
PMAlloc: A Holistic Approach to Improving Persistent Memory

Allocation

ZHENG DANG and SHUIBING HE∗, Zhejiang University, Hangzhou, China

XUECHEN ZHANG,Washington State University Vancouver, Vancouver, USA

PEIYI HONG, ZHENXIN LI, XINYU CHEN, and HAOZHE SONG, Zhejiang University, Hangzhou,
China

XIAN-HE SUN, Illinois Institute of Technology, Chicago, USA
GANG CHEN, Zhejiang University, Hangzhou, China

Persistent memory allocation is a fundamental building block for developing high-performance and in-memory applications.
Existing persistent memory allocators sufer from many performance issues. First, they may introduce repeated cache line
lushes and small random accesses in persistent memory for their poor heap metadata management. Second, they use static
slab segregation resulting in a dramatic increase in memory consumption when allocation request size is changed. Third, they
are not aware of NUMA efect, leading to remote persistent memory accesses in memory allocation and deallocation processes.
In this paper, we design a novel allocator, named PMAlloc, to solve the above issues simultaneously. (1) PMAlloc eliminates
cache line relushes by mapping contiguous data blocks in slabs to interleaved metadata entries stored in diferent cache lines.
(2) It writes small metadata units to a persistent bookkeeping log in a sequential pattern to remove random heap metadata
accesses in persistent memory. (3) Instead of using static slab segregation, it supports slab morphing, which allows slabs to be
transformed between size classes to signiicantly improve slab usage. (4) It uses a local-irst allocation policy to avoid allocating
remote memory blocks. And it supports a two-phase deallocation mechanism including recording and synchronization to
minimize the number of remote memory access in the deallocation. PMAlloc is complementary to the existing consistency
models. Results on 6 benchmarks demonstrate that PMAlloc improves the performance of state-of-the-art persistent memory
allocators by up to 6.4x and 57x for small and large allocations, respectively. PMAlloc with NUMA optimizations brings a
2.9x speedup in multi-socket evaluation and is up to 36x faster than other persistent memory allocators. Using PMAlloc
reduces memory usage by up to 57.8%. Besides, we integrate PMAlloc in a persistent FPTree. Compared to the state-of-the-art
allocators, PMAlloc improves the performance of this application by up to 3.1x.

CCS Concepts: · Software and its engineering→ Allocation / deallocation strategies; · Hardware→ Non-volatile

memory.

∗Shuibing He is the corresponding author.

Authors’ addresses: Z. Dang, S. He, P. Hong, Z. Li, X. Chen, H. Song, G. Chen, College of Computer Science and Technology, Zhejiang University,
Hangzhou 310027, China; emails: {dangzheng, heshuibing, hongpeiyi, zhenxin, xy.chen, haozheshz, cg}@zju.edu.cn; X. Zhang, School of
Engineering and Computer Science, Washington State University Vancouver, Vancouver, WA 98686, USA; emails: xuechen.zhang@wsu.edu;
X.-H. Sun, Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, USA; emails: sun@iit.edu.
Authors’ addresses: Zheng Dang, dangzheng@zju.edu.cn; Shuibing He, heshuibing@zju.edu.cn, Zhejiang University, Hangzhou, Zhejiang,
China, 310027; Xuechen Zhang, Washington State University Vancouver, 14204 NE Salmon Creek Avenue, Vancouver, USA, xuechen.
zhang@wsu.edu; Peiyi Hong, hongpeiyi@zju.edu.cn; Zhenxin Li, zhenxin@zju.edu.cn; Xinyu Chen, xy.chen@zju.edu.cn; Haozhe Song,
haozheshz@zju.edu.cn, Zhejiang University, Hangzhou, Zhejiang, China, 310027; Xian-He Sun, Illinois Institute of Technology, 10 West 35th
Street, Chicago, USA, sun@iit.edu; Gang Chen, cg@zju.edu.cn, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0734-2071/2024/2-ART
https://doi.org/10.1145/3643886

ACM Trans. Comput. Syst.

https://doi.org/10.1145/3643886
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643886&domain=pdf&date_stamp=2024-02-03

2 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

Additional Key Words and Phrases: Dynamic memory allocation, persistent memory, memory fragmentation, non-uniform
memory access

1 INTRODUCTION

Dynamic allocation of persistent memory is heavily used for building high-performance applications from
indexing structures [14, 50, 51, 56ś59], transactional memory [19, 29, 31, 77], graph processing [37, 38, 75], to
in-memory database systems [4, 16, 54, 63]. Memory allocators are usually well-tuned for volatile memory (e.g.,
DRAM) to achieve low latency, high scalability, and low fragmentation [6, 26, 67]. The adoption of persistent
memory (e.g., Intel Optane DIMMs [17]) has made researchers rethink the design and implementation of allocators.
The allocators designed for persistent memory need to maintain the salient features of DRAM allocators for
high-performance memory management. More importantly, they should enforce crash consistency with low
overhead so that they can safely recover allocated memory objects after failures.

Many allocators have been designed for persistent memory [8, 10, 23, 62, 63, 71]. To achieve eicient allocation
and deallocation, they need to manage persistent heaps via various types of metadata (e.g., object bitmaps, slab
structures, extent headers, and write-ahead logs). In this paper, we name these auxiliary data structures heap
metadata. For example, PMDK [17] and nvm_malloc [71] use bitmaps to mark objects that have been allocated.
PAllocator [63] uses logs to ensure crash consistency between the user’s application and its own operations.
Updating the heap metadata triggers frequent small writes to persistent memory ranging from 1 bit to 64 B. All of
these persistent allocators use a size-segregated algorithm for serving small allocation requests to reduce memory
fragmentation.

Our research shows that the existing persistent memory allocators only achieve suboptimal performance for
the following four reasons. First, their poor metadata management leads to cache line relushes. A typical size of
CPU cache line is 64 B [63]. The size of a bitmap is 8 B in nvm_malloc. When the bitmap is updated repeatedly,
the same cache line should be lushed for persistence. The latency of cache line relush is 7.5x higher than the
latency of writes [13]. We observe that the number of cache line relushes accounts for 40.4%~99.7% of the total
number of allocator-induced lush operations in four well-known benchmarks (Section 3.2). Frequent cache line
relush operations cause the degraded performance of persistent memory allocators.

Second, their poor metadata management leads to small random accesses in persistent memory. Heap metadata
of allocators tend to be randomly accessed in persistent memory. Many allocators (e.g., PMDK, PAllocator, and
Makalu [8]) subdivide the heap into chunks of ixed sizes (e.g., 4MB) for ease of management. They maintain
bookkeeping metadata in each chunk’s header space which is separated from data space to avoid metadata being
modiied by mistake. This layout causes headers to be distributed over the whole heap space. After serving a
sequence of allocation and deallocation requests, allocators have to in-place update headers randomly located
in persistent memory. Recent work has shown that persistent memory exhibits much worse random access
performance than sequential access performance [77, 79] for small writes. Consequently, serving these small
random writes to heap metadata prevents the allocators from achieving optimal performance.

Third, static slab segregation causes persistent memory fragmentation. All the allocators for persistent memory
use size-segregated slabs for small block allocation. Each slab is a container of multiple free blocks and handles
a memory allocation of a particular size class. Slabs assigned to one size class cannot be reused for other size
classes even though the slabs are mostly empty and there is no free space in slabs of other size classes [76]. This
segregation-induced fragmentation is intensiied in persistent memory because the persistent heap is stored
on the DAX ile systems in the form of iles. They cannot be eliminated by restarting the system. This kind of
fragmentation increases memory usage by up to 2.8x for workloads with changing allocation sizes and frequent
łdeletež operations (Section 3.4).

Fourth, all of them ignore the non-uniform memory access (NUMA) efect. Persistent memory is mainly deployed
with multi-socket CPUs using the NUMA architecture at data centers. Prior works [46, 74, 80] reported that,

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 3

compared to DRAM, the impact of NUMA is more pronounced for persistent memory. Allocators ignoring the
NUMAefectmay compromise application performance in both allocation and deallocation operations. Speciically,
in the allocation operations, the memory blocks in the persistent heaps may be located in diferent NUMA nodes.
The existing allocators may allocate the memory blocks belonging to remote NUMA nodes, resulting in a longer
latency of the subsequent memory accesses. When releasing memory blocks, the deallocation operations running
on one NUMA node may have to modify its metadata on another NUMA node. Our experimental results show
that the persistent memory allocators ignoring the NUMA efect degrade the performance of applications by up
to 4.6x (Section 3.5).
In this paper, we introduce a NUMA-aware, high-performance, and fail-safe persistent memory allocator

named PMAlloc. Our design objectives focus on the eicient elimination of cache line relushes and the reduction
of small random writes in heap metadata management. Additionally, we aim to mitigate slab-induced memory
fragmentation and support NUMA-aware allocation and deallocation. To achieve these goals, PMAlloc supports
the following optimizations.
First, PMAlloc uses an interleaved memory mapping from data blocks to their corresponding heap metadata

and interleaved layout of linked lists in thread-local caches to avoid accessing the same CPU cache line repeatedly.
An interleaved appending method is also adopted in log-based structures (e.g., write-ahead logs) to eliminate
relushes for writing at log tails. Second, because in-place metadata updates cause random accesses in persistent
memory with the limited write bufer size [79], we add a persistent bookkeeping log to store updates of small
metadata in a sequential pattern. As a result, we completely remove random metadata accesses from the critical
path of malloc() and free(). Third, PMAlloc supports slab morphing with which blocks in two size classes may
be co-located in one slab during the slab transformation. Therefore, the free space in slabs of low memory usage
can be well utilized, with 4.5% runtime overhead for slab metadata management. Slab morphing is automatically
enabled when a slab is mostly idle but cannot be used to serve requests in other size classes. Fourth, PMAlloc
maintains a dedicated persistent memory heap for each processor core and adopts a local-irst allocation policy to
avoid allocating remote memory blocks. Furthermore, it supports a two-phase deallocation mechanism including
recording and synchronization to minimize the number of remote memory accesses in the deallocation. Speciically,
we call the node where a memory block is located its owner node. Each owner node uses both a regular bitmap
and a shadow bitmap in DRAM for deallocation. In the recording phase, a remote deallocation request is only
recorded in the shadow bitmap of its owner node of the requested memory block but not visible to users yet.
When the regular bitmap does not have enough space to serve a request, synchronization will be triggered to
apply the changes in the shadow bitmaps and make these blocks available.

PMAlloc currently supports both log-based and garbage-collection-based crash-consistency models1. Results
on 6 benchmarks demonstrate that PMAlloc improves the performance of state-of-the-art persistent memory
allocators by up to 6.4x for small allocations and 57x for large allocations. PMAlloc with NUMA optimizations
brings a 2.9x speedup in multi-socket evaluation and is up to 36x faster than other persistent memory allocators.
Using PMAlloc reduces memory usage by up to 57.8%. We also integrate PMAlloc in a persistent FPTree [64].
With PMAlloc, the performance of this application is improved by up to 3.1x compared with the state-of-the-art
allocators. We further evaluate the performance of PMAlloc with 6 real-world applications and it outperforms
other persistent memory allocators by up to 39x.

An earlier conference version of this paper was presented in [20]. Here we extend the previous paper in several
aspects. First, we highlight the critical need for a NUMA-aware persistent memory allocator and introduce
NUMA-aware optimizations for both allocation and deallocation procedures. We provide exhaustive NUMA-
related evaluations on PMAlloc, along with a performance comparison with existing allocators. Second, we enrich
the discussion on programming semantics and safety, providing a detailed analysis of existing consistency models

1The source code for PMAlloc is available at https://github.com/ISCS-ZJU/PMAlloc.

ACM Trans. Comput. Syst.

4 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

applicable to persistent memory allocators. We also discuss the applicability of our proposed techniques to future
persistent memory products. Third, this paper includes additional experiments, as well as more comprehensive
numerical statistics and analysis.

2 BACKGROUND

2.1 Terminology

We irst deine the commonly used terms in persistent memory allocators.

• Extents are a contiguous sequence of bytes allocated from the persistent heap space directly for serving
large allocation requests. They are typically conigured to align with multiples of the page size, facilitating
the rapid location of metadata for memory objects [39, 71].
• Slabs are pre-allocated extents in persistent memory and containers of ixed-size free blocks. The slab size
is 64 KB in this paper. Small allocations are served using slabs based on their size classes.
• Blocks are a contiguous sequence of bytes in persistent memory allocated from the slab structure for
serving small allocation requests.
• Slab bitmaps are located in slab headers, with each bit denoting the state (allocated or free) of a slab block.
• Heap iles are iles that reside on the DAX ile system in persistent memory and are mapped as a persistent
heap.
• Thread-local cache (tcache) tracks addresses of a distinct list of free blocks assembled from local free
requests, which may come from multiple slabs. When an allocator receives a request, it searches the tcache
irst to serve the request. When a block is freed, it goes to the tcache of the thread that frees it, not the one
where it was allocated from previously. We use the LIFO algorithm to manage the tcache. When tcache is
empty, it is reilled with block addresses from slabs.
• Write-ahead logs (WALs) [63, 71] are used to record changes to heap metadata/data when persistent
memory allocators use transactions for fail-safe recovery. WAL entries are designed to save essential
metadata (e.g., memory addresses and current values).

2.2 Heap Management in Persistent Memory

Small allocations: Slabs are widely used for small allocations (e.g., < 16 KB) to reduce memory fragmentation.
We implement a new slab structure for small allocations in persistent memory leveraging the design principles of
existing slab structures (i.e., those in jemalloc [26] and nvm_malloc [71]). Speciically, each slab has a persistent
header and a volatile header (called vslab). The persistent header stores the metadata that is necessary for recovery,
including a bitmap whose bits are sequentially mapped to the following blocks. The volatile ����� serves for a
fast search of free blocks. It could be rebuilt during failure recovery.
Large allocations: Allocators also need to manage large allocations (e.g., ≥ 16KB). We use the similar

structures in jemalloc as examples. Extents are managed using virtual extent headers (VEHs) in DRAM for
eiciently searching, splitting, and coalescing of heap extents. Three lists are used to manage VEHs in PMAlloc.
An activated list stores the VEHs of allocated extents. A reclaimed list stores the VEHs of freed extents with
physical persistent memory being mapped to virtual addresses. And a retained list stores the VEHs of free extents
that only have virtual addresses allocated and their physical memory has been unmapped in the process address
space.

Upon serving a large allocation, allocators search the reclaimed list and retained list using the irst-it algorithm.
If a block is found, its VEH will be moved to the activated list. If none is found, a new VEH is created and added
to the activated list. When an extent is freed, it is returned to the reclaimed list. PMAlloc uses a decay-based
approach to manage free extents in the reclaimed list and retained list [26]. It uses a smootherstep function to
calculate the maximum amount of memory ����� that can be used by the lists. If the memory usage of the

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 5

reclaimed list is higher than����� , its extents will be moved from the reclaimed list to the retained list. Similarly,
if the memory usage of the retained list is higher than its threshold, its extents will be moved to OS. When a
VEH is removed from the retained list, its corresponding extent is unmapped in the process address space and its
header and extent are freed in persistent memory. A similar approach has been used in the existing work (e.g.,
jemalloc). We use the same parameters of the smootherstep function and time intervals (i.e., 50ms) as those set in
jemalloc.
Metadata association: Allocators require an indexing structure to associate metadata with the memory

objects they manage. Typically, when users deallocate memory, they only provide the starting address of the
memory object. The allocator then uses this index to retrieve the corresponding metadata, such as the vslab or
the VEH. In this paper, we adopt a page-based radix tree to serve this purpose, similar to jemalloc. Each 4KB
page managed by the allocator is represented by a 16-byte leaf in the radix tree, which results in a small overhead
of 0.4% to the total heap size. The leaf node contains a size class ield to identify whether the page is part of a
slab or an extent, and a pointer pointing to either the vslab or the VEH. With the radix tree, the allocator can
eiciently locate a memory object’s metadata by aligning the object’s starting address to the page size and then
searching the tree. Note that when new memory regions are allocated by the operating system, their internal
pages are initially registered in the radix tree before any allocations take place. This mechanism also enables the
identiication of illegal addresses in free() calls, as detailed in Section 4.4.

2.3 Consistency Models for Persistent Memory Allocators

In persistent memory allocators, system crashes can lead to a misalignment between the allocator’s metadata and
the actual memory blocks accessible to applications. Such inconsistencies arise when a memory block is allocated
but a system failure occurs before the user can store this block in a designated pointer. This phenomenon
is referred to as "persistent memory leakage". Similar consistency issues may also arise during deallocation
operations. Speciically, if the allocator marks a block as released but the user has not nulliied the associated
pointer, the allocator may re-allocate the same block, leading to unintended data corruption. Consequently,
maintaining consistency of allocator metadata and user-accessible memory blocks is a primary concern for
persistent memory allocators. Current designs of persistent memory allocators primarily adhere to three major
consistency models:

Log-based model: In the log-based model [63, 71], users must supply the pointer for allocation or nulliication
through the allocator interface. This model employs WALs to record changes in both heap metadata and user
pointers. In the event of a system crash, interrupted operations can be recovered to a consistent state by replaying
the WALs. Within this model, allocators must use lush instructions to persist not only metadata changes but
also the corresponding log entries in the WALs. Although this approach incurs a higher persisting overhead, it
provides the highest level of consistency. PAllocator [63] and nvm_malloc [71] use this model.

GC-based model: The GC-based model [8, 10] utilizes a garbage collection (GC) mechanism to rebuild heap
metadata after a system crash, thereby eliminating the need to persist metadata and WALs. This model relies
on traversing the heap from pre-deined root pointers, enabling the GC process to identify memory blocks
accessible to the user and reconstruct their metadata. Although this approach often yields superior allocation
speeds, it presents several limitations. First, the GC-based model restricts certain capabilities of unmanaged-
memory languages like C/C++, commonly used in the development of performance-sensitive systems [63].
Second, the garbage collection technique utilized in existing persistent allocators, speciically conservative
garbage collection [8, 9], is error-prone and may not prevent memory leaks [10]. Makalu [8] and ralloc [10] apply
this model.
Internal collection based (IC-based) model: The internal collection based model [17] neither prevents

memory leaks nor guarantees leak detection. Instead, it allows users to identify potentially leaked memory blocks

ACM Trans. Comput. Syst.

6 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

IC/Log Based GC Based

PMDK
nvm_malloc

PAllocator
Makalu

Ralloc
0

20
T

im
e
 e

la
p
s
e
d
(s

)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

0

20

Application execution time
Percentage of flush operations induced by allocators

Allocator execution time

Fig. 1. Allocators’ execution time and percentage of flush operations induced by allocators.

by exposing the allocator’s internal memory block collections through a dedicated interface. Users can then
identify leaks by traversing this full set of blocks and comparing it against their own set of reachable memory
blocks. This approach requires persisting allocator metadata. However, it eliminates the need for WALs, albeit at
the cost of potential memory leaks and traversal overhead. PMDK [17] adopts this model.

