and PR at p-node, called p-counter and p-recorder,
respectively.

4.1.2. Basic Idea. The essence of the algorithm is to leverage the rent-or-buy paradigm
in the ski rental problem2 to determine service migration and take advantage of a
short historical access information to prune the local space for efficiently finding the
migration target with a reduced service cost.

Movement Cost. The movement cost (i.e., the buy cost in the ski rental problem) is
defined as the product of a migration parameter α ≥ 1 and the maximum migration
cost from the source p-node v to a target neighbor in N (v), that is,

Costmov(v) = α · max
u∈N (v)

{βvu}. (4)

The rationale behind parameter α is that the service movement cost should not merely
rely upon the maximum migration cost from v but also weight on its location in the
network. For example, given the same maximum migration cost, the service located at a
hub node (high-degree node) should be more resilient against migration than those non-
hub nodes. Therefore, we need a metric to measure the quality of nodes that can host
the service. To this end, we select the degree centrality of node as migration parameter
α to control the movement cost.3 As a side effect, this parameter can also improve the
stableness of the algorithm, which could prevent the algorithm from making ping-pang
movements.

In contrast, the historical access information is gathered by the current phase during
the service and used in the subsequent one or more phases to facilitate the server
migrations with the total service cost reduction as a goal.

2Rent-or-buy paradigm is the name given to a class of problems in which there is a choice between continuing
to pay a repeating cost or paying a one-time cost, which eliminates or reduces the repeating cost.
3Intuitively, the closeness centrality is better than the degree centrality to define the parameter, since it is
closest to all others in terms of shortest paths. However, the node degree, as local knowledge, is much easier
to obtain, compared to the closeness centrality.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:9

How Algorithm Works. In each epoch the algorithm at p-node v (called the pivot al-
gorithm for short) first leverages the rent-or-buy paradigm to determine the migration
by comparing the access cost in its p-counter and the computed movement cost. If the
access cost is less than the movement cost, then the p-node will be fixed at v to con-
tinually service the incoming requests until the value is greater than the movement
cost. Otherwise, the pivot algorithm broadcasts its PR (received from the last pivot) to
all its neighbor nodes in N (v). Each neighbor node will overwrite its own PR and mimic
the service to the requests in its PR by accumulating the costs in its AC with its local
information. After that, each neighbor node sends back its AC to node v, where the
pivot algorithm compares the value of each neighbor’s AC with that of the p-counter.
Depending on the outcomes, two cases are distinguished to migrate the server, either
virtually or physically.

(a) Virtual Migration: If there are some neighbors with AC values less than that of
the p-counter, then the algorithm at pivot will randomly select a migration target from
those with the minimum AC as a new p-node for the next phase and relay the p-recorder
PR to the new phase. We call such a migration a virtual migration, since in this case we
can repeat the same algorithm at the new target for the next, more preferable, location,
rendering the new target to be only a temporary stop without needing to migrate the
server physically.

(b) Physical Migration: Otherwise, if all the neighbors of the virtual p-node have
the AC values greater than the virtual p-counter, the algorithm marks the end of the
current epoch. In this case, the server will be physically moved to the current virtual
node directly. In this situation, all the data structures will be reset for a new epoch,
and the algorithm will be run from scratch as well. Additionally, when the value of the
(virtual) p-counter of a node u is less than its movement cost Costmov(u), it signifies the
completion of a sequence of virtual phases. At this time, the algorithm will open up a
new physical phase by informing the original p-node v to physically migrate the server
to the new virtual p-node u in a direct way. Note that in this case, the data structures
at u are not reset.

4.1.3. Dmig: A Distributed Migration Algorithm. The Dmig algorithm is fully symmetric,
allowing each node to run the same algorithm. However, depending on the role of
each node, either hosting the server (i.e., p-node) or not, the node will be performing
different tasks in the algorithm. For each node v, we use w(v) and d(v) to represent its
AC and PR, respectively. To facilitate the computation, we also define another variable
q(v) to collect the visited nodes in the algorithm. With these data structures and the
local knowledge defined in Section 4.1.1, we design the Dmig algorithm in Figure 3.
Since the p-node address can be piggybacked by each message, we assume it is readily
available to each node, not showing in each message.

Given the understanding of its basic idea, it is not difficult to follow the algorithm,
which runs in an endless loop and continually accepts seven types of messages: Start,
Request, VirtReq, AC, VirtMig, PhyMig, and Server, each corresponding to a
processing state. Therefore, the algorithm can be viewed as a finite-state machine.

Dmig initializes w(v), d(v), and q(v) of each node v (Start) on a per-epoch basis in
favor of migration as the p-counter would be increased quickly to exceed the movement
cost. Of course, an alternative way is to reset the algorithm on a per-phase basis.
However, this strategy bias toward a stationary server since compare to the on-per-
epoch-basis strategy, it becomes harder for p-counter to accumulate sufficient access
costs for server migration due to the high-frequency reset to the algorithm.

Each node v can receive either an incoming request σi or a batch of virtual requests
that have been processed at source node. In the former case (Request), σi is gathered
in d(v) by increasing the counter values indexed by ar for each r ∈ σi (i.e., the semantics

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:10 Y. Wang et al.

Fig. 3. Dmig running on node v.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:11

Fig. 4. A working example of Dmig. For each node, its AC and PR are also marked. The algorithm makes
three virtual migrations, and the last one is turned into a physical migration because of a phase termination.

of ⊕ operation) and the access cost of σi is accumulated to w(v). This process is repeated
to serve the subsequent requests until w(v) ≥ Costmov(v) when according to the rent-or-
buy paradigm, the server s at v should be migrated. Then, the algorithm tries to find
a virtual target from its neighbor nodes by sending message VirtReq(d(v)) to all the
nodes u ∈ N (v) ∧ v /∈ q(v) to gather their AC values in processing d(v).