3 MOTIVATION

In this section, we begin by examining the potential overhead introduced by persistent memory allocators in
real-world applications. We then experimentally investigate performance issue and memory fragmentation
induced by the poor heap metadata management in the existing allocators. We use diferent applications to
generate workloads exposing various internal issues.

3.1 Allocation Overhead in Persistent Memory Applications

The persistent memory allocators difer substantially from their volatile counterparts. Volatile memory allocators
focus solely on providing fast, scalable memory allocation and deallocation. Diferently, persistent memory
allocators bear the added responsibility. They must ensure that memory operations are executed persistently
and crash-consistently. This necessitates the inclusion of expensive lush and fence operations and additional
data structures like WALs to maintain crash consistency, thereby making persistent memory allocators more
time-consuming than volatile ones.
To prove that, we conducted experiments using a persistent B+-Tree, FPTree [64] and ran it with multiple

existing persistent memory allocators (See Section 2.3). We collected the execution time of the benchmarks
using the linux perf tools. FPTree is executed with 40 threads. FPTree uses the same workload coniguration as
described in Section 8.5. Figure 1 shows the results. For IC- and log-based allocators, the allocator’s overhead can
be exceedingly high, constituting up to 74.8% of the application’s total execution time. This observation aligns
with the previous research [46]. Furthermore, we found that lush operations initiated by the allocators can make
up to 57% of the total lush operations. For GC-based allocators, Makalu and Ralloc account for 43.2% and 14.7%
of the total execution time, respectively. They rarely use lush operations in the runtime, because they use a weak
consistency model (discussed in Section 2.3).
The main reason behind this performance degradation is the consistency constraints imposed by persistent

semantics. Allocators are compelled to immediately persist their metadata modiications using costly lush and
fence operations. Worse, lushing small chunks of metadata can trigger cache line relushes and result in random

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 7

Thread Prod-con Shbench Larson FPTree
0

20

40

60

80

100

A
v
e

ra
g

e
 p

e
rc

e
n

ta
g

e
 (

%
) PMDK

nvm_malloc
PAllocator

PMAlloc-LOG
Makalu
Ralloc

PMAlloc-GC reflush

flush

Fig. 2. Ratio of cache line reflush.

access to persistent memory. We will delve into these issues in Section 3.2 and 3.3. In addition, if memory allocators
are not designed for widely adopted NUMA architecture, they can inadvertently cause remote memory accesses
as discussed in Section 3.5. Given the considerable overhead associated with persisting allocator metadata, there
is an urgent need to manage allocation metadata more eiciently.

3.2 Allocator-Induced Cache Line Reflushes

Withmodern Intel processors, standard lush operations such as cllushopt/clwb are designed to return quickly once
the lushed data arrives at the write pending queues (WPQs) in the processor’s memory controller. Subsequent
writes to persistent memory happen asynchronously, resulting in a low lush latency (approximately 100 ns).
However, repeated lushes to the same CPU cache line induce latency. This is due to the requirement that data
must irst be read back into the cache for a new lush instruction to be executed. If the most recent data is still in
transit within the WPQ, the subsequent lush must wait until the preceding lush operation has been completed
in the persistent memory and the data has been reloaded into the cache. This behavior unveils the inherent
characteristics of persistent memory hardware, which has a high latency of reads and writes, consequently
leading to a high latency of cache line relushes.
The latency of cache line relushes is determined by the relush distance between two accesses to the same

cache line. When accessing persistent memory becomes a performance bottleneck in allocators, we can quantify
the relush distance as the number of accesses to unique cache lines. For example, given a sequence of cache lines
(A, B, C, D, A) that are lushed consecutively, the relush distance of cache line A is 3. Our experiment shows that
the latency of cache line relushes is decreased from 800 ns to 500 ns when relush distance is increased from
0 to 3. This is because the preceding lush instruction has extra time to complete when the relush distance is
increased, thereby reducing the waiting time for any subsequent relush instruction. In this paper, we assume a
cache line relush occurs when its relush distance is smaller than 4. Otherwise, a regular lush occurs. We choose
4 as the representative relush distance because we observe that most cache line relush distance is smaller than 4
and a larger distance leads to a smaller performance degradation. The average latency of cache line relushes is
3x and 7x higher than random and sequential writes in persistent memory [13], respectively.

To study the number of allocator-induced cache line relushes, we run four well-known benchmarks including
Threadtest, Prod-con, Shbench, and Larson. The details of the experimental setting are presented in Section 8. We
trace lush operations in the benchmarks by substituting standard lush functions with custom C preprocessor
macros. The percentage of both cache line relushes and regular lushes are shown in Figure 2. We observe
that the number of cache line relushes accounts for up to 99.7%, 94.4%, and 98.8% of the total number of lush
operations when running PMDK, nvm_malloc, and PAllocator respectively. This is because they consecutively

ACM Trans. Comput. Syst.

8 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

0 200 400 600 800 1000

0.0E8

1.0E8

2.0E8

3.0E8

4.0E8

5.0E8

6.0E8

7.0E8

(c) PMDK

A
d

d
re

s
s

0 200 400 600 800 1000
0.0E8

1.0E8

2.0E8

3.0E8

4.0E8

5.0E8

6.0E8

(a) nvm_malloc
A

d
d

re
s
s

0 200 400 600 800 1000

0.0E8

1.0E8

2.0E8

3.0E8

(d) Makalu

0 200 400 600 800 1000

0.0E6

1.0E6

2.0E6

(b) PAllocator

Fig. 3. Small random writes in large allocation. The X-axis denotes the number of flushes.

0 200 400 600 800 1000
0.0E8

1.0E8

2.0E8

3.0E8

4.0E8

5.0E8

6.0E8

(a) best-fit

A
d

d
re

s
s

0 200 400 600 800 1000
0.0E8

1.0E8

2.0E8

3.0E8

4.0E8

5.0E8

6.0E8

(b) first-fit

Fig. 4. Small random writes of nvm_malloc with diferent allocation algorithms.

update the small metadata objects in slab headers or WALs or both to maintain strong consistency. These cache
line relushes slow down the allocation and deallocation operations. We also run FPTree with persistent memory
allocators to show the impact of cache line relush in persistent memory applications. The results show that
the number of cache line relushes accounts for 55%, 47%, and 54% for PMDK, nvm_malloc, and PAllocator,
respectively. Makalu and Ralloc have zero relushes, because they rarely using lush operations in the runtime.
They ensure consistency through post-crash garbage collection (GC), which leads to a longer recovery time and
weaker consistency guarantee. Compared to these works, PMAlloc can eliminate cache line relushes in both
log-based (PMAlloc-LOG) and GC-based (PMAlloc-GC) consistency models.

3.3 Allocator-Induced Small Random Access

For large allocations, most modern allocators (e.g., PMDK and Makalu) store bookkeeping metadata in the header
space of a large memory region (e.g., 4MB). The bookkeeping metadata tracks all extents in the region. The header
space is typically placed in a dedicated location separated from heap data space. This layout avoids the header
space being modiied by users mistakenly. Updating the metadata (e.g., bitmaps and logs) in the header space
requires small writes to persistent memory. To study its access pattern, we proile the memory addresses of the
irst 1000 lush operations of metadata when running the DBMStest benchmark [25] using 4 allocators including

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 9

Table 1. Workload configuration in Fragbench.

Workload Before Delete After

W1 Fixed 100 B 90% Fixed 130 B

W2 Uniform 100-150 B 0% Uniform 200-250 B

W3 Uniform 100-150 B 90% Uniform 200-250 B

W4 Uniform 100-200 B 50% Uniform 1000-2000 B

nvm_malloc, PAllocator, PMDK, and Makalu. We exclude Ralloc because its open-source implementation does
not work correctly for large allocations. We show the results in Figure 3. We observe that, for managing the
bookkeeping metadata, allocators issue a large number of small random writes to persistent memory and the
request addresses are distributed in the whole heap space. The reason is that, to serve a large request, allocators
typically use specialized allocation algorithms (i.e., best-it, irst-it, or their variants). Their primary goal is to
identify the most appropriate extents to minimize memory fragmentation. Because the optimal extent candidate
can be located in any memory region within the heap space, random accesses are generated when updating
its associated bookkeeping metadata. To further investigate the impact of diferent allocation algorithms, we
modify the allocation strategy of nvm_malloc to implement both best-it and irst-it algorithms. We execute
the DBMStest benchmark using both implementations. As illustrated in Figure 4, the allocator’s memory access
pattern remains highly random. Regardless of the speciic allocation algorithm, after a sequence of allocations
and deallocations, the most favorable extents for serving neighboring requests can reside in disparate memory
regions. This leads to small random accesses for updating bookkeeping metadata.

3.4 Fragmentation Caused by Static Slab Segregation

For allocating small objects, slabs are widely used in the existing allocators including volatile memory allocators
(e.g., jemalloc-5.2.1 [26] and tcmalloc-2.9.1 [28]) and persistent memory allocators (e.g., Makalu [8], Ralloc [10],
nvm_malloc [71], PMDK-1.11 [17], and PAllocator [63]). Slabs are segregated based on size classes. The size
classes are determined when a slab is initialized and cannot be changed at runtime. However, the request size of
memory allocation could be changing over the execution lifespan of real-world server applications [40, 69, 76].
We run the fragmentation benchmark simulating the real-world behaviors of memcached storage systems in
Meta [69] (which we refer to as Fragbench) to study the memory usage of popular allocators. Fragbench has three
execution phases: Before, Delete, and After. In the Before and After phases, Fragbench allocates 5GB of memory
using objects from a pre-deined size distribution and randomly deletes existing objects to keep the amount of
live data from exceeding 1GB. In the Delete phase, Fragbench deletes objects randomly. The three phases are
executed in order. We change the object size distribution and the ratio of deleted objects in four representative
workloads2 (W1-W4 as shown in Table 1) derived from the benchmark to cover a wide range of characteristics of
real-world applications [32, 40]. Similar workloads have been used in the prior research (i.e., RAMCloud [69],
PAllocator [63], and log-structured NVMM [31]).

The peak memory consumption is presented in Figure 5. To manage the 1GB live heap data, existing allocators
require memory usage of up to 2.8GB. This result indicates the persistent memory is severely under-utilized.
The reason is static slab segregation used in the existing allocators responds to the change of request sizes by
allocating more slabs in other size classes [41]. It cannot use the free space in the existing slabs of diferent size
classes. This is because the allocators cannot change a slab’s size class at runtime until it is completely free. The
memory fragmentation caused by static slab segregation in persistent memory has a larger impact than in volatile
memory because the memory fragments cannot be eliminated by restarting.

2Although there are eight workloads in the original Fragbench, we only choose the four workloads because other workloads show similar
patterns.

ACM Trans. Comput. Syst.

10 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

M
e
m

o
ry

W1 W2 W3 W4
0

1

2

3

c
o
n
s
u
m

p
ti
o
n
 (

G
iB

) jemalloc
tcmalloc

Makalu
Ralloc

nvm_malloc
pmdk

PAllocator

Fig. 5. Peak memory consumption of Fragbench.

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

PMDK
nvm_malloc

PAllocator
Makalu

Ralloc

100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

single-socket multi-socket

PMDK
nvm_malloc

PAllocator
Makalu

Ralloc
1

10

100

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

PMDK
nvm_malloc

PAllocator
Makalu

Ralloc

10

100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

PMDK
nvm_malloc

PAllocator
Makalu

Ralloc0.0

2.0

4.0

6.0

8.0

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Fig. 6. NUMA efect with various pesistent memory allocators.

3.5 Allocator-Induced Slow NUMA Access

NUMA architecture has been widely used to increase the capacity and bandwidth of persistent memory. A NUMA
system consists of multiple NUMA nodes, which further consist of CPU cores and DIMMs (DRAM/PM). The
NUMA nodes are connected via inter-node links, e.g., Intel Ultra Path Interconnect. Prior research [45, 74, 80] has
established that accessing persistent memory located on remote NUMA nodes results in increased latency. This
performance degradation is primarily due to the directory-based cache coherence protocol used in current Intel
processor architectures [36] for NUMA domain management. In this protocol, the coherence state of each cache
line is embedded within the line itself in the persistent memory. Consequently, remote memory accesses may
necessitate an additional directory "write" operation to update the coherence state, for instance, transitioning
from an "Exclusive" to a "Shared" state. The directory "write" operation can be triggered by either remote read

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 11

or write access. Prior work [46] has demonstrated that this mechanism can substantially reduce remote read
bandwidth, as it involves both read and write operations during read accesses.

We quantitatively study the NUMA impact using four established benchmarks and multiple persistent memory
allocators. These benchmarks are executed with 20 threads, either conined to a single NUMA node (single-
socket coniguration) or distributed across both nodes (multi-socket coniguration). In the multi-socket setup, we
use pthread_setainity_np() to pin half of the threads on the irst node and the other half on the second node.
Figure 6 presents the results. Across all multi-socket experiments, we observe that existing allocators experience
performance degradation, varying between 1.29x to 4.6x. This degradation arises due to the intricacies of NUMA
architecture inluencing both memory allocation and deallocation operations. During allocation, threads may
serve memory blocks from a remote NUMA node, introducing added latency for subsequent memory operations.
During deallocation, releasing a memory block on remote NUMA nodes leads to write ampliication for updating
metadata (e.g., bitmaps) on the remote NUMA nodes.
In summary, both our study and prior work [46] show that NUMA-aware persistent memory allocators are

highly needed for developing large-scale high-performance applications.

4 PMALLOC

In this section, we present the programming model of PMAlloc and describe the design of its major components:
small allocator and large allocator. The PMAlloc software is developed with four optimizations including (1)
interleaved mapping which reduces cache line relushes, (2) slab morphing which alleviates segregation-induced
fragmentation, (3) log-structured bookkeeping which improves the write locality, and (4) NUMA-aware allocations
and deallocations for the persistent memory system with multiple NUMA nodes. We illustrate all the components
of PMAlloc and where each optimization is applied in Figure 7.

4.1 Programming Model

We use pmalloc_init() to create a new PMAlloc instance and pmalloc_exit() to safely exit. To avoid the
memory leak, we adopt the pmalloc_malloc_to() and pmalloc_free_from() API used in other allocators [17,
63, 71] to atomically allocate and free objects on persistent memory, respectively. Function pmalloc_malloc_to()
allocates a block or an extent according to user-speciied ���� in the persistent heap and attaches it persistently
at a user-speciied ������� . We use an ofset-based pointer representation to allow persistent structures to
be mapped at diferent virtual addresses after failure recovery. The same technique has been used in previous
projects [10, 12, 15]. The pmalloc_free_from() returns a block or an extent speciied by ������� to the persistent
memory heap and nulliies the user-provided persistent pointer.

Currently, we implement two variants of PMAlloc including PMAlloc-LOG supporting log-based transactional
model and PMAlloc-GC supporting GC-based model (see Section 10). PMAlloc-LOG uses write-ahead logs (WALs)
to maintain crash consistency. When an allocation or deallocation action is initiated, all associated metadata
updates are recorded in the WALs. These logs also contain the corresponding user-provided pointers passed
via the allocation or deallocation interfaces. Before updating the actual data structures in persistent memory,
PMAlloc-LOG ensures that the WALs are written persistently. During failure recovery, PMAlloc-LOG utilizes the
WALs to identify any incomplete allocation or deallocation operations, whose metadata have been updated but
user-provided pointers have not. For such partially completed operations, PMAlloc-LOG reverses the metadata
changes to prevent any leakage in the persistent memory. In PMAlloc-GC, no metadata or WALs lushing is used
for small allocations to achieve the best runtime performance. However, it needs to execute the post-crash GC
during recovery to rebuild heap metadata and check memory leaks based on user-deined root pointers. The GC
blocks the normal execution of applications [8]. PMAlloc provides a pmalloc_set_root() interface for users to

ACM Trans. Comput. Syst.

12 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

DAX-aware File System

Application

Arena

freelistslab

··· ···

Small allocator

···

Volatile index

freelistslab

bitmap

slab

···

bitmap

···

slab

$5.1 Interleaved Mapping

$5.2

Slab Morphing

$5.1

Interleaved

Tcache Layout

Thread-local cache

···

···

Large allocator

Large Request

$5.3

Log-structured

Bookkeeping

append

File mapping

Small Request

···

···freelistblock freelistblock

Size class j

Size class i

$6 NUMA-aware malloc()/free()

Fig. 7. Overview of PMAlloc.

specify a persistent pointer as the root pointer. The root pointers are stored in a speciic persistent space, with up
to 512 top-level roots per arena. For large allocations, PMAlloc-GC has the same code path as PMAlloc-LOG.

4.2 Small Allocator

For small allocation (<16 KB), PMAlloc implements arena and tcache to reduce the thread contention. Each CPU
core owns an arena, while each thread owns a tcache. Each thread will be assigned to an arena which has the
least number of assigned threads. An arena maintains one freelist of slabs (� �����������) for every size class. The
slabs in the freelists are partially full. A tcache maintains one freelist of blocks per size class (� ������������). Each
block in the freelist is ready to serve an allocation.
When a small block of a certain size is requested, the working thread gets its size class, and then tries to get

a block from the corresponding � ������������ in tcache. If � ������������ is empty, the working thread will ill it
until full using slabs from their corresponding � ����������� in the arena. Thread synchronization is required here
because multiple threads may be attached to the same arena. If there is no slab in � ����������� , it will irst use slab
morphing (Section 5.2) to ind blocks of other size classes to ill tcache. When no blocks can be found using slab
morphing, it will require a new slab by executing a large allocation. Once � ������������ is illed, users can retrieve
a block from tcache immediately.

When a user releases a small block, the working thread will irst use a radix-tree (as detailed in Section 2.2) to
ind its size class and vslab. The vslab contains a pointer to the corresponding slab header in persistent memory.
The persistent slab header will be updated to record the release. Then, the working thread will try to return the
block to its corresponding tcache for serving future allocation requests. If the � ������������ of the tcache is full,
the working thread will return the small block to its vslab directly, bypassing its tcache.

PMAlloc uses interleaved mapping of slab bitmaps and interleaved layout of tcache (Section 5.1) to avoid cache
line relushes when small heap metadata accesses are required.

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 13

4.3 Large Allocator

The large allocator in PMAlloc is responsible for allocating slabs and extents that are ranging from 16KB to
2MB. For objects larger than 2MB, PMAlloc calls mmap() to allocate a given size extent. The architecture of the
large allocator is shown in Figure 11 in Section 5.3. When pmalloc_malloc_to() is called, it irst searches the
reclaimed list using the best-it algorithm. If no extent is found, the search is repeated using the retained list.
If an extent is found, its virtual extent header (VEH) is moved to the activated list. The extent may need to be
split if the existing extent is larger than the request size. The suitable part after splitting is returned to the user,
while the remaining part is reinserted into the source list. If no extents are available in either the reclaimed list or
the retained list, PMAlloc calls mmap() to allocate a new extent of 4MB, which is split into two parts. PMAlloc
returns the irst part to user and adds it to the activated list. The second part is added to the reclaimed list. Finally,
for each part, PMAlloc adds an item to the radix-tree pointing to the VEH for the part.
When pmalloc_free_from() is called to free a large memory object, PMAlloc searches for its VEH in the

radix-tree using its memory address. The VEH is moved from the activated list to the reclaimed list. If the extents
adjacent to the currently freeing extent are also free, they will be coalesced into a new, larger extent before
inserting to the reclaimed list. PMAlloc uses a decay-based approach to manage VEHs in the reclaimed list and
retained list (see Section 2.2). For failure recovery, when a VEH is created or updated, its essential metadata
is added to the persistent bookkeeping log. The operations of the persistent bookkeeping log are described in
Section 5.3.