In contrast, the later case (VirtReq) is to process the received virtual sequence by
aggregating the weighted access cost c(a) · Cav for each a ∈ d(v) when server s is not at
v, and the resulted AC is returned to the source node as the reply to send(u,VirtReq)
in State Request.

Consequently, node v tries to gather all the ACs from its neighbor nodes (AC) and
remember all the newly visited nodes. After that, it computes the node set with the
minimum AC and randomly selects one of them as the next virtual target to move if
its own w(v) ≥ minu∈N (v){ACu}. Finally, it notifies the next target by sending a VirtMig
message, which includes all the so-far visited nodes. Otherwise, for node v if all its
neighbors have ACs greater than its w(v), the virtual migration process hits a wall to
end up the current epoch. In this situation, a physical migration should be performed
by sending a PhyMig message and a new epoch should be started.

When node v receives message VirtMig, it indicates that it has been selected by
the source node as a virtual target (VirtMig). Therefore, its w(v) and d(v) have been
computed in the last round. If w(v) < Costmov(v), then the migration condition is not
satisfied, and the current phase should be terminated by requiring a physical migration
via message PhyMig from the p-node. Otherwise, the algorithm further considers those
unvisited neighbor nodes of the virtual target by sending message VirtReq. Thus,
this process VirtReq→AC→VirtMig can be repeated along the subsequent nodes until
a phase or an epoch is terminated when a physical server migration is performed
directly from the p-node.

Only p-node can react to message PhyMig as it hosts the physical sever (PhyMig). It
gets the target node first and then sends a Server message to prepare it for receiving
the server. The server is physically sent by SendSrv.

The process of Server message is relatively simple (Server). The node is first set
itself as the pivot node and then receives the server by ReceiveSrv.

4.1.4. A Working Example of Dmig. A working example of the Dmig algorithm is shown
in Figure 4, where the current phase is marked by the pivot configuration vi. The al-
gorithm serves σi and then makes migration a decision. In the example, the algorithm
finds the value of the pivot counter (138 after serving a, b, and c) is greater than the
movement cost (100) and in the meantime v′

i has the minimum access cost (120) to the
requests (abc), which is less than the pivot counter (138). Then a virtual migration is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:12 Y. Wang et al.

made from vi to v′
i, a new virtual phase starts marked by vi+1 (i.e., v′

i). As the virtual
pivot recorder of vi has been sent to vi+1 (i.e., abc), the same virtual migration process
can be repeated at vi+1 (as 120 > 110) to steer toward the next virtual target vi+2 with
the minimum access cost (100) from which to the final virtual target vi+3, where this
virtual migration process cannot make any progress due to either the phase termina-
tion or the epoch termination (in our case, it’s phase termination as 50 < 66). In this
situation, the algorithm at vi+3 turns the virtual phase into an actual one by directly
migrating the server from vi to vi+3, thereby serving the next request d (PR=abcd).
From this example, one can see that the Dmig algorithm can adapt to access patterns
in a cost-effective way by allowing servers to be directly moved to a preferable location
rather than the stepwise movements as in Oikonomou and Stavrakakis [2010].

4.1.5. Remark on Dmig.

Complexities and Properties. Since for each node v, d(v) is indexed by the access
points, we have |d(v)| ≤ n. The message and time complexities of the algorithm thus
largely depend on the length of the virtual migration path. For the message complexity,
we have the following results:

THEOREM 4.1. Given a static n-node network, the message complexity of Dmig is �(n).

PROOF. As Dmig is crafted to allow each node connected to the virtual migration path
to be only visited once for computing its AC, no circle could be constructed by the message
links (i.e., the links with message transmission on them) in this process. Let’s consider
an ideal case that β = 0, and each node has at least one neighbor for the next moving
step as well. We can observe that the total message links at most construct a spanning
tree of the network, and the length of the virtual migration path is the height of the
tree. Suppose the height of the tree has a length m, according to Dmig, there are exactly
three messages (VirtReq, AC, and VirtMig) on each link of the path and two message
on each of the other links (VirtReq, AC). The total number of the messages is thus at
most 2(n + m) = O(n), which clearly also bounds the actual number of the messages.

Now, we consider a special case that all n + 1 nodes in the network are arranged in
order on a line, and the server is located at node n, while all the requests are constantly
made at the other end node 0. Given μ = 1 and Cuv = the number of links between u
and v. If βuv is defined as {

βn(n−1) = n2 i = 0;
β(n−i)(n−i−1) < n(n − i) 0 < i < n,

(5)

according to the algorithm, then it is not difficult to show that the server will be
eventually moved from one end of the line to the other end along the virtual migration
path if the migration cost is not a barrier. Therefore, the length of this path is at least
n. Overall, we have the message complexity of �(n).

Based on Theorem 4.1, the time complexity of the Dmig algorithm can be expressed
by the following theorem,

THEOREM 4.2. Given a static network with fixed rates of μ and βuv for any neighbor
node u and v, the time complexity of Dmig in migration decision is O(ωn), here ω = �

δ
,

� and δ represent the maximum and minimum node-degrees of network graph G(V, E),
respectively.