4.4 Sanity Check

Unlike volatile main memory, simple programming bugs can cause permanent corruption to persistent memory
heap [23]. Therefore, it is imperative for a robust persistent memory allocator to proactively identify and mitigate
such adverse behaviors. In PMAlloc, we have added layers of sanity checks to safeguard against incorrect or
malicious use of memory allocation APIs, speciically targeting issues such as double-free or invalid-free. We
describe three sanity check mechanisms.
Mapped address veriication: Initially, all users’ address spaces that are mapped to the persistent memory

are registered in a radix tree maintained by PMAlloc. Upon a deallocation request, we check whether the address
falls within the pre-registered address range in the radix tree. If it does not, the radix tree generates an error for
the unfound address, marking the deallocation request as illegal and promptly aborting it.

Internal range validation: If an address does fall within the registered address range, PMAlloc subsequently
veriies its validity against the address range of its corresponding vslab or VEH. For small blocks, the address
must reside within the data space managed by the vslab and align precisely with the boundaries of memory
objects within the slab. Conversely, for large extents, the address must correspond exactly to the extent start
address recorded in the VEH.

Allocation status check: Even if an address passes the above sanity checks, one inal check is performed to
conirm whether the object at that memory location is currently allocated. The allocation status is veriied using
vslab for small memory objects and using VEH for large ones. This prevents the issue of attempting to deallocate
an object that has already been freed, commonly known as a double-free error.
These rigorous checks form an integral part of PMAlloc’s design, serving as preventive measures to guard

against both unintended and malicious misuse of the memory allocator APIs.

5 OPTIMIZATION OF METADATA MANAGEMENT

In this section, we introduce three optimizations which address the metadata management issues in persistent
memory allocators.

ACM Trans. Comput. Syst.

14 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

Blocks B0 B1 B2 B3 B4 B5 B6 B7 …

cache line #0 cache line #1 cache line #2 cache line #3

Bitmap

Sequential

mapping

(a)

Blocks B0 B1 B2 B3 B4 B5 B6 B7 …

Bitmap

Interleaved

mapping

(b)

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 … …

M0 M4 M8 M12 M1 M5 M9 M13 M2 M6 M10 M14 M3 M7 … …

Fig. 8. Interleaved bitmap mapping.

5.1 Interleaved Mapping

Using the slab structure, contiguous small allocations from the same slab need to update consecutive bits in slab
bitmaps. Because these bits are likely stored in one CPU cache line, it may cause allocator-induced repeated cache
line lushes, leading to longer request latency. A naive approach is allocating blocks at random ofsets. Thus,
multiple cache lines may be accessed in a random order avoiding relushing the same cache line. However, this
approach compromises the spatial locality of blocks in a persistent heap. Another approach used in the previous
work [8, 10] is managing free blocks in a slab using a linked list rather than bitmaps. Each free block has an
embedded link pointer. There are three issues with this design. First, placing a header right before the allocated
data blocks is prone to metadata corruption from memory corruption bugs [23]. Second, the size of link pointers
is much smaller than the size of a cache line. When the link pointers and their corresponding data blocks are
stored in the same cache line, allocator-induced relushes are still possible. Third, blocks in tcache may still be
mapped to the same cache line. Therefore, none of the existing work completely solves the problem.
We design a two-level interleaving scheme to produce a metadata layout that eliminates cache line relushes

while maintaining the spatial locality of blocks.
Interleaved mapping of slab bitmaps. Assume we have a bitmap, which has � bits in total. We divide the

bitmap into bit stripes, each of which is mapped to a cache line. The stripe size � is the total number of bits in
a stripe and is capped by the cache line size. We then map consecutive blocks to bits in diferent stripes in an
interleaved manner. We use Figure 8 for illustration. In this example, we assume the number of bit stripes is 4. In
the baseline, bits are sequentially mapped to the data blocks. For example, bits�0,�1, and�2 are mapped to
data blocks �0, �1, and �2, respectively. As allocators need to persist the bitmap upon each allocation for crash
consistency, contiguous allocations of �0, �1, and �2 result in relushing the same cache line storing bits�0,�1,
and�2. In the interleaved mapping,�0,�1, and�2 are placed in diferent bit stripes and cache lines. Because
�0,�1, and�2 are respectively stored in cache line #0, #1, and #2, there will be no cache line relush when �0,
�1, and �2 are allocated in the slab.

Interleaved layout of tcache. When tcache is used, the order of block allocation is determined by the LIFO
algorithm managing tcache. Therefore, it is still possible to have cache line relushes of contiguous allocations
if the bits of blocks selected by tcache are mapped to the same cache line. To avoid cache line relush issue,
we design a new interleaved tcache layout (shown in Figure 9a). Speciically, we divide a tcache into multiple
sub-tcaches. The number of sub-tcaches is determined by the number of bit stripes. Each sub-tcache caches
addresses of blocks whose corresponding bits are mapped to the same cache line. We maintain a cursor to indicate

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 15

sub-tcache #3

sub-tcache #2

sub-tcache #1

M0 M4 M8 M12 …

M1 M5 M9 M13 …

M2 M6 M10 M14 …

M3 M7 M11 M15 …

sub-tcache #0

(a) Interleaved tcache layout.

LE0

LE1

LE2

LE4

LE5

LE6

LE4

LE5

Interleaved

appending

Sequential

appending

LE1

LE3

LE0

❸

❹

Segment #0

Segment #1

LE2

LE3

…

LE6

…

❷
❶

(b) Interleaved log appending.

Fig. 9. Interleaved mapping used in tcache and log structures.

which sub-tcache is used for current allocation. The cursor points to the next sub-tcache after one allocation,
which ensures that sub-tcaches mapped to diferent cache lines are used to serve contiguous allocations. For
example, assume that tcache is illed with blocks corresponding to bits�0 to�15 in Figure 9a. Because tcache
selects the blocks alternatively from the 4 sub-tcaches for serving contiguous small allocations, we can guarantee
that tcache does not select bits mapped to the same cache line. Consequently, cache line relushes are efectively
eliminated.
Interleaved appending of logs. Existing approaches sequentially append new log entries to the tail of

WALs or other log-based structures as shown in Figure 9b. They may cause cache line relushes if the size of log
entries is smaller than the cache line size. To eliminate this kind of cache line relushes, we design an interleaved
log-appending approach. Speciically, PMAlloc partitions the tail part of a log into multiple log segments (e.g.,
Segment #0,#1 in the igure). The size of each segment is 64 B. The segments are aligned to the cache line boundary.
The log entries are appended to diferent segments alternatively. We use an example to further illustrate it as
shown in Figure 9b. The working thread appends 5 log entries denoted as ��0 to ��4. We assume their size is 8
B. When the sequential appending is used, ��1 to ��4 are appended to the log sequentially, causing cache line
relushes. In contrast, when the interleaved appending is used, ��1 and ��3 are appended to Segment 1. ��2
and ��4 are appended to Segment 0. Because these consecutive log entries (e.g., ��0 and ��1) are stored in two
segments in diferent cache lines, PMAlloc can efectively eliminate repeated cache line relushes.

5.2 Slab Morphing

The existing allocators use static slab segregation to manage slabs, leading to memory fragmentation. We design
a new technique, named slab morphing, to address this issue. The idea is that when memory usage of a slab is low,
PMAlloc allows it to be transformed to a slab of another size class. During the transformation, the slab may store
two types of data blocks of diferent sizes. We need to address two challenges in the design of slab morphing. (1)
The scheme needs to guarantee the correctness of indexing two types of blocks belonging to diferent size classes.
(2) We need to minimize the overhead of managing these blocks.

Block allocation using slab morphing. We manage all the slabs using an LRU list. The slab that is least
recently accessed is placed at the head of the list. Slab morphing is only enabled when a small object request
comes but existing slabs of the request size class have no space. PMAlloc will choose a slab for morphing and
transforming its metadata.

ACM Trans. Comput. Syst.

16 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

Before morphing In morphing

Header

B0
B1
B2
B3
B4
B5
B6
B7
B8
…

New

Header

…

NB1

NB3

Allocated

Free

Allocated

Free
…

Allocated

Allocated

1

5

6 Allocated

StateIndex

Size_class

Data_offset

Bitmap

…

Size_class

Data_offset

Flag

Bitmap

Old_size_class

Old_data_offset

Index_table

Free

Allocated

Free

Free

State

Free

Free

Allocated

Allocated

Free
…

State

1

0

2

0
…

cntblock

volatile

Flag

cntslab > 0

volatile
cntslab = 0

volatile

NB0

NB2

Fig. 10. Illustration of slab morphing.

Selecting a slab candidate for morphing. PMAlloc scans the LRU list from head to tail and chooses a slab for
morphing when its ����������� is lower than a threshold of space utilization (��), where ����������� is deined
as the ratio of the number of allocated blocks to the number of total blocks in the slab. We set �� as 20% in its
current design (see Section 8.7). Because slab morphing needs to change the format of slab headers, a slab will
not be selected if the new header space is overlapped with block spaces having live data.

Transforming slab metadata. Then, PMAlloc needs to reset the metadata of the chosen slab. For the convenience
of our discussion, we call the slab before, in, and after morphing ������� ��� , ������ , and ������ ��� respectively; we
refer to the blocks allocated in ������� ��� as ������� � ��� . ������ � ��� and ������ ��� are regular slabs whose headers
consist of a size_class ield, a data_ofset ield (the ofset of the starting address of the data region relative to
the starting address of a slab), and its bitmap ield. ������ needs to support indexing blocks of two size classes.
Therefore, we add additional metadata to help implement this functionality. Speciically, we add an old_size_class

ield and old_data_ofset ield in the header of ������ to support the index of ������� � ��� . We also add an index_table
that comprises entries for each ������� � ��� . Each entry within the index_table stores the block index in ������ � ���
and the current allocation state of the block. All allocation states are initially set to "Allocated", and they are
subsequently updated to "Free" once ������� � ��� is deallocated. The presence of the index_table is crucial for
maintaining the recoverability of �������� ��� since direct access to the bitmap of ������ � ��� is no longer possible.
The index table has a small memory footprint because (1) each table entry is only 2 B and (2) we only have a
limited number of �������� � ��� since we only select a slab for morphing when its slab usage is low. Finally, we
add a counter ������� in the volatile header vslab to denote the number of allocated �������� ��� in the slab. If
������� > 0, the slab is a ������ , otherwise it is a regular slab. We also maintain a counter �������� in the volatile
memory for each block in the ������ to denote the number of ������� � ��� that occupy it. The corresponding
bitmap bit for a block will remain set if its �������� is not equal to zero. This non-zero value indicates that the
memory block is still occupied by one or more ������� � ��� .

We transform metadata in the following steps. Step 1: set the old_size_class and old_data_ofset; Step 2: set the
index_table; Step 3: set the size_class, data_ofset, and bitmap in the new slab header. Because slab transforming
involves multiple steps of modiication of metadata, we add a lag ield to indicate the step of transformation
to ensure crash consistency. Flag is set to 0 for ������ and ������ ��� . During the transformation, we atomically
increment lag by 1 after each step. Size_class, data_ofset, and allocation information in the bitmapwill be changed
after we have a copy of them in old_size_class, old_data_ofset, and index_table. We can undo the morphing if
a crash happens during the transformation using lag, which denotes which step has been completed. After
metadata transformation, ������ is removed from the LRU list because it cannot morph again. It is also removed
from the slab list of old_size_class and inserted into the slab list of size_class.

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 17

Figure 10 shows an example of transforming a slab of a small size class to a slab of a large size class with the
slab morphing technique. Before morphing, �1, �5, and �6 are allocated in ������� ��� . During the transformation,
�������� are set for each block. For ��0, its �������� is set to 1 because only �1 of ������ � ��� is occupied in ��0.
For ��2, its �������� is set to 2 because both �5 and �6 are occupied in ��2. Note that the slab morphing also
supports slab transforming from a large size class to a small size class.

Block release. When a block is released, PMAlloc determines whether it is a block in ������ � ��� by querying
������� and �������� . ������� � ��� will be directly put back to ������ bypassing tcache with its state set to free in
index_table. When ������� becomes 0, ������ is reset to a regular slab ������ ��� and is inserted into the LRU list
again.
The slab morphing procedure introduces a small overhead because it only involves metadata modiication.

This overhead could be further reduced by employing a background thread to identify and morph slabs with low
memory utilization. However, for implementation simplicity, this optimization is not incorporated in the current
version. For allocation and release of blocks of a new size class, blocks in ������ can be used to ill the tcache as
normal blocks without extra overhead. For the release of ��������� ��� , PMAlloc needs to modify its state in the
index_table and lush it. These operations have a low cost because �������� � ��� only account for up to 20% of the
total blocks as set in our experiments. We quantify its overhead in Section 8.3.

5.3 Log-Structured Bookkeeping

For large allocation and release, PMAlloc uses a virtual extent header (VEH) in DRAM to manage every extent
in persistent memory. VEHs are moved between the activated list, the reclaimed list, and the retained list. The
essential metadata (e.g., size and address) needs to be updated in their corresponding extent headers in persistent
memory. Because of in-place extent header updates, random access to the headers is unavoidable. To eliminate
the random accesses induced by large allocations, we design a log-structured bookkeeping scheme as shown in
Figure 11. Speciically, when a virtual extent header (e.g., ���1) is updated, its essential metadata is appended to
a persistent bookkeeping log. The log is sequentially written and cleaned up when it is full. We trade persistent
memory space for better spatial locality.
The overhead of log-structured bookkeeping in allocators is very low for the following reasons. First, the

persistent bookkeeping log only stores small essential metadata. Each log entry is only 8 B, consisting of 26 bits
for "size", 36 bits for "addr", and 2 bits for "log type". For "addr", we only need 36 bits because (1) only the low-order
48 bits are used in 64-bit address space in Intel x86 processors [63] and (2) our address is 4 KB-aligned, thus
the lower 12 bits are not needed in the log entry. For processors supporting the 5-level page table processor
feature [33], they allow the operating system to extend the size of virtual addresses from 48 bits to 57 bits. In such
systems, we utilize a log entry of 16 B. The irst 8 B stores "addr", and the second 8 B stores "log type" and "size".
Despite this increment, the log entry size remains relatively insigniicant compared to the requested allocation
size. This is diferent from traditional log-structured ile systems, whose log entry can be as large as a request
size. Consequently, the space overhead of metadata logging is much smaller than data logging in traditional
log-structured ile systems. Therefore, we can aford to trade more space for a better space locality without
incurring the overhead of garbage collection. Second, log entry size is uniform in persistent bookkeeping logs,
leading to a simpliied log management process.

One major challenge is cache line relushes for writing small log entries. We introduce the layout of persistent
bookkeeping logs and how to prevent cache line relushes in logging and how to reduce GC overhead.

The layout of persistent bookkeeping log. The persistent bookkeeping log has two components in DRAM
and persistent memory, respectively. Its layout is shown in Figure 12. At the time of initialization, PMAlloc
creates a ile of 100MB in persistent memory to store log entries. A log ile is divided into chunks of 1 KB, each
of which can store 128 log entries. The chunks are managed as a linked list. The log ile has a log header, which

ACM Trans. Comput. Syst.

18 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

append

Activated

list

Reclaimed

list

Retained

list

VEH2 VEH3 VEH5

VEH6

VEH1 VEH4

malloc() free()

Program

Data

extent 1

DRAM Persistent memory

LE1

Persistent bookkeeping log

LE4

size

addr

log_type

Log entry (LE)

…Data

extent 2

Data

extent 3

Data

extent 4

Fig. 11. Illustration of log-structured bookkeeping.

Chunk1

h
e

a
d

e
r

P
e

rs
is

te
n

t

m
e

m
o

ry
D

R
A

M

…

RB-Tree

…

Free ListVC1

VC2

Chunk2

h
e

a
d

e
r

Chunk3

h
e

a
d

e
r

Chunk4

h
e

a
d

e
r …Log

header

alt = 0

pointer 0

pointer 1

Fig. 12. The memory layout of the persistent bookkeeping log. VC denotes vchunk. Chunks in orange and white color denote

active and free chunks respectively.

stores two pointers and an alt bit. One of the pointers refers to the head of the linked list of active log chunks
upon recovery; the other one is only used by GC for building a new linked list. The alt bit indicates which one of
the two pointers is active. Each chunk has a chunk header, which stores its ID number, an activeness bit, and a
pointer to the next active chunk.

To speed up the log operation, each log chunk has a corresponding volatile chunk, vchunk in DRAM. It stores
a bitmap indicating the valid log entries in the chunk. Besides, PMAlloc uses a red-black tree to manage the
vchunks of the allocated chunks and a free chunk to manage free chunks. After GC, all the freed chunks are
retained in a linked list for fast allocation in the future. When a new log chunk is needed, it is irst retrieved from
the free list. If the free list is empty, a new chunk is created and appended to the tail of the log ile in persistent
memory.
Basic log operation. In PMAlloc, the log entry has two diferent types: normal entry and tombstone entry.

When allocating a large block, a normal entry will be created and added in the current chunk. To avoid cache
line relushes, we map consecutive log entries to the chunk in an interleaved manner, similar to the method in
Section 5.1. Then the corresponding bit in the bitmap of its vchunk will be set.
Similar to the normal entries, a tombstone entry will be added when freeing a large extent. In addition, the

tombstone entry will store the pointer of the normal entry to be deleted and clean its corresponding bit in the
bitmap of vchunk for fast garbage collection.

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 19

Heap file #0

Local PM

Heap file #1

Heap file #2

Arena #0

Persistent Heap

Arena #1 Arena #2

Cores #0 Cores #1 Cores #2

❶

❷

❸

Cores #2Cores #1CPU Cores

tcachetcache

Arenas

Heap file

Remote PM

Heap file

…

❹

Node 0 Node 1

malloc()

Persistent Heap Persistent Heap Persistent Heap

Remote ClientsRemote ClientsLocal Clients

Fig. 13. NUMA-aware allocation process. Code path 1: allocation using the local arena. Code path 2: expand the local arena

via OS. Code path 3: allocation using the arena on the same NUMA node. Code path 4: allocation using remote arenas on

diferent NUMA nodes.