PROOF. With Lemma 4.1, we can easily show that the time complexity of the algorithm
is only determined by computing the virtual migration path whose length is bounded
by Diam(G), and each node on the path will conduct at most O(�) operations to its

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:13

Fig. 5. Dmig refinement, searching all paths from the eligible neighbor nodes. Red nodes are terminal nodes
(phase or epoch), green nodes are eligible nodes for the next migration step, and pink nodes are ineligible.

neighbors.4 Therefore, the total complexity is at most O(� · Diam(G)). According to
Moon’s results [Moon 1965], Diam(G) ≤ 3(n−1)

δ−1 −3. We have the conclusion that the time
complexity is upper bounded by O(�

δ
n) = O(ωn).

Additionally, we also have the following properties regarding the algorithm.

LEMMA 4.3. Given a tree-structured static network or a network with a unique shortest
path tree, Dmig will eventually migrate the server along the optimal virtual path to
the optimal location and remain there as long as the access pattern is not changed
significantly.

PROOF. According to the algorithm, when a new phase is created at time t by chang-
ing p-node v, there must exist a neighbor node in N (v) that has less AC value than
node v. In other words, Dmig will always migrate the server to the particular neighbor
of the p-node with less AC than is toward the optimal target node. This implies that
the algorithm will never be stuck by AC for creating new epochs unless there is no fur-
ther minimal neighbors (assuming there is no migration barrier due to the movement
cost). Since there is a unique shortest path tree and the AC values of the nodes along
the migration path are monontically decreased, the server will be eventually moved
to the optimal node and remain there as long as the access pattern is not changed
significantly.

Although Dmig will eventually reach this optimality, it does not necessarily mean that
migration paths of this algorithm are optimal, since the conducted virtual path might
not be the optimal path to the optimal location.

A Variant of Dmig. In the algorithm, if multiple neighbor nodes were eligible for the
next moving step, Dmig breaks the ties randomly, which might not eventually find a
better target node for physical migration. An alternative way is to recursively search for
the target node along all the possible paths starting from the eligible neighbor nodes.
We call this refined algorithm recursive Dmig(rDmig).

Figure 5 is an illustrative example where two neighbor nodes v2 and v3 of p-node
v0 have equal AC(130). rDmig first searches from v3 to v6 (AC=127), gets back to v0,
and then continues to search from v2 with the information gathered from the previous
paths till v5, where the search ends and returns back to v0. After gathering all the
candidate targets, the p-node can make a migration decision. In our case, v5 has less
AC and is better than v6 to be the next target.

4Note that checking if an element is in a set can be done within O(1) time.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:14 Y. Wang et al.

By observing this example, we can also show that, in theory, the message and time
complexity of this optimization is not increased if the algorithm can skip those visited
nodes in the search process as before. However, there are still some practical messages
overhead to trade off these benefits. We will evaluate the performance improvements
of this refinement in Section 5.

4.2. Multiple Server Migration

With the understanding of the single-server migration, we can extend this problem to a
more general case with κ sever replicas. There are two basic design choices, depending
on whether the inter-server coordination is considered or not. If the inter-server coordi-
nation is considered to optimize the whole migration, then the co-migration algorithm
would limit the scalability, because there could be a large amount of communication
among the servers to jointly make a migration decision. In contrast, the algorithm that
allows each server to perform the single-server algorithm independently would be very
simple and highly scalable, although some optimality is scarified. However, given the
service cost reduction of each independent server migration, we can still derive that
the multi-servers as a whole could reduce the total service cost after the migration.

With these considerations, we propose a fully distributed algorithm called mDmig
(short for multi-server Dmig), which simply allows the Dmig algorithm on each node
to independently handle its server migration. This algorithm not only overcomes the
limitation of the algorithm in Wang et al. [2015], where only a very limited number κ
of servers are allowed to migrate under a centralized control, but also ensures the total
cost reduction by the following theorem.

THEOREM 4.4. In a static network, given a sequence of batch requests σ = σ1σ2 · · · σm,
if mDmig changes configuration Li−1 to Li by server migrations, then Costacc(Li−1, σ) >
Costacc(Li, σ).

PROOF. Given a sequence of batch requests σ = σ1σ2 · · · σm, we consider its total access
costs of Li−1 and Li, where Li is derived from Li−1 by mDmig with server migrations. If
we denote the requests served by su ∈ Li−1 as Ru and the requests served by the same
server in Li as R′

u, 1 ≤ u ≤ κ, then for each server u, we have R′
u = Ru \ Au ∪ Bu, where

Au is those requests that are originally in Ru but now satisfied by other servers due
to the server migrations from Li−1 to Li. Similarly, Bu is those requests that originally
are not in Ru servers, but now are served by su. With these notions, we further have

κ∑
u=1

Costacc(R′
u) =

κ∑
u=1

Costacc(Ru \ Au ∪ Bu)

=
κ∑

u=1

Costacc(Ru) −
κ∑

u=1

(Costacc(Au) − Costacc(Bu)).

(6)

Since Au will be served by other servers with less costs than by su, and these
costs are added by serving Bu, we have

∑κ
u=1(Costacc(Au) − Costacc(Bu)) > 0 due to

∪κ
u=1 Au = ∪κ

u=1 Bu. Then
∑κ

u=1 Costacc(Li−1, σ) >
∑κ

u=1 Costacc(Li−1, σ) when considering
the service of σ .

Theorem 4.4 indicates that mDmig will reduce the overall access costs of the request
sequence by migrating the server replicas independently, as long as the access pattern
is not significantly changed.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:15

Table II. Profile of Different Network Topologies with
100 to 1000 Nodes Used in the Experiments

Size Prof. BA(3,3) Lattice ER(0.1) Tree

100 Dist 2.6 6.67 2.25 6.29
Deg 5.44 3.6 9.74 1.98

200 Dist 2.84 10.0 2.04 7.59
Deg 5.68 3.7 19.2 2.0

400 Dist 3.13 13.33 1.92 9.2
Deg 5.8 3.8 39.72 2.0

600 Dist 3.26 16.67 1.9 9.92
Deg 5.86 3.84 60.56 2.0

800 Dist 3.88 20.0 1.9 10.52
Deg 5.88 3.86 80.24 2.0

1000 Dist 3.44 23.33 1.9 10.92
Deg 5.9 3.86 100.38 2.0

5. SIMULATION RESULTS

We evaluate the proposed algorithms through extensive simulation-based studies. To
this end, we developed a simulator in Java to create network topologies, generate
access patterns, and implement the migration algorithms in this article. The purposes
of our evaluation are twofold: (1) to study the behaviour of the algorithms with respect
to various impact factors, and (2) to show the cost effectiveness of our algorithms in
service migrations compared to the selected reference algorithms.

5.1. Experimental Setup

5.1.1. Network Topology. We use networks with four typical topologies—Tree(n), Lat-
tice(w,h), Erodös-Rényi (ER(n,p)) random graph [Erdös and Rényi 1959], and Barabási-
Albert (BA(n,e)) graph [Barabási and Albert 1999]—to conduct simulation studies on
the performance of the algorithms, each network connecting 100 to 1000 nodes and
exhibiting different structural properties to represent a spectrum of communication
networks [Oikonomou and Stavrakakis 2010; Li et al. 1999; Al-Fares et al. 2008;
Pantazopoulos et al. 2011].

Both Tree and Lattice have strictly regular structures, allowing us to observe the
behaviours of the algorithms under some extreme yet predictable conditions. In con-
trast, ER and BA graphs are random graphs without enforcing any regular structure.
Both graphs are considered here as a complement to model general inter-networks that
could be used in inter-cloud connections.

The network profiles in these studies are shown in Table II, which summarizes the
average distances between pairs of nodes and the average degrees for each type of the
networks with different sizes.

As monetary cost is our primary concern, we do not explicitly model some properties
and features of the networks, such as the network background traffic, bandwidth capac-
ity, link latency, or CPU power. Instead, we assume these properties can be manifested
themselves in the charging models. Therefore, we can focus squarely on modeling the
request workloads and their access patterns.

5.1.2. Access Pattern. An access pattern is characterized by a sequence of online batch
requests distributed across the network along time axis, each being specified by a time
instance, a batch size, as well as distribution of access points and associated weights.
In our experiments, we refine three types of access patterns that are often studied in
literature [Pantazopoulos et al. 2011; Oikonomou and Stavrakakis 2010], each with
different merits to evaluate the migration algorithms.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:16 Y. Wang et al.

Uniform(p, q): To isolate the impact of the network topology, we first generate batch
requests at a particular time instance by following uniform distribution for both batch
size and request weight in the ranges of [1, p] and [1, q], respectively.

Zipf(p, ν, θ): To reflect the skewness among nodes (spatial skewness), we assume a
uniform batch size on [1, p] and a Zipf-like distribution among the nodes, characterized
by a parameter θ ≥ 1.0, to capture the amount of weight skew of each requesting node,
given the total number of requests ν.

Zone(p, ν, θ , κ): To model mobile access dynamics, we deliberately partition the net-
work graphs into different κ zones by clustering the nodes according to nodeIDs. The
nodes in different zones will make requests at the different time segments to mimic mo-
bile accesses. In each zone, we also follow the Zipf-like distribution as above. Therefore,
this pattern reflects both spatial skewness and temporal dynamics of the requests.

5.1.3. Charging Model. The charging model is defined and provided by underlying ISPs,
and exploited by ICPs to optimize their service provisioning. In our particular case, the
charging model includes the access model and the migration model. We assume that
each link of a pair of nodes has an equal cost rate, η, then the access cost between a
pair of nodes u and v can be defined as Cuv = ηD(u, v), where D(u, v) is the hop-based
length of the shortest path between u and v.

Although this model is not perfectly consistent with some existing models, such as
those adopted by Amazon where Cuv is a constant, it is still feasible and practical
in reality, especially for the services deployed in VPN-based private clouds. More im-
portantly, the model can reflect some Quality of Service requirements, for example,
the cost minimization always implies the reduction of request latency. On the other
hand, the charging model for the cloud service is still an active research area [Ruiz-
Agundez et al. 2011; Ma and Huang 2012; Woitaszek and Tufo 2010], which may likely
experience changing and adjusting over time.

As discussed in the migration model, the migration cost between any pair of neighbor
nodes u and v is given in advance by βuv. However, for any pair of non-neighbor nodes
u and v, any migration cost is feasible only if it is less than the total sum of the
stepwise costs. In our experiments, we assume it is determined by the maximum of
the migration costs along the path D(u, v), that is, βuv = maxi∈[u,...,v−1]{βi(i+1)}, since the
most expensive one is always a pragmatic concern in practice and considered in studies
for service migration [Bienkowski et al. 2010; Arora et al. 2011a].

In all experiments, we fix the link cost η = 2 and μ = 5, and we assume that the
migration cost between a pair of neighbor nodes is uniformly distributed.