Garbage collection (GC). To control the size of the log ile, we need to execute garbage collection (GC) to drop
the log entries that are marked as deleted by the tombstones. PMAlloc supports two GC algorithms including fast
GC and slow GC [31], which are designed to make diferent tradeofs between the GC overhead and memory
eiciency. Speciically, if the size of log iles is larger than a certain memory usage threshold��������� (default
value of 0.2%), PMAlloc irst executes a fast GC. After that, if the size of log iles still exceeds the threshold, it
applies a slow GC.
The fast GC algorithm scans the bitmap of each vchunk in the red-black tree. If the bitmap of a vchunk is

empty, it will be moved to the free list. Because the fast GC algorithm does not need to access persistent memory,
its overhead is trivial.
When the slow GC algorithm is executed, a new active chunk list ������� will be created to store the active

log entries. The slow GC algorithm scans all the log entries in the existing active chunk list ������� and checks
whether the log entries are alive via bitmap. The log entries that are alive in ������� will be copied to chunks in
������� . The tombstone entries will be removed in the process. When the scanning is completed, PMAlloc marks
������� as the current active chunk list by lipping the alt bit. Then it recycles all the chunks in ������� .

6 NUMA-AWARE MEMORY ALLOCATION AND DEALLOCATION

Contemporary computer systems usually use the popular NUMA architecture to improve their performance. To
accommodate the NUMA architecture, PMAlloc should be carefully designed considering the longer latency of
memory accesses across NUMA nodes. We need to enforce failure consistency while minimizing the number of
remote memory accesses in the allocation and deallocation of persistent memory. PMAlloc uses the slab-based
and extent-based (de)allocation for small and large blocks respectively. In the following subsections, we irst
describe how we optimize the allocation and deallocation processes of small memory blocks in PMAlloc. Then
we describe how we adapt these optimizations to large (de)allocations.

ACM Trans. Comput. Syst.

20 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

Algorithm 1: NUMA-aware allocation of small blocks

Input: memory block size �������
Output: memory address addr���

1 SZ← Get_Sizeclass_with_Size(�������);

2 if not Try_to_alloc_with_tcache(tcache.freelist����� [SZ],addr���) then

/* Try to fill tcache with the arena it is affiliated to. */

3 success_flag← Try_Fill_Tcache(Get_Arena(tcache));

/* If fails, try with arenas in the same node. */

4 if not success_flag then

5 foreach arena����� in the local node do

6 success_flag← Try_Fill_Tcache(arena�����);

7 end

8 end

/* If fails, try with arenas in remote nodes. */

9 if not success_flag then

10 foreach arena������ in the remote node do

11 success_flag← Try_Allocate_without_Tcache(arena������ , addr���);

12 if success_flag then return addr��� ;

13 end

14 end

15 if not success_flag then

16 ERROR("Memory exhausted.");

17 end

/* Now, we can use tcache to allocate the block. */

18 addr��� ← Allocate_with_tcache (tcache.freelist����� [SZ]);

19 end

/* Persist the allocation. */

20 Set_Bitmap(pslab.bitmap, addr���);

21 Flush(pslab.bitmap);

22 return addr��� ;

6.1 NUMA-Aware Allocation of Small Blocks

To reduce remote memory accesses across NUMA domains, PMAlloc needs to allocate local memory blocks irst
before allocating remote memory blocks in other NUMA nodes. For this purpose, PMAlloc creates a dedicated
persistent memory heap for every arena corresponding to each CPU core as shown in Figure 13. Speciically, we
irst create heap iles in DAX ile systems mounted to diferent NUMA nodes. Then, when an arena is created, its
heap space is mapped to the heap iles based on the ID of the NUMA node that the arena is ailiated with. For
example, as Figure 13 shows, Arena #0 is ailiated with Core #0. Therefore, the heap space of Arena #0 is mapped
to the heap ile #0 on NUMA node 0.

We design a NUMA-aware allocation policy to minimize the allocation from remote NUMA nodes. Its algorithm
is shown in Algorithm 1. Its input is request size ������� and its output is the allocated memory address ������� .
Speciically, the working thread will allocate memory blocks from its tcache (Line #2). If the tcache is empty,

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 21

Node 0 Node 1

D
R

A
M

P
M

Sync Thread

free()

Recognize

Record

On-demand Sync

malloc()

Phase 1
Phase 2

Modify

regular bitmap

shadow bitmap

vslabnode id

Awake Epoch-based Sync

Remote ClientsRemote ClientsRemote Clients
Remote ClientsRemote ClientsLocal Clients

bitmap

pslabTS

Create

Deallocation log

Synchronize

Local ThreadRemote Thread

TS
address

Fig. 14. Major data structures and operations of the two-phase deallocation mechanism in PMAlloc. TS is short for timestamp.

PMAlloc needs to ill the tcache with the arena that it is ailiated to (Line #3). PMAlloc will search the slabs of
the given size class to ind free memory blocks and mark them as allocated in the bitmap of vslab (i.e., the volatile
header of a slab). If the given arena does not have enough space to fulill the allocation request, the working
thread will irst try to extend the heap space of the arena by creating and mapping new heap iles through OS.
If the OS request fails, the working thread will turn to other arenas to search for suitable memory blocks. In
this case, it will irst check the arenas on the same node (Line #4-8). If all of the previous functions fail, the
working thread eventually has to check arenas on other NUMA nodes to serve the request (Line #9-14). The
Try_Allocate_Without_Tcache() function will persistently allocate the memory block in the remote arena. Finally,
������� is assigned with the address of the memory block to be allocated (Line #18) and PMAlloc will persist the
allocation in the bitmap of pslab (i.e., the persistent header of a slab) in persistent memory (Line #20-21).

6.2 NUMA-Aware Deallocation of Small Blocks

There are many challenges in the design of NUMA-aware deallocation. (1) Allocators have no knowledge of the
whereabouts of incoming deallocation requests. Therefore, they have to serve both remote and local deallocation
requests eiciently. (2) Allocators need to make sure the blocks released by remote threads can be reused for
serving requests from local threads. Otherwise, blowup fragmentation [6] (i.e., any memory freed through remote
deallocations cannot be reused again) may be induced. (3) The deallocation process used in the existing persistent
memory allocators need many remote reads and writes for searching and updating the metadata of memory
blocks in the arena, resulting in performance degradation of the allocators.
An intuitive approach to address these issues is creating a dedicated background thread for each NUMA

node to handle deallocation requests from both local and remote threads. The background threads can complete
the deallocation process without remote memory access. However, this approach does not work for persistent
memory allocators because it may induce an unacceptable synchronization overhead. This is because the calling
threads cannot return immediately after handover to the background threads. They must wait until the metadata
of the released memory blocks is persisted in persistent memory to avoid consistency problems.

ACM Trans. Comput. Syst.

22 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

In PMAlloc, we design a two-phase deallocation mechanism to minimize the number of memory accesses
across NUMA nodes and the synchronization overhead. Its deallocation includes a remote recording phase and a
local synchronization phase. Figure 14 illustrates the major data structures and steps of the deallocation process.

Data structures: Vslabs maintain NUMA node ID of a memory block, a regular bitmap whose bits denote the
state of memory blocks between synchronizations, and a shadow bitmap whose bits denote the state of memory
blocks that have been freed by remote threads but have not been synchronized with the regular bitmap. Each
tcache also has a node ID, which is assigned by the thread that it belongs to. In persistent memory, PMAlloc
has pslabs corresponding to vslabs and manages a deallocation log on each NUMA node. The pslab contains a
persistent bitmap to record the state of memory blocks persistently and a timestamp (TS) to record when the
persistent bitmap was modiied. We utilize _rdtsc() instruction to obtain the hardware clock and generate TS, and
use the ORDO primitive [44] to ensure correct ordering of timestamps across NUMA nodes. The deallocation
log records remote deallocation operations locally. Its log entry consists of a TS to record the time of the logged
operation and the address of the memory block to be deallocated. TS is used to ensure crash consistency when
serving concurrent remote deallocations.

The two-phase remote deallocation procedure comprises the remote recording phase and the local synchroniza-
tion phase. The remote recording phase (Phase 1 in Figure 14) is executed by a deallocation thread. The thread irst
determines if the memory block being released is from a remote NUMA node (Recognize step). If so, the thread
irst stashes this deallocation in the associated shadow bitmap of the block of the remote node (Modify step).
Then, it records essential data for failure recovery in the local deallocation log (Record step). Finally, the local
synchronization phase (Phase 2) is conducted either by allocation threads through an On-demand Synchronize

mechanism or by dedicated synchronization threads through an Epoch-based Synchronize mechanism on remote
nodes. A detailed description of these two deallocation phases is provided below.

Remote recording phase: Algorithm 2 shows the procedure of the NUMA-aware deallocation and its remote
recording phase in PMAlloc. The algorithm takes the memory address ��������� to be released as its input. The
algorithm needs to check whether a request requires remote deallocation (Line #3). It compares the NUMA node
id of the deallocation thread and the memory block to be deallocated to determine that. For the non-remote
deallocation, it returns the memory block to tcache and updates its metadata in vslab and pslab (Line #15-20).
For the remote deallocation, PMAlloc only records the deallocation request in the deallocation log (Line #4-11).
Then, it sets the bits corresponding to blocks being deallocated in the shadow bitmap of its corresponding vslab
in the remote NUMA node (Line #12-13). PMAlloc does not update the regular bitmap and the persistent bitmap
until the local synchronization phase. The pseudo-code of local synchronization is not displayed in Algorithm 2
because it is executed asynchronously and not in the critical path of deallocation. The whole remote recording
phase is completed by deallocation threads without memory access to persistent memory on diferent NUMA
nodes.

Local synchronization phase. In this phase, threads will synchronize shadow bitmaps and regular bitmaps
and free the space in the deallocation log. PMAlloc supports two kinds of local synchronization: on-demand
synchronization and epoch-based synchronization. Both synchronization process is protected under a per-slab
mutex to avoid conlict with other threads.
On-demand synchronization: it happens in the allocation process. When the allocation thread needs memory

blocks to ill its tcache, it will search vslabs one by one for available blocks. Within each vslab, it will search the
regular bitmap irst. The block status in the shadow bitmap is invisible to the working threads if the number
of available blocks in the regular bitmap is enough to ill the tcache. If they are not enough, the on-demand
synchronization will be triggered to synchronize the shadow bitmap of the current vslab. In the procedure of
on-demand synchronization, the working thread (1) applies the changes recorded in the shadow bitmap to the
regular bitmap, (2) applies the changes to the persistent bitmap, and (3) updates the TS in the pslab using the
RDTSC instruction atomically. After the synchronization, the working thread can ill its tcache using the newly

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 23

Algorithm 2: NUMA-aware deallocation of small blocks

Input: memory address addr����� to be released
1 vslab← Search_Rtree_for_vslab(addr�����);

2 arena← getArena(vslab);

/* Step 1, identify remote deallocation. */

3 if vslab.nodeid ≠ tcache.nodeid then

/* Step 2, record the release operation with deallocation log. */

4 if deallocation_log.logsize == MAX_LOG_SIZE then

5 foreach arena������ on remote nodes do

6 Create_or_Awake_thread(arena������ , Epoch_based_Sync);

7 end

8 deallocation_log = Create_New_Log();

9 end

10 Append_Log_Entry_with_TS(deallocation_log);

11 Flush(deallocation_log);

/* Step 3, register the block in shadow bitmap. */

12 vslab.has_shadow_bitmap← TRUE;

13 Set_Bitmap (vslab,addr�����);

14 else

/* Otherwise, perform local deallocation. */

15 SZ← Get_Sizeclass(vslab);

16 if not Try_to_release_with_tcache(tcache.freelist����� [SZ],addr�����) then

17 Unset_Bitmap(vslab.regular_bitmap, addr�����);

18 end

/* Persist the deallocation. */

19 Unset_Bitmap(pslab.bitmap, addr�����);

20 Flush(Pslab.bitmap);

21 end

22 return;

freed blocks through the regular bitmap. The corresponding log entries in the deallocation log will be freed and
recycled in the epoch-based synchronization.
Epoch-based synchronization: it is triggered when the size of any deallocation log exceeds a threshold (e.g., 4

MB in our design) in the remote recording phase. The trigger thread will create a new deallocation log to handle
future remote deallocation requests and awake the background synchronization thread for each arena in the
remote NUMA nodes. Each arena is assigned a dedicated synchronization thread that awaits the epoch-based
synchronization signal. The synchronization thread will ind all vslabs that have not been synchronized by
on-demand synchronization in the arena. For each vslab, it synchronizes the shadow bitmap to the regular
bitmap and persistent bitmap, and then updates the TS in the pslab. When all synchronization threads complete
their work, the trigger thread will be informed to recycle the previously used deallocation log. The garbage
collection procedure is simply removing the previously used deallocation log entirely because all the remote
release operations recorded in the log are completed by synchronization threads.

ACM Trans. Comput. Syst.

24 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

Semantic and consistency guarantee. PMAlloc assumes the same programming semantics for deallocating
remote memory blocks as it does for local ones. Our two-phase deallocation process is designed to be transparent
from the user’s perspective. In this design, the deallocation function call returns as soon as the remote recording
phase is complete, while the synchronization phase is carried out asynchronously by background or allocating
threads at a later time. Despite this separation in time and operation, PMAlloc guarantees the consistency of
remote deallocations. We address this in two aspects:

First, PMAlloc strictly avoids allocating any memory block that has not been fully and persistently deallocated.
This ensures that no memory blocks will be erroneously marked as released following a failure and subsequent
recovery. With our two-phase deallocation mechanism, blocks that are in the process of being deallocated are
stashed in shadow bitmaps. These blocks are invisible to allocation threads until they have been successfully
synchronized to persistent memory. Once this synchronization is complete, the blocks are entirely deallocated.
Just as using the standard deallocation procedures, they are released in both the DRAM and persistent memory
by changing the metadata on their resident NUMA node.
Second, PMAlloc guarantees that all delayed deallocations will be completely inalized once the deallocation

function returns, even if a system failure occurs. This is achieved by using local deallocation logs. Although
the metadata for deallocated blocks is not immediately updated when the deallocation function is called, the
deallocation is logged by the deallocation thread. This log is later synchronized to the block’s metadata during a
recovery phase.

By adhering to these guidelines, PMAlloc ensures both semantic transparency and consistency, thereby ofering
a reliable solution for remote memory block deallocation in persistent memory systems.

6.3 NUMA-Aware Optimizations for Large (De)Allocations

PMAlloc adapts the similar approaches to small (de)allocations for large (de)allocations. (1) Similar to small
allocations, PMAlloc allocates local memory extents irst before allocating remote memory extents in other NUMA
nodes in the implementation of large allocation. (2) Similar to small deallocations, PMAlloc uses a two-phase
extent deallocation mechanism to minimize the number of memory access across NUMA nodes. (3) PMAlloc uses
deallocation logs to enforce crash consistency of large allocators.
NUMA-aware large allocations.When an allocation thread needs one large extent to serve user requests,

it traverses the existing arenas to ind one having enough space for the extent. The traversing order of arenas
is similar to small allocations: the arena it is ailiated to, arenas on the local node, and then the arenas on the
remote nodes. In this way, PMAlloc ensures that local memory extents are always allocated in preference to
remote ones. When a candidate extent is chosen, the allocation thread will move its VEH to the activated list and
append a log entry to the bookkeeping log to persistently record the allocation.

NUMA-aware large deallocations. PMAlloc also adopts a two-phase NUMA-aware deallocation approach,
which also includes the remote recording phase and local synchronization phase, for serving remote release
of large memory extents. Figure 15 shows the major data structures and operations in it. Similar to small
deallocations, we add a deallocation log in each NUMA node to ensure crash consistency and a shadow log in each
arena to temporarily store the tombstone log entries of remote released extents. We also add a remote-released list

for each arena to record which VEHs point to the extent being remotely released.

• Remote-recording phase. The release thread records the deallocation operation in the deallocation log and
appends a tombstone log entry for the released extent to the shadow log. Then it moves the corresponding
VEH from the activated list to the reclaimed list and remote-released list.
• Local synchronization phase. PMAlloc also supports two kinds of synchronization approaches, on-demand
synchronization and epoch-based synchronization. For on-demand synchronization, when an allocation
thread inds an extent meeting its size requirement, it will check whether the VEH of this extent has

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 25

Node 0 Node 1

D
R

A
M

P
M

Sync Thread
free()

Record

On-demand Sync

malloc()

Phase 1
Phase 2

Append

Arenanode id

Awake Epoch-based Sync

Remote ClientsRemote ClientsLocal Clients

Bookkeeping logTS

Create

Deallocation log

Synchronize

Local ThreadRemote Thread

TS
log entry

shadow log

Recognize

Remote ClientsRemote ClientsRemote Clients

VEHVEH ···

remote-released list

Fig. 15. Illustration of NUMA-aware large deallocation design. TS is short for timestamp.

been added to the remote-released list. If so, it will migrate all the tombstones stored in the shadow log
to the bookkeeping log and then remove all the VEHs from the remote-released list, to ensure all the
remote releases that happened before in the arena are synchronized. For epoch-based synchronization,
it happens when any deallocation log for large deallocations exceeds the capacity threshold (4 MB). The
synchronization threads will be awoken in each arena of remote nodes to synchronize the shadow log and
empty the half-released list. After all the synchronization threads complete their work, the previously used
deallocation log will be removed.

To ensure crash consistency, PMAlloc also adds TS to deallocation log entries and persistent bookkeeping logs.
The TS in a bookkeeping log will be updated when tombstone log entries are appended to it in the synchronization
phase. Similarly to small deallocations, If a power failure happens before normal exits, the recovery thread will
traverse all the deallocation logs and replay the log entries whose TS is newer than its corresponding bookkeeping
log. For these log entries, a tombstone of the remotely released extent will be appended to the bookkeeping log.

6.4 NUMA-Aware Tcache Optimization

Utilizing tcaches can accelerate memory allocations by storing blocks being recently freed in the local thread.
This approach has been adopted by most of the existing allocators [8, 10, 26, 28]. This section details how PMAlloc
ensures NUMA-locality while using the tcache technique, even when faced with scenarios like thread migration.
Guaranteeing local memory items in tcache. Except in scenarios involving thread migration, PMAlloc

guarantees that tcache only contains local memory items. First, for allocation operations, memory blocks are
primarily sourced from local arenas. The only exception arises when local heaps are exhausted, an occurrence
that is exceedingly rare. In such instances, the memory blocks allocated from remote heaps will bypass the tcache
and are directly provided to the requesting thread. This ensures that the tcache remains populated solely with
local memory items. Second, for deallocation operations, any remote deallocations are immediately identiied
and executed bypassing the tcache, ensuring tcache remains unafected by remote deallocations.

Addressing OS-level thread migration. The operating system may silently migrate threads across NUMA
nodes for eiciently utilizing hardware resources. However, existing persistent memory allocators do not adapt

ACM Trans. Comput. Syst.

26 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

their allocation strategies to the OS-level thread migration. As a result, their tcache may continue to hold and
allocate items from the original NUMA node, leading to remote object allocations. To address this, PMAlloc
introduces an optional periodic thread migration monitoring mechanism. When enabled, the PMAlloc invokes the
getcpu() system call periodically to check if the thread has migrated to another NUMA node. If such migration
is detected, the items in the tcache are transferred back to the CPU-local arena, and the thread is bound to a new
arena associated with its new CPU, thereby maintaining NUMA locality. This functionality can also be manually
invoked through the pmalloc_numa_migrate_check() interface.

7 RECOVERY

The recovery code is invoked by pmalloc_init() when the allocator detects an unclean initialization, as
evidenced by the presence of existing persistent heap iles. After the recovery process, allocators must ensure
that there is no persistent memory leak, and the metadata of the allocators is consistent. Then, the application
can conduct normal allocation and deallocation in the persistent heap again. We use a per-arena lag to mark the
states of an arena including running, normal shutdown, and recovery. We change the state to normal shutdown
when pmalloc_exit() is completed. If the recovery process inds the lag is running or recovery, it indicates a
failure has occurred during running or recovery. In this case, we need to do an additional sanity check to ensure
consistency.

Normal shutdown recovery. For a normal shutdown recovery, we irst recreate an arena for each CPU core,
and then open and map their respective heap iles and log iles. Within each arena, we scan all associated log iles.
Initially, we construct a vchunk header for each log chunk contained in these iles. Subsequently, we examine the
alt bit in each ile’s log header to retrieve the linked list of active log chunks. These active log chunks function as
leaf nodes during the reconstruction of the red-black tree. The remaining free chunks in the log iles are added to
the arena’s free list of log chunks. After that, we perform a slow GC on the persistent bookkeeping log to clean up
its tombstone entries (see Section 5.3). Then, we scan and process every log entry. Speciically, for each log entry,
we irst check its type to determine whether its corresponding extent is a slab. For the slab, we reconstruct its
volatile ����� based on the metadata in the slab header and add it to the � ����������� . Next, we read its � ��� ield
to identify whether a slab was morphing when a normal shutdown happened. If it is a ������ (see Section 5.2), we
will reconstruct its �������� and ������� additionally. For normal extents, we reconstruct their VEHs and add them
to the activated list. We also treat the space gaps between active extents as free extents and insert their VEHs to
the reclaimed list in DRAM.

Post-crash recovery. If a crash occurs during runtime or the recovery process, we execute post-crash recovery.
In this procedure, we irst conduct the normal shutdown recovery to rebuild the DRAM metadata. Then, we
additionally use diferent methods to do memory sanity check to resolve possible inconsistency issues according
to the consistency model of allocators. For PMAlloc-LOG, we replay WALs to reverse the metadata changes of
partially completed operations. We retain the old WALs until all log entries have been replayed to prevent the loss
of log entries in the crash during recovery. For PMAlloc-GC, we conduct conservative garbage collection [8, 9]
as in Makalu. This process is initiated from top-level root pointers with multiple garbage collection threads,
which execute a parallel mark algorithm. The garbage collection threads conservatively scan the memory regions
of root objects, treating any value within the address range of user data in the persistent memory heap as a
potential pointer. Upon identifying a potential pointer, the corresponding target object is marked as reachable.
We will then recursively identify pointers from this object. This process continues until no new objects can be
marked, indicating the coverage of all allocated blocks. As for slabs, we will read the � ��� ield in the slab header
to identify whether there is a failure during slab morphing. If a failure is detected, we undo all the operations of
metadata transformation.

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 27

Completion of delayed remote deallocations. PMAlloc relies on deallocation logs and TSs to ensure
crash consistency in the remote deallocation procedure. For a normal shutdown, PMAlloc triggers epoch-based
synchronization for each arena, thereby ensuring the completion of all outstanding remote deallocations. In
the recovery phase, no additional work needs to be executed. However, if a system crash happens before the
normal shutdown is completed, PMAlloc needs to re-do log entries recorded in deallocation logs to recover to a
consistent state. The re-do operations are executed after the post-crash recovery phase is completed. For each log
entry, the re-do thread will compare its TS with the TS stored in the pslab whose persistent bitmap contains the
corresponding bit of this log entry. If the TS of the log entry is older, it means the corresponding bit has been
synchronized before the crash happens and this log entry can be skipped safely. If the TS of the log entry is newer,
the working thread will unset its corresponding bit in the regular bitmap and persistent bitmap to complete the
release process of the recorded memory blocks. After all log entries have been checked, deallocation logs can be
safely removed and PMAlloc is ready for serving new allocations and deallocations.

8 EVALUATION

8.1 Experimental Setup

Experimental platform. We run the experiments on a Linux server (kernel 5.3.0-050300-generic) with two
Intel Xeon Gold 5218R CPUs. Each CPU has 20 physical cores (40 hyperthreads), 64GB DRAM, and two Intel
Optane DIMMs (128GB per DIMM). Every pair of DIMMs attached to a CPU is mounted with the Ext4-DAX
ile system and conigured in App Direct Mode. We use the numactl utility to bind every thread to one core in
the irst socket to avoid the NUMA efects in all the experiments except those related to FPTree (Section 8.5)
and NUMA efect (Section 8.4). In cases where the number of threads exceeds the available number of processor
hyperthreads, additional threads are bound to CPU cores based on the modulus of their thread number against
the total number of cores. All source codes are compiled with g++7.5 with -O3.

Compared allocators.We compare PMAlloc with state-of-the-art persistent allocators, including PMDK [17],
nvm_malloc [71], PAllocator [63], Makalu [8], and Ralloc [10]. Since all of them except PAllocator are open-source,
we use their public implementations for tests. We reimplement PAllocator as faithfully as possible according to
the description in the paper. We exclude jemalloc [26], Hoard [6], and tcmalloc [28] because they are volatile
allocators. To support existing consistency models, we implement two versions of PMAlloc: PMAlloc-LOG and
PMAlloc-GC, which leverage WAL and GC to keep crash consistency and avoid memory leaks, respectively. We
choose the number of bit stripes as 6 in interleaved mapping because it provides the optimal performance. The
impact of the number of bit stripes is further discussed in Section 8.7.

For ease of description, we call PMDK and WAL-based allocators (i.e., nvm_malloc, PAllocator, and PMAlloc-
LOG) as strongly consistent allocators. In contrast, we call GC-based allocators (i.e., Makalu, Ralloc, and PMAlloc-
GC) weakly consistent allocators.

8.2 Evaluations using Benchmarks

Benchmarks. We use ive representative benchmarks, each of which has a unique allocation pattern, in the
evaluation.
Threadtest [6] measures multi-threaded performance of an allocator for � iterations of allocations. In every

iteration, each thread allocates � objects in size of � and then frees all of them independently. In the experiment,
we set � = 104, � = 105, and � = 64 B.

Prod-con [6, 70] simulates a producer-consumer workload for � threads. Each pair of threads produces and
consumes � objects, whose total size is � . One thread of each pair allocates objects while the other one frees them.

Our experiment sets � =
2×107

�
and � = 64 B.

ACM Trans. Comput. Syst.

28 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

1 2 4 8 16 32 64

100

1000

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

PMDK nvm_malloc PAllocator PMAlloc-LOG

2 4 8 16 32 64

10

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

1 2 4 8 16 32 64

100

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

1 2 4 8 16 32 64

1

threadsT
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

Fig. 16. Performance (log10 scaled) of small allocations with strongly consistent allocators.

Shbench [60] is a stress test for an allocator. In each iteration, each thread allocates and frees objects of varying
sizes from 64 B to 1000 B. The smaller objects are allocated and freed more frequently. We run 105 iterations.
Larson [49, 63] simulates a behavior where some objects allocated by one thread are freed by another thread.

In each iteration, each thread randomly allocates and frees 103 varied-size objects. After 104 iterations, each
thread creates a new thread that starts with the remaining objects and repeats the same allocation/deallocation
procedure. We generate two workloads: Larson-small managing small objects (64 B to 256 B) and Larson-large

managing large objects (32 KB to 512 KB). We run the test for 30 seconds.
DBMStest [25]: it simulates the allocation in a database with TPC-DS benchmark for � threads. In each iteration,

each thread allocates � large objects, whose sizes follow a Poisson distribution between 32 KB to 512 KB, and then

randomly deletes 90% of them. We choose � =
104

�
objects. We run 50 iterations for warmup and 50 iterations for

evaluation.
Performance of small allocations. We irst evaluate the allocator performance for small object allocations

with varying numbers of threads on Threadtest, Prod-con, Shbench, and Larson-small. For a fair comparison, we
show the results of strongly and weakly consistent allocators in Figure 16 and Figure 18, respectively. Overall,
PMAlloc outperforms and scales better than all the counterparts on all benchmarks.

Figure 16 shows that PMAlloc-LOG is up to 6.4x, 3.5x, and 3.9x faster than PMDK, nvm_malloc, and PAllocator,
respectively, on the four benchmarks. PMAlloc-LOG outperforms its counterparts because the interleavedmapping
reduces the number of cache line relushes in both metadata updating andWAL updating. To further analyze these
results, we use the linux perf tools [22] to measure the breakdown of the execution time of diferent benchmarks
with 8 threads. The execution time is normalized. The benchmark execution consists of object searching, splitting,
and coalescing of extents in allocation/deallocation (denoted as Search), metadata lushing (FlushMeta), WAL
lushing (FlushWAL), and others (Other). In the breakdown analysis, we ix the number of test operations at 10

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 29

Base
+IM-tcache

+IM-slab
+IM-WAL

PMAlloc
0

1

2

(a) Threadtest

e
x
e
c
u
ti
o
n
 t
im

e

FlushMeta FlushWAL Search Other

N
o
rm

a
liz

e
d

N
o
rm

a
liz

e
d

Base
+IM-tcache

+IM-slab
+IM-WAL

PMAlloc
0

1

(d) Larson-small

Base
+IM-tcache

+IM-slab
+IM-WAL

PMAlloc
0

1

2

(c) Prod-con

e
x
e
c
u
ti
o
n
 t
im

e

Base
+IM-tcache

+IM-slab
+IM-WAL

PMAlloc
0

1

(b) Shbench

Fig. 17. Performance breakdown analysis of small allocations for LOG-based allocators.

million for the Larson benchmark, ensuring a fair comparison of time distribution. We conduct the experiment
with ive diferent versions of PMAlloc-LOG: Base denotes PMAlloc-LOG without any optimizations described
in Section 4. +IM-tcache, +IM-slab, and +IM-WAL correspond to versions where optimizations of interleaved
tcache layout, interleaved mapping of slab bitmaps, or interleaved appending of WALs, are individually enabled.
PMAlloc denotes the version where all the aforementioned optimizations are applied. As illustrated in Figure 17,
the FlushMeta and FlushWAL time account for 51% to 87% of the execution time of Base across all benchmarks.
Compared to Base, +IM-tcache reduces the FlushMeta time of Base by 14% to 62%, while +IM-slab diminishes
it by 28% to 63%. With the interleaved appending of WALs, +IM-WAL achieves the reduction of 41% to 66% in
FlushWAL time. The comprehensive optimizations of PMAlloc-LOG further reduce the total amount of lush time
(FlushMeta and FlushWAL), resulting in an overall speedup ranging from 30% to 65%. Additionally, PMAlloc-LOG
yields more beneits in Threadtest and Prod-con compared to the other benchmarks. This is because they have
more cache line relushes for their ixed allocation size.
Figure 18 shows that PMAlloc-GC achieves a maximal speedup of 70x and 6x over Makalu and Ralloc on the

four benchmarks. PMAlloc-GC has better performance because Makalu and Ralloc use the embedded linked list to
manage free blocks in persistent slabs while PMAlloc-GC uses bitmaps to manage blocks, improving data access
locality in persistent memory. PMAlloc-GC also maintains a volatile bitmap copy in DRAM for fast free block
indexing and reducing accesses to persistent memory. To further illustrate the results above, we run the small
allocation benchmarks with 32 threads and use linux perf tools to collect L1-cache miss count at runtime. Note
that we have ixed the number of operations at 10 million for Larson. Figure 19 shows that with PMAlloc-GC,
all four benchmarks have the lowest number of L1-cache miss. And PMAlloc-GC reduces the miss count by a
maximum of 70x and 2.8x compared to Makalu and Ralloc, proving the data locality enhancement achieved by
bitmap utilization. To quantify the beneit of volatile bitmap copy, we run the four benchmarks using 32 threads.

ACM Trans. Comput. Syst.

30 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

10

100

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

Makalu Ralloc PMAlloc-GC

2 4 8 16 32 64

1

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

10

100

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

1 2 4 8 16 32 64

10

100

threadsT
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

1 2 4 8 16 32 64

1 2 4 8 16 32 64

Fig. 18. Performance (log10 scaled) of small allocations with weakly consistent allocators.

Threadtest
Prod-con

Shbench
Larson-small

100

1000

L
1
-c

a
c
h
e
 l
o
a
d
 m

is
s
e
s
(M

) Ralloc PMAlloc-GCMakalu

10000

Fig. 19. L1-cachemisses(log10 scaled) with weakly

consistent allocators.

N
o
rm

a
lli

z
e
d

Threadtest
Prod-con

Shbench
Larson-small

0

1

e
x
e
c
u
ti
o
n
 t
im

e

PMAlloc-GC PMAlloc-GC w/o vbitmap

Fig. 20. Performance impact of the volatile bitmap

copy. The vbitmap denotes volatile bitmap copy.

We compare PMAlloc-GC performance with the feature on and of. The normalized results are shown in Figure 20.
It indicates that with volatile bitmap, PMAlloc-GC runs up to 1.57x faster than that with the volatile bitmap
disabled for all the benchmarks.
Performance of large allocations. Figure 21 shows the performance of large object allocations. Because

PMAlloc-GC performs the same as PMAlloc-LOG for large allocations, we exclude it in Figure 21. On Larson-large
and DBMStest, PMAlloc-LOG is up to 40x, 18x, 55x, and 57x faster than PMDK, nvm_malloc, PAllocator, and
Makalu. PMAlloc-LOG is faster than its counterparts because of using log-structured bookkeeping and the
interleaved mapping in WALs.

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 31

(b) DBMStest

1 2 4 8 16 32 64

0.1

1

threads

(a) Larson-large

T
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
) PMDK nvm_malloc PAllocator Makalu PMAlloc-LOG

1 2 4 8 16 32 64

0.1

1

10

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

Fig. 21. Performance (log10 scaled) of large allocations.

Base +LSB +IM PMAlloc
0

1

2

(a) Larson-large

e
x
e
c
u
ti
o
n
 t
im

e

FlushMeta FlushWAL Search Other

N
o
rm

a
liz

e
d

Base +LSB +IM PMAlloc
0

1

2

(b) DBMS-test

Fig. 22. Performance breakdown analysis of large allocations.

To illustrate the impact of log-structured bookkeeping and interleaved mapping for large allocations, we
evaluate the execution time breakdowns using these two benchmarks. Figure 22 shows the results. The +Log
version signiies the implementation of log-structured bookkeeping exclusively. It reduces the total amount
of lush time (FlushMeta and FlushWAL) by 28% and 45% in the two benchmarks, because the log-structured
bookkeeping provides a sequential write pattern to persistent memory. +IM exclusively enables interleaved
mapping and gains a 23% speedup in lush time for both benchmarks due to eliminated repeated cache line lushes
of log entries and WALs. The comprehensive optimizations integrated into PMAlloc-LOG achieve an overall
speedup by up to 49%.
Space usage. Figure 23 and Figure 24 show the memory consumption of diferent allocators. Because the

PMAlloc-LOG and PMAlloc-GC use the same amount of space, we only show the result of PMAlloc-LOG. PMAlloc-
LOG’s peak memory consumption is comparable to other allocators on all benchmarks. We exclude RAlloc in
Figure 24 because RAlloc does not work correctly for large objects in their open-source implementation.

Impact of thread pining.Considering that real-world applications may not employ thread-pinning techniques
in their designs, we conducted supplementary tests using benchmarks without thread pinning to assess its impact.
In this setup, threads are localized to the irst NUMA node but are not explicitly bound to individual cores.
The results are depicted in Figure 25 and Figure 26. PMAlloc continues to demonstrate superior performance
compared to other allocators.

ACM Trans. Comput. Syst.

32 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

M
e

m
o

ry

1 2 4 8 16 32 64
0

10

20

30

40

threads

c
o

n
s
u

m
p

ti
o

n
 (

M
iB

)

PMDK nvm_malloc Makalu Ralloc PAllocator PMAlloc-LOG

1 2 4 8 16 32 64
0

30

60

90

threads

M
e

m
o

ry

1 2 4 8 16 32 64
0

50

100

150

threads

c
o

n
s
u

m
p

ti
o

n
 (

G
iB

)

2 4 8 16 32 64
0

10

20

30

threads

Fig. 23. Space consumption of small object allocations.

(a) Larson-large (b) DBMStest

1 2 4 8 16 32 64
0

10

20

30

threads

M
e

m
o

ry

PMDK nvm_malloc PAllocator Makalu PMAlloc-LOG

1 2 4 8 16 32 64
0

100

200

threads

c
o

n
s
u

m
p

ti
o

n
 (

G
iB

)

Fig. 24. Space consumption of large object allocations.

8.3 Evaluations using Fragbench

We then evaluate PMAlloc on Fragbench [69] with the four workloads listed in Table 1 in Section 3. Figure 27(a)
shows the space consumption of diferent allocators. We exclude the ones in Figure 5(b) except Makalu to
avoid redundant representation. As PMAlloc-LOG and PMAlloc-GC yield the same space consumption, we only
include PMAlloc-LOG. For comparison, we also evaluate PMAlloc-LOG without the slab morphing strategy
(PMAlloc-LOG w/o SM). The result shows that PMAlloc-LOG achieves the smallest space consumption because
of the slab morphing technique.
To verify this, Figure 27(b) shows the space breakdown of PMAlloc-LOG. We divide the slabs into three

categories according to their memory utilization: 0-30%, 30-70%, 70-100%. Figure 27(b) shows that, with the slab
morphing, PMAlloc-LOG greatly increases the number of slabs with high utilization, compared to the scheme

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 33

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

1 2 4 8 16 32 64

1000

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

PMDK nvm_malloc PAllocator PMAlloc-LOG

2 4 8 16 32 64

10

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

1 2 4 8 16 32 64

100

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

1 2 4 8 16 32 64

1

threadsT
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

Fig. 25. Performance (log10 scaled) of strongly consistent allocator without thread binding.

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

1 2 4 8 16 32 64
10

100

1000

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

Makalu Ralloc PMAlloc-GC

2 4 8 16 32 64

1

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

1

1 2 4 8 16 32 64

10

100

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

1 2 4 8 16 32 64

10

100

threadsT
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

Fig. 26. Performance (log10 scaled) of weakly consistent allocator without thread binding.

without using slab morphing. Thus, it decreases the overall memory consumption. The slab morphing has more
utilization improvement with W1 and W3 because they both have a 90 % deletes in Delete phase, causing more
slabs to become candidates of slab morphing. For W2 and W4, they have fewer delete operations (0% and 50% in

ACM Trans. Comput. Syst.

34 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

M
e
m

o
ry

W1 W2 W3 W4
0.0

1.0

2.0

c
o
n
s
u
m

p
ti
o
n
 (

G
iB

)

Makalu

PMAlloc-LOG (w/o SM)

PMAlloc-LOG

(a) Space consumption.

W1 W2 W3 W4
0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 (
%

)

w/o SM 70-100%
w/o SM 30-70%
w/o SM 0-30%

SM 70-100%
SM 30-70%
SM 0-30%

(b) Space breakdown.