5.1.4. Reference Algorithms. To fully evaluate the proposed algorithms, we list some
existing algorithms for comparison. The first five algorithms in Table III are compared
for single-server migration. Dmig and its variant Dmig′ are different, depending on
whether or not the virtual migration (VM) is employed, so are Dmig(α) and its vari-
ant Dmig′(α). Thus, by comparing these algorithms, we can measure the benefits of
the virtual migration. In both Dmig and Dmig′, we select node degree as α, but also
conduct a parameter sweep study on α for Dmig(α) and compare it with Dmig. Note
that given α = 0, Dmig′(α) can be simply viewed as an improved Migration Policy S
in Oikonomou and Stavrakakis [2010], where consecutive movements are performed
by only considering the one-hop neighbors each time. rDmig is the recursive Dmig,
the value of this optimization is also measured by comparing with Dmig and other
reference algorithms. In contrast, Migk is an extension of the algorithm in Bienkowski
et al. [2010] to handle the heterogeneous migration cost in a single server case, while
Migk′ is a variant of Migk to use β instead of β ′ to control the migration [Bienkowski
et al. 2010], where β = max(u,v)∈E{βuv} and β ′ = min(u,v)∈E{βuv}.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:17

Table III. Compared Algorithms in the Experiments. The Standard
Forms of the Proposed Algorithms are Marked

Algorithm Specification

Dmig∗ the standard Dmig in Section 4.1 where
the virtual migration (VM) is employed.

Dmig’ a variant of Dmig without the VM.
Dmig(α) the parameterized Dmig where α ∈ N.
Dmig’(α) the parameterized Dmig without the VM.
rDmig the recursive Dmig with the VM.
Migk an extended algorithm in Bienkowski et al. [2010] where β ′ =

min(u,v)∈E{βuv} is used to control migration.
Migk’ a variant of Migk using β instead of β ′ to

control migration where β = max(u,v)∈E{βuv}.
mDmig∗ the standard multi-server Dmig with VM.
DP the optimal off-line alg. in Wang et al. [2015].
SDP the sampling DP alg. in Wang et al. [2015].

For multiple server migration, due to the lack of well-accepted reference algorithms
in the literature, we measure the relative performance of mDmig with respect to some
off-line algorithms in terms of cost ratio, which are shown in the last two algorithms,
DP and SDP, proposed in Wang et al. [2015].

5.2. Results

In this section, we show, in various cases, how our proposed algorithms behave and
outperform the reference algorithms in service cost reduction. For the single-server
migration, the major performance metric is defined as the ratio of the total service cost
achieved by the compared algorithms over the cost achieved by the optimal off-line
dynamic programming (DP) algorithm. However, for the multiple-server migration,
the optimal solution is not feasible due to the configuration complexity. To address this
problem, we implement the SDP algorithm and adopt it as the yardstick to measure
the multi-server migration algorithms. The relative performance of SDP to the optimal
DP is measured based on a set of small-size networks. To facilitate the understanding
of the experimental results, other metrics are also defined in due course.

In the experiments, each data point in the graphs is averaged over five runs by
changing the random number seed in the simulator, and its standard deviation is also
computed.

5.2.1. Single-Server Migration. We study the behavior of Dmig for migrating a single
server with respect to the changes of network topology, size, as well as access pattern.
In addition, we also investigate the impact of migration parameter α on the service
cost ratios.

Network Profile. The first set of experiments is to study how the network topology
and size affect the performance of the Dmig algorithm. Figures 6(a)–6(c) show the
impact of the network topology on the cost ratio of the algorithm when the network
size is fixed as 100 nodes and the migration cost is uniformly changed from 0 to 2000.
For all the studied topologies, the performance of the algorithm on BA shows the best,
while on Lattice it is the worst. The performance on ER and Tree sits between. These
observations are consistent across all the examined access patterns.

The BA graph exhibits the power-law degree distribution and short average inter-
node distance (Table II). Thus, the server could migrate to a hub node (v) within a very
limited number of moves. On the other hand, the migration control threshold of the node
v, (i.e., deg(v) · max{βvu}) is relatively large. The server is thus highly resilient against

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:18 Y. Wang et al.

Fig. 6. Impact of network topology, size, and access pattern on the total service costs of Dmig.

the migration. We can verify this by observing the migration ratios of Dmig (i.e., # of
online moves/# of off-line moves) in Table IV. Since the optimal off-line algorithm only
incurs one move. The cost ratio of Dmig approaching to 1 exhibits a better performance.
Compared to BA, ER also has short average inter-node distances but does not exhibit
the power laws for the node degrees. Therefore, the migration ratio for the ER graph
is higher than that of the BA network, although its value is still low.

Unlike BA and ER, both Lattice and Tree have relatively large average inter-node dis-
tances and low average node degrees (Table II). Although they have these similarities,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:19

Table IV. Migration Ratios of Dmig with Respect to the Optimal Off-line Algorithm
(Uniform Pattern)

Migration Cost
Topology 0 400 800 1200 1600 2000

BA(3,3) 0.99±0 0±0 0±0 0±0 0±0 0±0
Lattice 1.0±0 2.79±0.17 5.48±1.25 15.84±3.16 1.62±0.20 1.29±0.34
ER(0.1) 0.99±0 0.14±0.03 0.02±0.01 0.02±0.01 0.05±0.04 0.11±0.03
Tree 0.99±0 2.22±0.45 0.72±0.46 0.05±0.03 1.9±0.92 0.09±0.05

their cost ratios are different (Figure 6). For Lattice, due to its relatively high node
degrees and long inter-node distances, the algorithm thus has more opportunities
to select from a large target space, which could incur certain inferior migrations
(Table IV), leading to the worst performance as well. In contrast, for Tree, these
migration opportunities are reduced due to its unique path between any pair of nodes
and thus result in a much better performance.