W1 W2 W3 W4
0

100

200

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

PMDK

nvm_malloc

PAllocator

PMAlloc-LOG (w/o SM)
PMAlloc-LOG

(c) Performance of strongly consistent allo-

cators.

W1 W2 W3 W4
0

20

40

60

80

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

Makalu
Ralloc

PMAlloc-GC (w/o SM)
PMAlloc-GC

(d) Performance of weakly consistent alloca-

tors.

Fig. 27. Results of Fragbench. SM denotes slab morphing.

Delete phase), making many slabs still have a high memory utilization after the Delete and After phases and can
not be selected as morphing candidates. A larger SU can let more slabs be morphed with a higher performance
overhead. We discuss this in Section 8.7.
Figure 27(c) and (d) show the performance of PMAlloc. PMAlloc outperforms all other allocators because of

using the interleaved mapping technique, as discussed in Section 8.2. We also observe that the slab morphing
approach may introduce a performance degradation of 4.5% on average because it needs to lush slab metadata.
Despite the slight performance slowdown, the slab morphing reduces memory usage by up to 41.9%.
To substantiate the eicacy of slab morphing, we monitored the quantity of slabs in three distinct states (i.e.,

������� ��� , ������ and ������ ���) throughout the execution of Fragbench. We modify Fragbech by expanding the
size of the total allocated memory of the After phase from 5GB to 10GB, to further show the transform ratio of
������ ��� in a longer running time. The results are presented in Figure 28. We denote the original After phase as
After1, and the expanding part as After2. We observe that slab morphing primarily occurs in the After phase. This
is because that (1) most allocation requests arrived in the Before phase belong to the same size classes, and (2) no
allocation happens in the Delete phase. Conversely, during the After phase, slabs undergo deallocations from the
Delete phase and receive new allocation requests of diferent size classes. Figure 28 shows that for W1 and W3
PMAlloc morphs 37.2% and 43.6% of slabs into ������ respectively, followed by 57.9% and 48.8% of these ������
completing the morphing process to transition into ������ ��� by the end of the After1 phase. This is because the
morphing mechanism obviates the need for new slab allocations, reutilizing existing slabs and thus signiicantly
reducing memory consumption. For W2 and W4, PMAlloc transformed 14.4% and 22.2% of ������� ��� into ������
respectively and eventually 11.6% and 17.2% of ������ complete the morphing. Additionally, during After2 phase,

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 35

(a) W1 (b) W2

(c) W3 (d) W4

0 100 200 300
0.0

1.0

2.0

Time elapsed (sec)

#
 o

f
S

la
b
s
 (

x
 1

0

)

BeforeDelete After1 After2

slab-before slab-in slab-after

0 50 100 200
0.0

1.0

2.0

3.0

Time elapsed (sec)

Before Delete After1 After2

0 100 200 300
0.0

1.0

2.0

Time elapsed (sec)

#
 o

f
S

la
b
s
 (

x
 1

0

)

Before Delete After1 After2

0 50 100
0.0

1.0

2.0

3.0

Time elapsed (sec)

Before Delete After1 After2

4
4

Fig. 28. Slab state statistic during Fragbench execution.

PMAlloc keeps morphing slabs to serve new allocation requests, and eventually most of ������ is transformed into
������ ��� . By the end of the four workloads, 98.3%, 96.1%, 97.2%, and 95.7% of ������ complete the transformation
process.

8.4 Efectiveness of NUMA-Aware Allocations and Deallocations

We use all the four benchmarks to show the performance of PMAlloc with NUMA cores. In each benchmark, we
increase the number of threads from 16 to 80. As the prior work did [10], we irst pin each thread to one core on
the irst NUMA node, and then to one hyperthread on the same node. When the number of threads exceeds the
maximum number of hyperthreads on one node (i.e., 40), we pin the remaining threads to the other node. In the
Prod-con test, we still pin the producer threads to the irst node, and the consumer threads to the second node as
described in Section 3.5. For PMDK, we leverage its pool set feature to unify persistent memory heaps across
two nodes. Other persistent memory allocators lacking multi-heap capability allocate memory blocks only on
the irst NUMA node and directly release remote blocks. To further highlight the beneits for using our NUMA
optimizations, we add a compared system, named PMAllocNN , which denotes PMAlloc without enabling NUMA
optimizations. PMAllocNN has similar allocation and deallocation behaviors to existing allocators but enables
metadata management optimizations proposed in Section 5.
Figure 29 shows the results of strongly consistent allocators. PMAlloc-LOG achieves up to 2.9x performance

improvement over PMAllocNN-LOG and 7.3x performance improvement over other allocators. For Threadtest,
Shbench, and Larson, the performance improvement is mainly from our NUMA-aware allocation, because all of
these benchmarks have almost no cross-thread releases (< 1%) [2]. When the number of threads exceeds 40, these
benchmark will run on two nodes. The performance improvement is because PMAlloc-LOG can allocate memory
blocks on the local node of the working threads, while other allocators are unaware of the NUMA efect, resulting
in allocations on the remote node. For the Prod-con benchmark, allocators always allocate local memory blocks

ACM Trans. Comput. Syst.

36 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

16 24 32 40 48 56 64 72 80

100

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

PMDK nvm_malloc PAllocator PMAlloc-LOG

16 24 32 40 48 56 64 72 80

10

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

16 24 32 40 48 56 64 72 80

100

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

16 24 32 40 48 56 64 72 80

10

threads
T

h
ro

u
g

h
p

u
t

(M
 o

p
s
/s

e
c
)

PMAllocNN-LOG

Fig. 29. NUMA test for strongly consistent allocators.

Threadtest Prod-con Shbench Larson-small
0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 (
%

)

3.4 1184.9 605.7 42

PMAlloc-LOG LT
PMAlloc-LOG RT

PMAllocNN-LOG LT
PMAllocNN-LOG RT

4.4 6.9 15 82 116 87

PMDK LT
PMDK RT

Fig. 30. Breakdown analysis of persistent memory trafic. The absolute number (GB) of total trafic is marked on the top. LT

is short for local trafic and RT is short for remote trafic.

but release them remotely. PMAlloc-LOG achieves up to 4.3x performance improvement over other allocators
and 1.4x over PMAllocNN-LOG. This is because the two-phase NUMA-aware deallocation of PMAlloc-LOG
eliminates remote NUMA accesses in the remote release procedure.
To further explore the reason for the performance improvement, we conduct a persistent memory traic

breakdown analysis of PMAlloc-LOG and PMAllocNN-LOG on all four benchmarks with 80 threads. We use
Intel’s IPMCTL tools [34] to record the total amount of data accessing persistent memory. We then use Intel’s
PCM tools [35] to record the amount of data accessed from remote NUMA nodes as Nap [74] did. Figure 30 shows

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 37

Table 2. The amount of data writen to internal media of persistent memory.

Benchmark PMAlloc PMAllocNN PMDK
Threadtest 0.5 GiB 2.1 GiB 6.8 GiB
Prod-con 2.1 GiB 4.9 GiB 11 GiB
Shbench 45 GiB 75 GiB 99 GiB

Larson-small 135 GiB 62 GiB 62 GiB

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

1 16 24 32 40 48 56 64 72 80

10

100

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

Makalu Ralloc PMAllocNN-GC PMAlloc-GC

16 24 32 40 48 56 64 72 80

1

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

16 24 32 40 48 56 64 72 80

1

10

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

16 24 32 40 48 56 64 72 80

100

threads

T
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
)

Fig. 31. NUMA test for weakly consistent allocators.

the results. PMAlloc-LOG reaches nearly zero remote traic in all four workloads while the baseline allocators
issue remote accesses that account for 29% to 82% of all the persistent memory accesses.

We also measure the total amount of data written to the internal media of persistent memory for PMAlloc-LOG,
PMAllocNN-LOG and PMDK with IPMCTL tools. Table 2 shows the results. PMAlloc-LOG reduces persistent
memory writes by up to 76% and outperforms PMDK by up to 92% in Threadtest, Prod-con, and Shbench. Larson
has a ixed amount of execution time, while other benchmarks have ixed amount of operations. It writes 2.2x
more data with PMAlloc-LOG than that with baseline allocators because the former improves its throughput by
2.9x. The main reason for such write reduction is PMAlloc-LOG reduces remote NUMA accesses which induces
extra writes to the persistent media for maintaining cache coherency under directory coherence protocol.

We also evaluate the PMAlloc-GCwith weakly consistent allocators. Figure 31 shows that PMAlloc-GC achieves
up to 36x performance improvement over other allocators and 1.45x over PMAllocNN-GC. The improvement
ratio of PMAlloc-GC compared to PMAllocNN-GC with weakly consistency model is smaller than that with the
strongly consistency model. This is because most cache line lush operations are eliminated in weakly consistency
model so that the cache lines from the remote nodes can be retained in the local processor cache. This will hide
the high latency of subsequent memory accesses.

ACM Trans. Comput. Syst.

38 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

(a) Strongly consistent allocators (b) Weakly consistent allocators

16 24 32 40 48 56 64 72 80
0

2

4

6

8

threadsT
h
ro

u
g
h
p
u
t
(M

 o
p
s
/s

e
c
) PMAlloc-LOG

nvm_malloc
PMDK
PAllocator

16 24 32 40 48 56 64 72 80
2

4

6

8

10

threads

PMAlloc-GC Makalu Ralloc

Fig. 32. Performance of FPTree with two NUMA nodes.

Base
+IM-tcache

+IM-slab
+IM-WAL +LS +NUMA PMAlloc

0

1

2

e
x
e
c
u
ti
o
n
 t
im

e

FlushMeta FlushWAL Search Application Other

N
o
rm

a
liz

e
d

Fig. 33. Performance breakdown of FPTree.

8.5 Evaluation using FPTree

We also evaluate PMAlloc with a real-world key-value store application, FPTree [64], under two NUMA nodes. It
is a persistent concurrent B+tree, which stores the inner nodes in DRAM and the leaf nodes in persistent memory.
Each node of FPTree contains 64 children. To support varied-size values, FPTree uses the original value in the
leaf node as a pointer to an actual key-value pair. We set the size of original keys and values as 8 B. Since most
key-value pairs are small in Facebook [11], we set the size of the actual key-value pair as 128 B. We measure the
performance of FPTree with a mixed workload of 50% insertions and 50% delete operations. We warm up the
FPTree with 50M key-value pairs, then execute 50M operations with a varying number of threads.
Figure 32 shows the throughputs of FPTree using diferent allocators. With PMAlloc-LOG, FPTree yields

up to 2.5x, 2.7x, and 3.1x throughput compared with PMDK, nvm_malloc, and PAllocator, respectively. With
PMAlloc-GC, FPTree brings a speedup up to 1.6x. FPTree with PMAlloc yields comparable space consumption
over other allocators since the slab morphing technique is not triggered for the given workload.
We further show the execution time breakdown of FPTree to study the impact of individual optimizations in

PMAlloc-LOG. As in Section 8.2, we use the linux perf tool to measure the execution time. Figure 33 displays the
results. We introduce a new category to represent the time spent on executing the code which is not related to
allocators. We denote it as Application. The +NUMA version indicates a coniguration where only NUMA-related
optimizations are activated. Compared to Base, +IM-tcache decreases FlushMeta by 51.8%, while +IM-slab reduces

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 39

(a) Vacation (b) Ackermann

(c) N-Queens (d) Cfrac

(e) Barnes (f) Kruskal

16 24 32 40 48 56 64 72 80

0.1

1

threadsT
h

ro
u

g
h

p
u

t
(M

 s
o

lu
ti
o

n
s
/s

e
c
)

1 2 4 8 16 32 64

10

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

PMAlloc-LOG nvm_malloc PMDK PAllocator

16 24 32 40 48 56 64 72 80
0.1

1

threadsT
h

ro
u

g
h

p
u

t
(M

 s
o

lu
ti
o

n
s
/s

e
c
)

PMAlloc-LOG
nvm_malloc

PMDK
PAllocator

0

50

100

150

200

250

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

16 24 32 40 48 56 64 72 80
1

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

16 24 32 40 48 56 64 72 80

1

threadsT
h

ro
u

g
h

p
u

t
(M

 s
o

lu
ti
o

n
s
/s

e
c
)

Fig. 34. Performance of real-world applications for strongly consistent allocators.

it by 53.1%. Employing interleaved appending of WALs, +IM-WAL cuts FlushWAL by 31.9%. The +LS version
reveals that log-structured bookkeeping only trims the execution time by 2.7%. This marginal impact is attributed
to the infrequency of large allocations in this application. +NUMA further reduces the total execution time by
26.4%. This is because the NUMA optimization uses more local memory to serve requests and eliminates the
remote accesses when executing remote deallocations. Overall, PMAlloc with all optimizations can reduce the
execution time by 43% compared to Base.

8.6 Evaluation using Real-World Applications

To further demonstrate PMAlloc’s performance and scalability, we evaluate it using real-world applications. We
use two NUMA nodes in the experiments. These applications are adapted from various use cases. We replace
their default allocators with persistent memory allocators and then run all the applications with varying numbers
of threads.
Vacation [61, 72] is an online transaction processing system, which uses a red-black tree in its internal

database. We conigure the database to contain 16,384 possible relations and conduct 1,000,000 transactions. Each

ACM Trans. Comput. Syst.

40 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

(a) Vacation (b) Ackermann

(c) N-Queens (d) Cfrac

(e) Barnes (f) Kruskal

16 24 32 40 48 56 64 72 80
0.01

0.1

1

10

100

threadsT
h
ro

u
g
h
p
u
t
(M

 s
o
lu

ti
o
n
s
/s

e
c
)

1 2 4 8 16 32 64

10

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

PMAlloc-GC Makalu Ralloc

16 24 32 40 48 56 64 72 80
0.1

1

10

100

threadsT
h
ro

u
g
h
p
u
t
(M

 s
o
lu

ti
o
n
s
/s

e
c
)

 PMAlloc-GC Makalu Ralloc

0

5

10

15

20

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

16 24 32 40 48 56 64 72 80
1.0

1.5

2.0

2.5

threads

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

16 24 32 40 48 56 64 72 80
10

100

threadsT
h
ro

u
g
h
p
u
t
(M

 s
o
lu

ti
o
n
s
/s

e
c
)

Fig. 35. Performance of real-world applications for weakly consistent allocators.

transaction consists of ive queries that target approximately 90% of these relations. Our setup aligns with that of
Ralloc [10]. Note that Vacation requires that the number of threads must be a power of 2. Figure 34(a) shows that
PMAlloc-LOG outperforms PMDK, nvm_malloc, and PAllocator by up to 1.7x, 1.4x and 1.5x, respectively. And
Figure 35(a) shows that PMAlloc-GC performs up to 2.9x and 1.2x better than Makalu and Ralloc.

Ackermann [1] is a recursive implementation for a mathematical function named after Wilhelm Ackermann.
It performs six 600-byte allocations as caches to record the parameters and results of each recursive step. Similar to
Poseidon [23], we conigure this application to repeatedly calculate a set of Ackermann functions 10 million times.
The performance of diferent allocators is shown in Figure 34(b) and Figure 35(b). For the strongly consistent
allocators, it shows that PMAlloc-LOG achieves 7.7x, 11.5x, and 7.6x higher throughput compared to PMDK,
nvm_malloc, and PAllocator, respectively. Due to the NUMA-aware allocation and deallocation design of PMAlloc,
the throughput with PMAlloc-LOG is increased as the number of threads is increased while the other allocators
struggle in performance. For the weakly consistent allocators, PMAlloc-GC shows similar performance to Ralloc
but delivers a 39x higher throughput than Makalu.

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 41

N-Queens [7] is a multi-threaded implementation designed to solve the n-queens problem. The application
solves n-queens puzzles on an 8x8 board, utilizing a 128-byte allocation, which is deallocated upon completion of
the puzzles. We repeatedly ind the solution for the 8-queens puzzle 100,000 times, using a variable number of
threads. Figure 34(c) and 35(c) shows the results. PMAlloc demonstrates superior scalability compared to other
allocators, particularly when the thread count surpasses 40 and threads are distributed across diferent NUMA
nodes. With 80 threads, PMAlloc-LOG outperforms PMDK, nvm_malloc, and PAllocator by 8.3x, 15.1x, and 4.3x,
respectively. PMAlloc-GC also achieves 278x and 1.26x better throughput compared with Makalu and Ralloc.
Cfrac [52] is an implementation of the continued fraction factoring algorithm. It’s a single-threaded test

that involves many short-lived, small memory allocations. We run this application and factor 44-digit number
17545186520507317056371138836327483792789528, which is the product of two primes. Figure 34(d) shows that
PMAlloc-LOG reduces the execution time of Cfrac by 53%, 28%, and 55% compared with PMDK, nvm_malloc,
and PAllocator. Figure 35(d) indicates that Cfrac performs similarly with both Ralloc and PMAlloc-GC but is 11%
faster than Makalu.
Barnes [5] is a multi-threaded algorithm for solving the gravitational N-body problem. This application

performs relatively fewer allocations than Cfrac. It is widely used by many volatile and non-volatile memory
allocators [6, 8, 53]. We set the number of particles being simulated as 400,000. Figure 34(e) shows that PMAlloc
performs similarly with PMDK and outperforms nvm_malloc and PAllocator by 17% and 21%, respectively. From
Figure 35(e) we observe that there is minimal performance diference between PMAlloc and Ralloc, while Makalu
exhibits a performance decline of 22% compared to them.
Kruskal [47] is a graph processing algorithm. It aims to ind the minimal spanning tree (MST) in the graph.

Similar to Poseidon, we conigure the application to solve Kruskal MST implementations for graphs of order 6.
Each execution involves allocating a 168-byte block for temporary graph data, employing a greedy strategy for
problem-solving, and then deallocating the memory. This process is repeated 10 million times. Figure 34(f) shows
that, unlike other memory allocators, PMAlloc continues to exhibit performance improvement after the number
of running threads exceed 40 and yields up to 7.6x, 7.9x, and 3.1x throughput compared with PMDK, nvm_malloc
and PAllocator. For weakly consistent allocators, we can observe from Figure 35(f) that PMAlloc-GC exhibits
comparable performance to Ralloc while achieving a maximum throughput increase of 3.2x over Makalu.

8.7 Sensitivity Analysis

Number of bit stripes. The eiciency of interleaved mapping is related to the number of bit stripes. A larger
number of bit stripes decreases the number of relushes because each bit stripe has fewer bits and thus fewer
blocks are mapped to the same cache line. However, it may increase the lushing latency because we may exhaust
the XPBufer [79] in persistent memory when a large number of cache lines lush concurrently. To explore the
impact of the number of bit stripes, we run PMAlloc-LOG on Threadtest with varying numbers of threads as a
study case.
As Figure 36(a) shows, the execution time of PMAlloc-LOG is not linearly decreased as we increase the

number of bit stripes. This is because the execution time is determined by both software parameters (i.e., the
number of bit stripes and the number of threads) and hardware parameters (i.e., the number of XPBufer lines in
persistent memory and its size). In this paper, we choose the number of bit stripes as 6 because it achieves the
best performance for most cases. Users may adjust the bit stripe size to better suit the requirements of speciic
applications.

Morphing parameter. The slab space utilization threshold (SU) in the morphing technique also impacts the
eiciency of PMAlloc. A larger SU allows more slabs to be morphed and thus decreases memory consumption,
while a smaller SU decreases the morphing cost and thus improves performance. Figure 36(b) shows the impact
of SU on PMAlloc-LOG on the W4 workload. Based on the results, we empirically set SU as 20% to achieve a

ACM Trans. Comput. Syst.

42 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

1 2 3 4 5 6 7 8 12162432

100

1000

bit stripes

Ti
m

e
el

ap
se

d
(s

ec
)

Threads = 1 2 4 8 16 32

(a) Impact of the number of bit stripes on

Threadtest.

M
e
m

o
ry

10% 20% 30% 50%
1.0

1.5

2.0

Space utilization threshold (SU)

c
o
n
s
u
m

p
ti
o
n
 (

G
iB

)

30

60

90

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)Memory Time

(b) Impact of the morphing parameter on Frag-

bench.

3

4

5

6

7

8

128B 256B 512B 4KB 400KB 4MB 40MB 400MB

 threshold

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

16 24 32 40 48 56 64# Threads =

(c) Impact of deallocation log size threshold

on Prod-con.

0% 20% 40% 60% 80% 100%
0.0

1.0

2.0

3.0

 remote deallocation percentage

T
im

e
 e

la
p
s
e
d
 (

s
e
c
)

PMAllocNN PMAlloc

(d) Impact of remote deallocation ratio on

Prod-con.

Fig. 36. Sensitivity Analysis.

decent trade-of between memory consumption and allocator performance. While this parameter works well in
our initial prototype, using a more sophisticated parameter could be more beneicial. We leave such exploration
for future work.

Deallocation log size threshold. In the NUMA-aware two-phase deallocation mechanism, the deallocation
log size threshold deines the maximum capacity of the deallocation logs. A larger threshold results in a higher
occupation of memory by these logs, while a smaller threshold triggers epoch-based synchronization more
frequently, potentially impacting overall performance. To investigate the inluence of the deallocation log size
threshold on allocator performance, we run PMAlloc-LOG on the Prod-con benchmark with a varying number of
threads. As the deallocation log size threshold increases, Figure 36(c) shows that the allocator’s performance
initially deteriorates with a very small threshold but stabilizes when the threshold reaches 400 KB or larger. To
strike a balance between memory occupation and performance, we set the deallocation log size threshold to 4
MB in our experimental coniguration.

Remote deallocation ratios in applications. Diferent applications may consist of varying ratios of remote
deallocations, ranging from 0% to 100%. To evaluate the impact of our two-phase remote deallocation technique on
diferent applications, we conducted tests using the Prod-con benchmark. Speciically, we varied the percentage
of remote deallocations in Prod-con, ranging from 0% to 100%. We run it using 40 threads for both PMAlloc and
PMAlloc-NN (with NUMA optimizations disabled). The results are shown in Figure 36(d). Both allocators exhibit
similar performance when the ratio of remote deallocations is 0%. However, as this ratio increases, PMAlloc
outperforms PMAlloc-NN with a performance gain ranging from 1.06x to 1.54x. These results indicate that

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 43

(a) Larson-large (b) DBMStest

0 4 8 12 16
0

0.1

1

10

100

Execution Time (s)S
iz

e
 o

f
lo

g
 f

ile
s
 (

M
iB

) Enable GC Without GC

0 4 8 12 16
0

0.1

1

10

100

Execution Time (s)

Enable GC Without GC

Fig. 37. Log file size (log10 scaled) of large allocations.

Larson-large DBMS
0

200

400

600

800

T
h

ro
u

g
h

p
u

t
(K

 o
p

s
/s

e
c
) w/o GC on bookkeeping

GC on bookkeeping

Fig. 38. GC overhead.

Table 3. Recovery time.

Allocators 10M 50M 100M
nvm_malloc 0.32ms 1.3ms 5.6ms

PMDK 34ms 54ms 127ms
PMAlloc-LOG 45ms 97ms 173ms

Ralloc 0.55s 2.1s 6.7s
Makalu 0.91s 8.3s 23.5s

PMAlloc-GC 0.93s 4.9s 12.4s

PMAlloc ofers substantial beneits when an application has a high ratio of remote deallocations and remains
efective at lower ratios.

8.8 Overhead Discussion

GC overhead. To evaluate the eiciency of log cleaning on log-structured bookkeeping for large allocations,
we run PMAlloc-LOG on Larson-large and DBMStest. Figure 38 shows, with GC, the throughput drops slightly
(only 3%) on Larson-large and 8% on DBMS when ��������� = 0.2%. The GC overhead is trivial because the
log-structured ile is light-weight since it only keeps the allocation metadata thus the copying overhead is low.
Furthermore, Figure 37 shows the log ile size during the benchmark execution. For Larson-large, we set the

testing iterations to 104. To better illustrate the impact of GC operations, we increase the testing iterations to
500 for DBMStest. We can ind that enabling GC signiicantly reduces the memory overhead. The frequency
of GC execution can be varied. In Larson-large, PMAlloc triggers 98 fast GCs and 98 slow GCs. In contrast, for
DBMStest, it triggers 38 fast GCs and 7 slow GCs.

Recovery. Table 3 presents the recovery times of various open-source allocators. These allocators are tested
with a linked list containing 10 million (10M), 50 million (50M), and 100 million (100M) nodes, each allocated
with node sizes uniformly distributed between 64 bytes and 128 bytes. The recovery operations are performed
using a single thread.

For strongly consistent allocators, PMAlloc-LOG is slower than PMDK and nvm_malloc across all tested sizes.
This is because PMAlloc-LOG needs to scan both the WALs and log-structured bookkeeping, while PMDK only

ACM Trans. Comput. Syst.

44 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

Table 4. Synchronization overhead of deallocation logs.

Benchmarks
workload thread

active time ratio (%)
synchronization thread
active time ratio (%)

Threadtest 99.90 1.56×10−3

Prod-con 98.33 1.326
Shbench 99.99 1.10×10−4

Larson-small 99.95 4.66×10−5

traverses the WALs and nvm_malloc defers some metadata reconstruction to the runtime deallocation process.
The recovery time for PMAlloc-LOG correlates with the heap size, as the log-structured bookkeeping accounts
for 0.2% of it. Thus, with more allocated nodes, the recovery time increases. However, since the log-structured
bookkeeping is tailored for large memory objects, whose number is far fewer than smaller ones, the recovery
time of PMAlloc-LOG remains acceptable (173ms for 100 million memory objects) and is signiicantly reduced
compared to GC-based allocators.
For weakly consistent allocators, their recovery process involves reconstructing DRAM metadata for both

small and large memory objects by scanning the entire heap, resulting in extended recovery times. PMAlloc-GC
shows comparable performance to Makalu. It is slower than Ralloc because Ralloc only needs to scan part of
nodes in the recovery.
Synchronization overhead. Background synchronization threads perform epoch-based synchronization

periodically in NUMA-aware deallocations, potentially leading to contention with working threads. To assess
the inluence of possible thread contention, we run PMAlloc-LOG across four benchmarks with 80 workload
threads. We employ clock_gettime() functions to measure the active duration of each thread using system clocks.
By summing the active time of both workload threads and synchronization threads, we obtain their ratio in
the entire process. As illustrated in Table 4, the overhead imposed by synchronization threads has a negligible
impact on system utilization. Across Threadtest, Shbench, and Larson benchmarks, which have almost no cross-
thread deallocations, the synchronization overhead is nearly zero. In the case of Prod-con, where all blocks are
deallocated remotely, the synchronization overhead is more noticeable but remains remarkably low, accounting
for less than 2% of the total active time. This is because the majority of remotely deallocated blocks (83% in our
experiment) have been synchronized by the allocating thread incidentally through on-demand synchronization.
The remaining blocks handled by background threads are synchronized in a NUMA-local manner, which involves
only the slab headers within the local node, leading to minimal CPU contention with the application threads.

8.9 Evaluation on Emulated eADR Platform

eADR (extended ADR) is a new feature supported in the 3rd generation Intel Xeon Scalable Processors, which
ensures CPU caches are also in the power fail protected domain [18]. Thus, explicit cache line lushes are
not necessary on eADR. Implementing eADR requires higher energy consumption, hardware cost, and system
maintenance burden. Given these issues, both ADR and eADR platforms will co-exist in the foreseeable future,
as pointed out by Intel [68]. In this section, we evaluate PMAlloc on the eADR platform. Because the eADR is
not commercially available, we emulate it by removing lush operations (i.e., clwb) on the ADR platform for all
evaluated allocators. We only evaluate the strongly consistent allocators because the weakly consistent allocators
removed most of the lush operations by performing post-crash GC and have the same performance numbers as
ADR ones.

First, we evaluate the impact of interleaved mapping on eADR. We run Threadtest with 4 threads while the
number of bit stripes is increased from 1 to 32. As shown in Figure 39, the number of bit stripes has no impact on

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 45

1 2 3 4 5 6 7 8 12 16 24 32
bit stripes

10

100

1000

T
im

e
 e

la
p
s
e
d
 (

s
e
c
) # Threads = 4

Fig. 39. Impact of interleaved mapping on eADR.

(a) Threadtest (b) Prod-con

(c) Shbench (d) Larson-small

1 2 4 8 16 32 64

100

1000

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

PMDK nvm_malloc PAllocator PMAlloc-LOG

2 4 8 16 32 64

10

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

1 2 4 8 16 32 64

10

100

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

1 2 4 8 16 32 64

1

10

threadsT
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
)

1

Fig. 40. Performance (log10 scaled) of small allocations on the emulated eADR platform.

the performance of PMAlloc-LOG. Because the interleaved mapping increases the cache usage, we disable the
interleaved mapping on the emulated eADR platform in the following experiments. For the real eADR platform,
we use ����_ℎ��_����_� ���ℎ() in PMDK [17] to automatically detect the eADR feature and then disable the
interleaved mapping technique.

Second, we study the small allocation performance on eADR. The results in Figure 40 show that PMAlloc-LOG
improves the performance of the benchmarks by 240% on average compared to other strongly consistent allocators.
The execution time of PAllocator with Threadtest is 27% smaller than that with PMAlloc-LOG when the number
of threads is 64. This is because PAllocator uses dedicated small allocators for each thread. It achieves better
scalability for thread-local allocations but leads to worse performance of frequent cross-thread operations in
Prod-con and Larson-small.

ACM Trans. Comput. Syst.

46 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

(a) Larson-large (b) DBMStest

1 2 4 8 16 32 64

0.1

1

threadsT
h

ro
u

g
h

p
u

t
(M

 o
p

s
/s

e
c
) PMDK nvm_malloc PAllocator Makalu PMAlloc-LOG

1 2 4 8 16 32 64

0.1

1

10

threads

T
im

e
 e

la
p

s
e

d
 (

s
e

c
)

Fig. 41. Performance (log10 scaled) of large allocations on the emulated eADR platform.

Third, Figure 41 shows the performance of PMAlloc-LOG for large allocations. We can observe that it has an
11x performance improvement on average with Larson-large and DBMStest. This is because our design of VEH
and log-structured bookkeeping reduces the total number of persistent memory access and improves the write
locality for eADR.

9 DISCUSSION

In this section, we discuss the applicability of the proposed techniques to future persistent memory systems.
Cache line relushing issue. The challenge of cache line relushing originates from the CPU’s instruction

architecture design rather than the persistent memory hardware. In processors such as Intel’s Cascade Lake and
Skylake, a repeated lush instruction can only execute after previous lushes have completed and the same cache
line is reloaded back, leading to long relush latency [13, 78]. Newer processors, such as the recently released Ice
Lake, have fully implemented the clwb instruction. In earlier processors, clwb was equated with cllushopt [18].
The clwb instruction can keep the cache line content in the processor cache during lushing, thereby mitigating
cache line relush issues for waiting for data reloading. However, only the local clwb (pertaining to the same
NUMA node) possesses this feature. For remote clwb and other instructions, such as cllushopt and cllush, the
cache line content isn’t retained [18]. Thus, high relush latency remains a signiicant performance hurdle. Our
interleaved mapping technique provides a solution for these cache line relush problems.

Random accesses impact. Random accesses can degrade the performance of persistent memory applications.
Intel Optane DIMMs, for example, use an on-chip bufer to consolidate adjacent data requests, minimizing slow
access times to the internal 3D-XPoint media. However, if the data request addresses are randomized, this bufer
loses its efectiveness, resulting in a performance decline. While Intel ceased production of new Optane DIMMs
in the summer of 2022 for commercial reasons, we believe our log-structured bookkeeping technique remains
relevant for upcoming byte-addressable persistent memory products. Devices like CXL-based products (e.g.,
Samsung’s Memory-Semantic SSD [30, 42]), which are seen as potential replacements for Optane DIMMs, still
employ an on-chip bufer for consolidating data requests. Consequently, when allocating large memory extents
on such devices, the log-structured bookkeeping technique can help counteract the negative efects of small,
random accesses caused by allocators.

Fragmentation concerns. Fragmentation due to static slab segregation is a prevalent problem in both volatile
and persistent memory systems. Our innovative slab morphing technique can substantially cut down memory
usage in applications with luctuating allocation patterns, irrespective of the memory media in use.

NUMA impact. Recent studies [80] indicate that future persistent memory systems designed using the NUMA
architecture might continue facing extended memory latencies due to remote memory access when applying the

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 47

directory coherence protocol in Intel X86 machines. Hence, our suggested NUMA-aware memory allocation and
deallocation techniques retain their relevance, ensuring eicient use of persistent memory in such environments.

10 RELATED WORK

Log-based allocators. Persistent memory allocators supporting transactional models record changes of memory
addresses and heap metadata in logs. After replaying the logs, allocators can rebuild their heap metadata after
a crash. For example, nvm_malloc [71] divides its heap metadata into volatile and non-volatile parts to reduce
data accesses on persistent memory. Its small writes to its bitmaps and logs may lead to cache line relushes.
PAllocator [63] serves small block allocation using segregated-it strategy and large block allocation using index
trees. It also sufers from the cache line relush issue because of accessing 2-B block metadata in page headers
and micro-logs. Poseidon [23] is the irst persistent memory allocator enforcing page-based protections. It also
uses bitmaps and logs for heap metadata management.

GC-based allocators. To reduce the overhead of writing logs and lushingmetadata, recent allocators [8, 10, 59]
employ garbage collection (GC) to reconstruct heap metadata after a crash. This process involves traversing the
persistent heap and utilizing pointer identiication techniques to locate and recover still-active memory blocks
from its pre-deined root pointers. For instance, Makalu [8] pioneers this approach by utilizing oline GC to ease
heap metadata persistence constraints when online. This results in accelerated small-block allocations. Similarly,
Ralloc [10] changes the transient, lock-free allocator LRalloc into a persistent one, and like Makalu, Ralloc relies
on post-crash GC to avert cache line relushes. On the other hand, DCMM [59] eliminates the long heap metadata
recovery time by simply allocating new blocks appending to the existing heap area and employing background
recovery threads running in parallel.
Allocators using internal collection. The allocator in PMDK provides non-transactional atomic alloca-

tions [17]. Using PMDK’s interface (e.g., POBJ_FIRST() and POBJ_NEXT()), users will never lose a reference
to an object in persistent memory. Therefore, the allocators using PMDK’s internal collection do not need to
maintain write-ahead logs. The approaches proposed in PMAlloc can be used to implement log-based, GC-based,
or internal-collection-based persistence models. In any of these models, we can eliminate the allocator-induced
cache line relushes and randomwrites to persistent memory, compared to the existing allocators. Besides, because
we use slab morphing, PMAlloc no longer has the memory fragmentation issue caused by static slab segregation.

NUMA-aware optimizations for volatile memory system. To avoid the penalty brought by remote NUMA
access, volatile memory allocators have adopted NUMA-aware memory management policies. Kaminski et al. [43]
make the working threads always allocate from the local memory irst. Wagle et al. [73] design the allocator to
always use the closest NUMA node to allocate memory when local memory runs out. TintMalloc [65] allows
users to determine which NUMA node to make memory allocations and ensures the memory isolation between
diferent tasks. However, these works only achieve NUMA locality in the allocation process but can not reduce
the remote memory access induced by remote releases. PMAlloc addresses both issues while ensuring crash
consistency on persistent memory. There are also numerous works [21, 24, 27, 55, 66] that optimize NUMA
memory accesses through kernel-level page scheduling techniques. Carrefour [21] utilizes page replication as a
means to distribute access pressure and reduce remote memory accesses. AsymSched [55] periodically samples
memory access metrics and dynamically migrates pages between nodes to optimize performance. kMAF [24]
optimizes memory access patterns by leveraging page fault tracing for eicient thread and data mapping. Unlike
these kernel-level works, PMAlloc and other memory allocators aim to address remote access issues at the user
level.

NUMA-aware optimizations for persistent memory system. Because persistent memory is more sensitive
to NUMA impact than DRAM, recent works have tried to reduce remote memory access. Nap [74] provides a
black-box approach to reduce remote access to persistent memory for index structures. It utilizes a global and

ACM Trans. Comput. Syst.

48 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

volatile view in DRAM to cache hot items and absorb remote memory access. ListDB [45] mitigates NUMA
impact in the skip list by making the upper layer pointers point only to the skip list elements on the same NUMA
node. PACTree [46] inds that the root cause of the limited cross-socket bandwidth is the directory coherence
protocol used in the x86 machines. ODINFS [80] uses local threads to delegate remote memory access requests,
thereby eliminating remote NUMA access in the ile system. POSEIDON [23] is a persistent memory allocator
that considers the NUMA impact through its use of per-CPU sub-heaps, which naturally facilitate NUMA-local
memory allocations. PMAlloc enhances POSEIDON’s allocation strategy by permitting memory sharing across
diferent NUMA domains when the local PM is depleted. Moreover, PMAlloc is the irst persistent memory
allocator to consider mitigating remote metadata access during the deallocation operations.
Asynchronous deallocation. Asynchronous deallocation is often used to improve system performance by

scheduling it at a later time using diferent mechanisms. For example, LATR [48] decreases the latency ofmunmap()

by delaying expensive TLB shootdowns. It introduces a lazy software-based TLB shootdown mechanism in
the kernel space that asynchronously invalidates TLB entries on context switches. DaxVM [3] proposes an
asynchronous unmapping approach for DAX-based persistent memory iles. It tracks the pages to unmap and
defers their unmapping until the total number of deferred pages meets a threshold. Then, it unmaps these pages
and invalidates their TLBs in batch. Diferent from the existing approaches, PMAlloc focuses on optimizing
cross-NUMAmemory deallocation within the user-space memory allocator. Our two-phase deallocation approach
eliminates remote access induced by remote metadata management while ensuring crash consistency.