With each network size increasing from 100 to 1000, Figures 6(d)–6(f) show how the
performance of the algorithm changes under different access patterns when the migra-
tion cost is fixed at 1200. Except for Lattice, the performance of the algorithm on other
networks is nearly constant, independent of the network sizes. These observations are
not surprising. As shown in Table II, for all the networks other than Lattice, the av-
erage inter-node distances are relatively stable. In contrast, the distance is steadily
increased for the lattice network. Since we define the migration cost for Dmig as the
maximum one-hop migration cost along the path, the migration cost between a pair of
nodes will increase as length of the path increases.

Access Pattern. Figure 6 also compares the impact of the access pattern on the cost
ratios of Dmig across all the examined networks. For the uniform pattern, the benefits
of migration diminishes as the request weights are uniformly distributed among all
the uniformly selected nodes. Except for the lattice network, we can see from Table IV
that the ratios of server moves are quite small, allowing their performance curves to
asymptotically approach to the optimal off-line results. The lattice network is a little bit
difficult for the algorithm to achieve good results as we explained in the last paragraph.

Unlike the uniform pattern, both the Zipf and Zone-based patterns show some de-
grees of skewness in distribution of the request weights, rendering the migration to
be beneficial in minimizing the service costs. As the request nodes for each batch are
uniformly selected from the network, the Zipf pattern requires the algorithm to glob-
ally select vantage nodes for the migrations, which is usually difficult. In contrast, the
Zone-based pattern only requires us to select the migration target from the current
active zone unless the access pattern is changed to activate a different zone. As a re-
sult, Dmig has a slightly better performance for the Zone-based access pattern than
that for the Zipf pattern, which is generally expected, in reality, as both the spacial
skewness and temporal dynamics are commonplace. However, we should note that the
performance changes for both patterns are not always consistent across all the studied
networks. For example, the performance for the Zipf pattern on the tree network is
slightly better than that for the Zone-based pattern. We attribute this phenomenon to
the mismatch between the tree structure and the partition method used.

Migration Parameter (α). The results in this subset of experiments show how the
migration parameter α affects the overall performance of the Dmig algorithm and
thereby demonstrates the value of using the node degrees as the parameter. To this
end, we conduct a parameter sweep study by first changing α from 1 to 10, which cover
the average degree of each network graph, and then comparing Dmig with Dmig(α).
Figure 7 shows the comparison results when βuv is uniformly distributed in [1, 1200].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:20 Y. Wang et al.

Fig. 7. Impact of migration parameter α on the performance of Dmig, Dmig(α), Dmig′, and Dmig′(α) for
Zone(10, 1000, 1.0, 4) access pattern, respectively (βuv is uniformly distributed in [0, 1200]).

From this figure, we can see that in most cases across all the network graphs and
access patterns (only the Zipf pattern is shown), Dmig exhibits the best performance,
indicating using the node degree as the parameter is reasonable for the algorithm to
achieve good performance.

Performance Comparison. The performance comparison of Dmig with other selected
reference algorithms is shown in Figure 8. The purposes of this comparison are three-
fold. First, by comparing Dmig with Dmig′(0) and Migk, we can evaluate its per-
formance relative to some existing algorithms [Oikonomou and Stavrakakis 2010;
Bienkowski et al. 2010]. Second, by comparing with Dmig′, we can measure the benefits
of the virtual migration in service cost reduction. Finally, by comparing with rDmig,
we can assess if the recursive search presented in Section 4.1 is worthwhile to optimize
the performance.

From Figure 8, Dmig significantly outperforms Dmig(α), an optimized version of the
Migration Policy S in Oikonomou and Stavrakakis [2010], when α = 0, for all the
studied networks, as the migration cost is not considered in the reference algorithm, it
could result in a large number of expensive migrations, especially when the migration
cost is high. In contrast to Dmig(α), the relative performance of Dmig to Migk, and its
variant Migk′, is not consistent across the different networks. The figure shows that
Dmig is better than or competitive with Migk or Migk′, whichever is the best for all
examined networks and access patterns (only the Zipf pattern is shown). These results
again demonstrate the advantages of Dmig over the reference algorithms to migrate
servers in cloud environments.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:21

Fig. 8. Performance comparison of Dmig with other reference algorithms for Zipf(10, 1000, 1.0) access
pattern.

Another interesting observation is the performance comparison when the migration
cost is zero. According to Migk (also Migk′), the epoch is reset after every batch request.
As a result, the server will be fixed without any migrations. In contrast, Dmig (also
Dmig(α)) will lose its phase control, and the server can be freely migrated. The perfor-
mance results of these two extreme cases show that depending on the network topology,
either migratable server or fixed server can achieve relatively better performance, no
one is constantly better than the other. For example, it would be much better to fix the
server at certain hub node in the BA network than to move it around to minimize the
service cost. On the contrary, due to the large average inter-node distances, it is much
preferable to migrate the server in the lattice networks, rather than to fix it, to achieve
better performance.

The benefits of the virtual migration are also shown in Figure 8 (amplified in
Figure 7), with respect to the growth of migration parameter α (1 to 10) and migration
cost (0 to 2000), respectively. In the figure, Dmig and Dmig(α), together with their
non-virtual migration versions (i.e., Dmig′ and Dmig′(α)) are compared. One can easily
observe the performance gaps between whether or not the virtual migrations are used
for both Dmig and Dmig(α). Depending on the network topology and migration cost,
such a gap can be as large as up to 10.20% for Lattice (Figure 7(b)) and 28.44% for
Tree (Figure 7(d)), respectively, illustrating the value of the virtual migrations. These
benefits are further demonstrated by the cumulative distribution of the virtual path
lengths for the Zipf and Zone-based access patterns, which are shown in Figure 9.
For both cases, Lattice exhibits the longest average virtual path, while BA has the
shortest one, which is consistent with and further explains our previous performance
results.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:22 Y. Wang et al.