11 CONCLUSION

In the paper, we design a novel allocator, named PMAlloc, to allocate/deallocate memory objects in persistent
memory. PMAlloc leverages interleaved metadata mapping, log-structured bookkeeping, and slab morphing
techniques to eliminate the allocator-induced cache line relushes, small random writes, and memory fragmen-
tation issues. PMAlloc also provides NUMA-aware allocation and deallocation for multi-socket servers. Our
experimental results demonstrate that PMAlloc can signiicantly improve allocator performance and space
utilization. As persistent memory becomes more and more popular, we hope the various optimization techniques
in PMAlloc will inspire the future generation of persistent memory systems.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their constructive suggestions. This work was supported in part
by the National Key Research and Development Program of China under Grant 2023YFB4502100, 2021ZD0110700,
the National Science Foundation of China under Grant 62172361, the Major Projects of Zhejiang Province under
Grant LD24F020012, the Program of Zhejiang Province Science and Technology under Grant 2022C01044, and
the US National Science Foundation under CNS 1906541 and 2216108.

REFERENCES

[1] Wilhelm Ackermann. 1928. Zum hilbertschen aufbau der reellen zahlen. Math. Ann. 99, 1 (1928), 118ś133.
[2] Martin Aigner, Christoph M Kirsch, Michael Lippautz, and Ana Sokolova. 2015. Fast, Multicore-Scalable, Low-Fragmentation Memory

Allocation through Large Virtual Memory and Global Data Structures. ACM SIGPLAN Notices 50, 10 (2015), 451ś469.
[3] Chloe Alverti, Vasileios Karakostas, Nikhita Kunati, Georgios Goumas, and Michael Swift. 2022. DaxVM: Stressing the Limits of Memory

as a File Interface. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). 369ś387.
[4] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s Talk About Storage & Recovery Methods for Non-Volatile Memory

Database Systems. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD). Association for
Computing Machinery, 707ś722.

[5] Josh Barnes and Piet Hut. 1986. A hierarchical O (N log N) force-calculation algorithm. nature 324, 6096 (1986), 446ś449.

ACM Trans. Comput. Syst.

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 49

[6] Emery D Berger, Kathryn SMcKinley, Robert D Blumofe, and Paul RWilson. 2000. Hoard: A Scalable Memory Allocator for Multithreaded
Applications. ACM Sigplan Notices 35, 11 (2000), 117ś128.

[7] Bo Bernhardsson. 1991. Explicit solutions to the n-queens problem for all n. ACM SiGART Bulletin 2, 2 (1991), 7.
[8] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm. 2016. Makalu: Fast Recoverable Allocation of Non-Volatile Memory. ACM

SIGPLAN Notices 51, 10 (2016), 677ś694.
[9] Hans-Juergen Boehm. 1993. Space Eicient Conservative Garbage Collection. In Proceedings of the ACM SIGPLAN 1993 Conference on

Programming Language Design and Implementation (PLDI) (Albuquerque, New Mexico, USA). New York, NY, USA, 197ś206.
[10] Wentao Cai, Haosen Wen, H Alan Beadle, Chris Kjellqvist, Mohammad Hedayati, and Michael L Scott. 2020. Understanding and

Optimizing Persistent Memory Allocation. In Proceedings of the 2020 ACM SIGPLAN International Symposium on Memory Management

(ISMM). 60ś73.
[11] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020. Characterizing, Modeling, and Benchmarking RocksDB Key-Value

Workloads at Facebook. In 18th USENIX Conference on File and Storage Technologies (FAST). 209ś223.
[12] Guoyang Chen, Lei Zhang, Richa Budhiraja, Xipeng Shen, and Youfeng Wu. 2017. Eicient Support of Position Independence on

Non-Volatile Memory. In Proceedings of the 50th Annual IEEE/ACM International Symposium Fon Microarchitecture (MICRO). 191ś203.
[13] Youmin Chen, Youyou Lu, Fan Yang, QingWang, YangWang, and Jiwu Shu. 2020. FlatStore: An Eicient Log-Structured Key-Value Storage

Engine for Persistent Memory. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). 1077ś1091.
[14] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-Free Concurrent Level Hashing for Persistent Memory. In Proceedings

of the 2020 USENIX Annual Technical Conference (ATC). 799ś812.
[15] Joel Coburn, Adrian M Caulield, Ameen Akel, Laura M Grupp, Rajesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:

Making Persistent Objects Fast and Safe with Next-Generation, Non-Volatile Memories. ACM SIGARCH Computer Architecture News 39,
1 (2011), 105ś118.

[16] Intel Corporation. 2018. Redis. https://github.com/pmem/redis/tree/3.2-nvml/.
[17] Intel Corporation. 2020. Persistent Memory Development Kit. http://pmem.io/.
[18] Intel Corporation. 2021. eADR: New Opportunities for Persistent Memory Applications. https://www.intel.com/content/www/us/en/

developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
[19] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus: Eicient Algorithms for Persistent Transactional Memory. In

Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures(SPAA). 271ś282.
[20] Zheng Dang, Shuibing He, Peiyi Hong, Zhenxin Li, Xuechen Zhang, Xian-He Sun, and Gang Chen. 2022. NVAlloc: Rethinking Heap

Metadata Management in Persistent Memory Allocators. In Proceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS) (Lausanne, Switzerland). New York, NY, USA, 115ś127.
[21] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth.

2013. Traic Management: A Holistic Approach to Memory Placement on NUMA Systems. In Proceedings of the Eighteenth International

Conference on Architectural Support for Programming Languages and Operating Systems. New York, NY, USA, 381ś394.
[22] Arnaldo Carvalho De Melo. 2010. The new linux perf tools. In Slides from Linux Kongress, Vol. 18. 1ś42.
[23] Anthony Demeri, Wook-Hee Kim, R Madhava Krishnan, Jaeho Kim, Mohannad Ismail, and Changwoo Min. 2020. Poseidon: Safe, Fast

and Scalable Persistent Memory Allocator. In Proceedings of the 21st International Middleware Conference (Middleware). 207ś220.
[24] Matthias Diener, Eduardo HM Cruz, Marco AZ Alves, Philippe OA Navaux, Anselm Busse, and Hans-Ulrich Heiss. 2015. Kernel-based

thread and data mapping for improved memory ainity. IEEE Transactions on Parallel and Distributed Systems 27, 9 (2015), 2653ś2666.
[25] Dominik Durner, Viktor Leis, and Thomas Neumann. 2019. On the Impact of Memory Allocation on High-Performance Query Processing.

In Proceedings of the 15th International Workshop on Data Management on New Hardware (DaMoN). 1ś3.
[26] Jason Evans. 2021. jemalloc. https://github.com/jemalloc/jemalloc/.
[27] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra Fedorova, and Vivien Quéma. 2014. Large pages may be

harmful on {NUMA} systems. In 2014 USENIX Annual Technical Conference (USENIX ATC 14). 231ś242.
[28] Inc Google. 2021. tcmalloc. https://github.com/google/tcmalloc.
[29] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing Guan, and Haibo Chen. 2019. Pisces: A Scalable and

Eicient Persistent Transactional Memory. In 2019 USENIX Annual Technical Conference (ATC). USENIX Association, 913ś928.
[30] Tom’s Hardware. 2022. Samsung’s Memory-Semantic CXL SSD Brings a 20X Performance Uplift. https://www.tomshardware.com/

news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift.
[31] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda. 2017. Log-Structured Non-Volatile Main Memory. In

Proceedings of the 2017 USENIX Annual Technical Conference (ATC). 703ś717.
[32] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen Ding, Song Jiang, and Zhenlin Wang. 2015. LAMA: Optimized

Locality-aware Memory Allocation for Key-value Cache. In 2015 USENIX Annual Technical Conference (ATC). USENIX Association, Santa
Clara, CA, 57ś69. https://www.usenix.org/conference/atc15/technical-session/presentation/hu

ACM Trans. Comput. Syst.

https://github.com/pmem/redis/tree/3.2-nvml/
http://pmem.io/
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://github.com/jemalloc/jemalloc/
https://github.com/google/tcmalloc
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.usenix.org/conference/atc15/technical-session/presentation/hu

50 • Z. Dang, S. He, X. Zhang, P. Hong, Z. Li, X. Chen, H. Song, X.-H. Sun, and G. Chen

[33] Intel. 2018. 5-Level Paging and 5-Level EPT White Paper. https://www.intel.com/content/www/us/en/content-details/671442/5-level-
paging-and-5-level-ept-white-paper.html.

[34] Inc Intel. 2022. IPMCTL: A Command Line Interface (CLI) application for coniguring and managing PMems. https://github.com/intel/
ipmctl/.

[35] Inc Intel. 2022. Processor Counter Monitor (PCM). https://github.com/intel/pcm/.
[36] Inc Intel. 2023. Intel® 64 and IA-32 Architectures Optimization Reference Manual.
[37] Abdullah Al Raqibul Islam and Dong Dai. 2023. DGAP: Eicient Dynamic Graph Analysis on Persistent Memory. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis (SC). Association for Computing Machinery,
New York, NY, USA, Article 93, 13 pages.

[38] Keita Iwabuchi, Lance Lebanof, Maya Gokhale, and Roger Pearce. 2019. Metall: A Persistent Memory Allocator Enabling Graph
Processing. In 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures and Algorithms (IA3). 39ś44.

[39] jemalloc. 2023. jemalloc(3) manual page. https://jemalloc.net/jemalloc.3.html.
[40] Hai Jin, Zhiwei Li, Haikun Liu, Xiaofei Liao, and Yu Zhang. 2020. Hotspot-Aware Hybrid Memory Management for In-Memory Key-Value

Stores. IEEE Transactions on Parallel and Distributed Systems (TPDS) 31, 4 (2020), 779ś792. https://doi.org/10.1109/TPDS.2019.2945315
[41] Mark S Johnstone and Paul R Wilson. 1998. The Memory Fragmentation Problem: Solved? ACM Sigplan Notices 34, 3 (1998), 26ś36.
[42] Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCIe storage meets compute express link for memory expansion (CXL-SSD). In

Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage). 45ś51.
[43] Patryk Kaminski. 2009. NUMA aware heap memory manager. AMD Developer Central (2009), 46.
[44] Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim, and Taesoo Kim. 2018. A scalable ordering primitive for multicore machines. In

Proceedings of the Thirteenth EuroSys Conference (EuroSys) (Porto, Portugal). Association for Computing Machinery, New York, NY, USA,
Article 34, 15 pages.

[45] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun Park, Young ri Choi, Alan Sussman, and Beomseok Nam. 2022. ListDB: Union
of Write-Ahead Logs and Persistent SkipLists for Incremental Checkpointing on Persistent Memory. In 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI). Carlsbad, CA, 161ś177.
[46] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Changwoo Min. 2021. PACTree: A High Performance

Persistent Range Index Using PAC Guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP)

(Virtual Event, Germany). Association for Computing Machinery, New York, NY, USA, 424ś439.
[47] Joseph B Kruskal. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American

Mathematical society 7, 1 (1956), 48ś50.
[48] Mohan Kumar Kumar, Stefen Maass, Sanidhya Kashyap, Ján Veselý, Zi Yan, Taesoo Kim, Abhishek Bhattacharjee, and Tushar Krishna.

2018. LATR: Lazy Translation Coherence. In Proceedings of the Twenty-Third International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS). New York, NY, USA, 651ś664.
[49] Per-Åke Larson and Murali Krishnan. 1998. Memory Allocation for Long-Running Server Applications. In Proceedings of the 1st

International Symposium on Memory Management (ISMM). 176ś185.
[50] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh. 2017. WORT: Write Optimal Radix Tree for Persistent

Memory Storage Systems. In Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST). 257ś270.
[51] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chidambaram. 2019. Recipe: Converting Concurrent DRAM

Indexes to Persistent-Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP). 462ś477.
[52] Daan Leijen. 2019. MiMalloc Benchmarks. GitHub repository. https://github.com/daanx/mimalloc-bench
[53] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. 2019. Mimalloc: Free list sharding in action. In Programming Languages and

Systems: 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1ś4, 2019, Proceedings 17. Springer, 244ś265.
[54] Lenovo. 2018. Memcached-PMEM. https://github.com/lenovo/memcached-pmem/.
[55] Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. 2015. Thread and memory placement on {NUMA} systems: Asymmetry

matters. In 2015 USENIX annual technical conference (USENIX ATC 15). 277ś289.
[56] Zhenxin Li, Bing Jiao, Shuibing He, and Weikuan Yu. 2022. PhaST: Hierarchical Concurrent Log-Free Skip List for Persistent Memory.

IEEE Transactions on Parallel and Distributed Systems (TPDS) 33, 12 (2022), 3929ś3941.
[57] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+ Trees: Optimizing Persistent Index Performance on 3DXPoint Memory. Proceedings

of the VLDB Endowment 13, 7 (2020), 1078ś1090.
[58] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable Hashing on Persistent Memory. Proc. VLDB Endow. 13,

8 (2020), 1147ś1161.
[59] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo Kang, and Yongwei Wu. 2021. ROART: Range-Query

Optimized Persistent ART. In Proceedings of the 19th USENIX Conference on File and Storage Technologies (FAST). 1ś16.
[60] Inc MicroQuill. 2014. shbench. http://www.microquill.com/.
[61] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008. STAMP: Stanford transactional applications for

multi-processing. In 2008 IEEE International Symposium on Workload Characterization. IEEE, 35ś46.

ACM Trans. Comput. Syst.

https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://github.com/intel/ipmctl/
https://github.com/intel/ipmctl/
https://github.com/intel/pcm/
https://jemalloc.net/jemalloc.3.html
https://doi.org/10.1109/TPDS.2019.2945315
https://github.com/daanx/mimalloc-bench
https://github.com/lenovo/memcached-pmem/
http://www.microquill.com/

PMAlloc: A Holistic Approach to Improving Persistent Memory Allocation • 51

[62] Iulian Moraru, David G Andersen, Michael Kaminsky, Niraj Tolia, Parthasarathy Ranganathan, and Nathan Binkert. 2013. Consistent,
Durable, and Safe Memory Management for Byte-Addressable Non-Volatile Main Memory. In Proceedings of the First ACM SIGOPS

Conference on Timely Results in Operating Systems (TRIOS). 1ś17.
[63] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Willhalm, and Grégoire Gomes. 2017. Memory Management

Techniques for Large-Scale Persistent-Main-Memory Systems. Proceedings of the VLDB Endowment 10, 11 (2017), 1166ś1177.
[64] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent

and Concurrent B-tree for Storage Class Memory. In Proceedings of the 2016 International Conference on Management of Data (SIGMOD).
371ś386.

[65] Xing Pan, Yasaswini Jyothi Gownivaripalli, and Frank Mueller. 2016. TintMalloc: Reducing Memory Access Divergence via Controller-
Aware Coloring. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 363ś372. https://doi.org/10.1109/
IPDPS.2016.26

[66] Mihail Popov, Alexandra Jimborean, and David Black-Schafer. 2019. Eicient thread/page/parallelism autotuning for numa systems. In
Proceedings of the ACM International Conference on Supercomputing. 342ś353.

[67] Bobby Powers, David Tench, Emery D Berger, and Andrew McGregor. 2019. Mesh: Compacting Memory Management for C/C++
Applications. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. 333ś346.

[68] Andy Rudof. 2020. Persistent Memory Programming without All That Cache Flushing. SDC (2020).
[69] Stephen M Rumble, Ankita Kejriwal, and John Ousterhout. 2014. Log-Structured Memory for DRAM-Based Storage. In Proceedings of

the 12th USENIX Conference on File and Storage Technologies (FAST). 1ś16.
[70] Scott Schneider, Christos D Antonopoulos, and Dimitrios S Nikolopoulos. 2006. Scalable Locality-Conscious Multithreaded Memory

Allocation. In Proceedings of the 5th International Symposium on Memory Management (ISMM). 84ś94.
[71] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso Plattner. 2015. nvm malloc: Memory Allocation for NVRAM.

ADMS@ VLDB 15 (2015), 61ś72.
[72] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Lightweight Persistent Memory. ACM SIGARCH Computer

Architecture News 39, 1 (2011), 91ś104.
[73] Mehul Wagle, Daniel Booss, Ivan Schreter, and Daniel Egenolf. 2015. NUMA-aware memory management with in-memory databases. In

Technology Conference on Performance Evaluation and Benchmarking (TPCTC). Springer, 45ś60.
[74] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. 2021. Nap: A Black-Box Approach to NUMA-Aware Persistent Memory Indexes. In 15th

USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Association, 93ś111.
[75] Rui Wang, Shuibing He, Weixu Zong, Yongkun Li, and Yinlong Xu. 2022. XPGraph: XPline-Friendly Persistent Memory Graph Stores

for Large-Scale Evolving Graphs. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). 1308ś1325.
[76] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles. 1995. Dynamic Storage Allocation: A Survey and Critical Review. In

Proceedings of the International Workshop on Memory Management (IWMM). Springer, 1ś116.
[77] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. 2021. ArchTM: Architecture-Aware, High Performance Transaction for Persistent Memory. In

Proceedings of the 19th USENIX Conference on File and Storage Technologies (FAST). 141ś153.
[78] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022. Characterizing the performance of intel optane persistent

memory: a close look at its on-DIMM bufering. In Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys).
488ś505.

[79] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson. 2020. An Empirical Guide to the Behavior and Use of
Scalable Persistent Memory. In Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST). 169ś182.

[80] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min, and Sanidhya Kashyap. 2022. ODINFS: Scaling PM Performance
with Opportunistic Delegation. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI). USENIX Association,
Carlsbad, CA, 179ś193.

ACM Trans. Comput. Syst.

https://doi.org/10.1109/IPDPS.2016.26
https://doi.org/10.1109/IPDPS.2016.26

	Abstract
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Heap Management in Persistent Memory
	2.3 Consistency Models for Persistent Memory Allocators

	3 Motivation
	3.1 Allocation Overhead in Persistent Memory Applications
	3.2 Allocator-Induced Cache Line Reflushes
	3.3 Allocator-Induced Small Random Access
	3.4 Fragmentation Caused by Static Slab Segregation
	3.5 Allocator-Induced Slow NUMA Access

	4 PMAlloc
	4.1 Programming Model
	4.2 Small Allocator
	4.3 Large Allocator
	4.4 Sanity Check

	5 Optimization of Metadata Management
	5.1 Interleaved Mapping
	5.2 Slab Morphing
	5.3 Log-Structured Bookkeeping

	6 NUMA-Aware Memory Allocation and Deallocation
	6.1 NUMA-Aware Allocation of Small Blocks
	6.2 NUMA-Aware Deallocation of Small Blocks
	6.3 NUMA-Aware Optimizations for Large (De)Allocations
	6.4 NUMA-Aware Tcache Optimization

	7 Recovery
	8 Evaluation
	8.1 Experimental Setup
	8.2 Evaluations using Benchmarks
	8.3 Evaluations using Fragbench
	8.4 Effectiveness of NUMA-Aware Allocations and Deallocations
	8.5 Evaluation using FPTree
	8.6 Evaluation using Real-World Applications
	8.7 Sensitivity Analysis
	8.8 Overhead Discussion
	8.9 Evaluation on Emulated eADR Platform

	9 Discussion
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