Fig. 9. Distributions of virtual path (vpath) lengths for different network topologies (100 nodes), vpath=0
means the server is fixed without migrations.

Fig. 10. Performance changes of mDmig with respect to the migration cost when the number of servers is
fixed as four.

Unlike the virtual migration, which allows the server to bypass the intermediate
sub-optimal nodes along the migration paths and quickly converge to a vantage (or op-
timal) node, the value of recursive search for finding the migration target is marginal,
even though it is slightly better than the random selection. We validate it by comparing
the cost ratios of Dmig and rDmig in Figure 8. The observation is reasonable as the
recursive process is always to find an alternative path toward the vantage node. How-
ever, the quality of each such path should not be very different if the access pattern is
not dramatically changed. Consequently, the marginal added-value of rDmig renders
it to be not worthwhile to deploy in practice.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:23

Fig. 11. Performance changes of mDmig with respect to the the number of servers when the migration costs
are uniformly distributed in [0, 2000].

5.2.2. Multiple Server Migration. In this section, we evaluate the algorithms for migrating
multiple servers by comparing the cost ratio with the baseline SDP, which is on average
within ≈1.20% of the optimal DP results in our small-scale test cases [Wang et al. 2015].

Figure 10 shows the results of mDmig with respect to the changes of migration
costs for the selected access patterns on the studied networks when the number of
servers is fixed as four. From this figure, one can easily observe that mDmig exhibits
better performance as the migration cost increases for all types of access patterns
across the different networks. This observation is understandable; as the migration
cost increases, the migration opportunities for mDmig are reduced accordingly (i.e.,
the number of migrations that can be exploited to optimize the goal is decreased).

In addition to the migration costs, we also studied how mDmig behaves with respect
to the number of virtual servers. Given the size of networks as 100 nodes, we studied
the algorithm by varying the number of the servers from 2 to 5. The results are shown
in Figure 11 when the migration cost is uniformly distributed between 0 and 2000. We
can see that in all the cases, the cost ratio between mDmig and SDP is at most 1.2,
showing the performance advantage of mDmig. Note that in some cases (e.g., uniform
on Tree), it could be possible for mDmig to outperform the off-line algorithm, since the
baseline algorithm is sup-optimal.

6. CONCLUSIONS

In this article, we formulated and studied the service migration problem in the cloud
platforms. To this end, we first developed an efficient distributed algorithm Dmig for
a single-server migration, which is fully symmetric, scalable, and easily deployed in
practice. The algorithm is distinct from existing ones by its effective use of historical

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

6:24 Y. Wang et al.

access information to conduct virtual migration to minimize the total service costs. The
essence of the virtual migration is to quickly find an optimal target node by mimicing
the service to the requests at each temporary node on the multi-hop path. Given its
distributed nature, we then extended Dmig to a multi-server situation and proposed
a fully distributed algorithm called mDmig, where each server performs the same
algorithm independently to achieve high scalability. Our extensive simulation results
showed that, compared with several existing algorithms, the proposed algorithms can
significantly reduce the overall service cost for all the studied access patterns made on
the given representative networks in the cloud.

REFERENCES

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable, commodity data center
network architecture. In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication
(SIGCOMM’08). 63–74.

Samer Al-Kiswany, Dinesh Subhraveti, Prasenjit Sarkar, and Matei Ripeanu. 2011. VMFlock: Virtual ma-
chine co-migration for the cloud. In Proceedings of the 20th International Symposium on High Perfor-
mance Distributed Computing. 159–170.

Dushyant Arora, Marcin Bienkowski, Anja Feldmann, Gregor Schaffrath, and Stefan Schmid. 2011a. Online
strategies for intra and inter provider service migration in virtual networks. In Proceedings of the 5th In-
ternational Conference on Principles, Systems and Applications of IP Telecommunications (IPTcomm’11).
10:1–10:11.

Dushyant Arora, Anja Feldmann, Gregor Schaffrath, and Stefan Schmid. 2011b. On the benefit of virtual-
ization: Strategies for flexible server allocation. In Proceedings of the 11th USENIX Conference on Hot
Topics in Management of Internet, Cloud, and Enterprise Networks and Services. 2–2.

A. L. Barabási and R. Albert. 1999. Emergence of scaling in random networks. Science 286, 5439 (Oct. 1999),
509–512.

Marcin Bienkowski, Anja Feldmann, Johannes Grassler, Gregor Schaffrath, and Stefan Schmid. 2014. The
wide-area virtual service migration problem: A competitive analysis approach. IEEE/ACM Trans. Netw.
22, 1 (Feb. 2014), 165–178.

Marcin Bienkowski, Anja Feldmann, Dan Jurca, Wolfang Kellerer, Gregor Schaffrath, Stefan Schmid, and
Joerg Widmer. 2010. Competitive analysis for service migration in VNets. In Proceedings of the Second
ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures (VISA’10). ACM,
New York, 17–24.

Raouf Boutaba, Qi Zhang, and Mohamed Faten Zhani. 2014. Virtual machine migration in cloud comput-
ing environments: Benefits, challenges, and approaches. In Communication Infrastructures for Cloud
Computing, Hussein T. Mouftah and Burak Kantarci (Eds.). IGI Global, Hershey, PA, 383–408.

Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald Schiöberg. 2007. Live wide-area mi-
gration of virtual machines including local persistent state. In Proceedings of the 3rd International
Conference on Virtual Execution Environments (VEE’07). 169–179.

Moses Charikar, Dan Halperin, and Rajeev Motwani. 1998. The dynamic servers problem. In Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98). 410–419.

N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. 2010. A survey of network virtualization. Comput.
Netw. 54, 5 (April 2010), 862–876.

M. Chroboak, H. Karloff, T. H. Payne, and S. Vishwanathan. 1991. New results on server problems. SIAM J.
Discr. Math. 4 (1991), 172–181.

Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gaı̈ti, Erol Gelenbe, Fabio Massacci, Paddy
Nixon, Fabrice Saffre, Nikita Schmidt, and Franco Zambonelli. 2006. A survey of autonomic communi-
cations. ACM Trans. Auton. Adapt. Syst. 1, 2 (Dec. 2006), 223–259.

P. Erdös and A. Rényi. 1959. On random graphs I. Publicat. Mathemat. 6 (1959), 290–297.
Reza Zanjirani Farahani and Masoud Hekmatfar. 2009. Facility Location: Concepts, Models, Algorithms and

Case Studies (Contributions to Management Science). Physica, 1st ed. 557 pages.
Reza Zanjirani Farahani, Maryam SteadieSeifi, and Nasrin Asgari. 2010. Multiple criteria facility location

problems: A survey. Appl. Math. Model. 34, 7 (2010), 1689–1709.
Zachary Friggstad and Mohammad R. Salavatipour. 2011. Minimizing movement in mobile facility location

problems. ACM Trans. Algor. 7, 3 (July 2011), 28:1–28:22.
Simon Görtz and Andreas Klose. 2012. A simple but usually fast branch-and-bound algorithm for the capac-

itated facility location problem. INFORMS J. Comput. 24, 4 (2012), 597–610.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

On Service Migrations in the Cloud for Mobile Accesses: A Distributed Approach 6:25

Kamal Jain and Vijay V. Vazirani. 2001. Approximation algorithms for metric facility location and k-Median
problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48 (March 2001), 274–296.
Issue 2.

Hsu-Fang Lai, Yu-Sung Wu, and Yu-Jui Cheng. 2013. Exploiting neigborhood similarity for virtual machine
migration over wide-area network. In Proceedings of the IEEE 7th International Conference on Software
Security and Reliability (SERE’13). 149–158.

Bo Li, M. J. Golin, G. F. Italiano, Xin Deng, and K. Sohraby. 1999. On the optimal placement of web
proxies in the internet. In Proceedings of the 18th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’99), Vol. 3. 1282–1290.

Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. 2009. Live migration of virtual machine based
on full system trace and replay. In Proceedings of the 18th ACM International Symposium on High
Performance Distributed Computing (HPDC’09). 101–110.

Dan Ma and Jianhui Huang. 2012. The pricing model of cloud computing services. In Proceedings of the 14th
Annual International Conference on Electronic Commerce (ICEC’12). 263–269.

M. S. Manasse, L. A. McGeoch, and D. D. Sleator. 1988. Competitive algorithms for on-line problems. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing. 322–333.

J. W. Moon. 1965. On the diameter of a graph. Mich. Math. J. 12, 3 (1965), 349–351.
Konstantinos Oikonomou and Ioannis Stavrakakis. 2010. Scalable service migration in autonomic network

environments. IEEE J. Sel. A. Commun. 28, 1 (Jan. 2010), 84–94.
Panagiotis Pantazopoulos, Merkourios Karaliopoulos, and Ioannis Stavrakakis. 2011. Centrality-driven scal-

able service migration. In Proceedings of the 23rd International Teletraffic Congress (ITC’11). 127–134.
Dung H. Phan, Junichi Suzuki, Raymond Carroll, Sasitharan Balasubramaniam, William Donnelly, and

Dmitri Botvich. 2012. Evolutionary multiobjective optimization for green clouds. In Proceedings of the
14th International Conference on Genetic and Evolutionary Computation. 19–26.

Pierre Riteau, Chritine Morin, and Thierry Priol. 2013. Shrinker: Efficient live migration of virtual clusters
over wide area networks. Concur. Comput.: Pract. Exp. 25, 4 (2013), 541–555.

Igor Ruiz-Agundez, Yoseba K. Penya, and Pablo G. Bringas. 2011. A flexible accounting model for cloud
computing. In Proceedings of the 2011 Annual SRII Global Conference (SRII’11). 277–284.

Chaitanya Swamy and Amit Kumar. 2002. Primal-dual algorithms for connected facility location problems.
In Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial Opti-
mization. 256–270.

Xiaoying Wang, Xiaojing Liu, Lihua Fan, and Xuhan Jia. 2013. A distributed virtual machine migration
approach of data centers for cloud computing. Math. Problems Eng. 2013 (2013), 10.

Yang Wang, Wei Shi, and Menglan Hu. 2015. Virtual servers co-migration for mobile accesses: Online versus
off-line. IEEE Trans. Mobile Comput. 14, 12 (Dec 2015), 2576–2589.

Yang Wang, Wei Shi, and Lingfang Zeng. 2013. Adaptive search-based service migration with virtual moves
in clouds for mobile accesses. In Proceedings of the Conference on Utility and Cloud Computing (UCC’13).

Matthew Woitaszek and Henry M. Tufo. 2010. Developing a cloud computing charging model for high-
performance computing resources. In Proceedings of the 2010 10th IEEE International Conference on
Computer and Information Technology (CIT’10). 210–217.

Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. 2008. Rethinking virtual network embedding:
Substrate support for path splitting and migration. SIGCOMM Comput. Commun. Rev. 38, 2 (2008),
17–29.

Received September 2016; revised December 2016; accepted January 2017

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 2, Article 6, Publication date: May 2017.

