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ABSTRACT
Persistent memory allocation is a fundamental building block for de-
veloping high-performance and in-memory applications. Existing
persistent memory allocators suffer from suboptimal heap organi-
zations that introduce repeated cache line flushes and small random
accesses in persistent memory. Worse, many allocators use static
slab segregation resulting in a dramatic increase in memory con-
sumption when allocation request size is changed. In this paper, we
design a novel allocator, named NVAlloc, to solve the above issues
simultaneously. First, NVAlloc eliminates cache line reflushes by
mapping contiguous data blocks in slabs to interleaved metadata
entries stored in different cache lines. Second, it writes small meta-
data units to a persistent bookkeeping log in a sequential pattern
to remove random heap metadata accesses in persistent memory.
Third, instead of using static slab segregation, it supports slab mor-
phing, which allows slabs to be transformed between size classes to
significantly improve slab usage. NVAlloc is complementary to the
existing consistency models. Results on 6 benchmarks demonstrate
that NVAlloc improves the performance of state-of-the-art persis-
tent memory allocators by up to 6.4x and 57x for small and large
allocations, respectively. Using NVAlloc reduces memory usage by
up to 57.8%. Besides, we integrate NVAlloc in a persistent FPTree.
Compared to the state-of-the-art allocators, NVAlloc improves the
performance of this application by up to 3.1x.

CCS CONCEPTS
• Software and its engineering → Allocation / deallocation
strategies; • Hardware → Non-volatile memory.

∗Shuibing He is the corresponding author.
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1 INTRODUCTION
Dynamic allocation of persistent memory is heavily used for build-
ing high-performance applications from indexing structures [8, 23,
24, 26–28], transactional memory [13, 19, 20, 39], to in-memory
database systems [1, 10, 25, 31]. Memory allocators are usually
well-tuned for volatile memory (e.g., DRAM) to achieve low latency,
high scalability, and low fragmentation [2, 17, 33]. The adoption
of persistent memory (e.g., Intel Optane DIMMs [11]) has made
researchers rethink the design and implementation of allocators.
The allocators designed for persistent memory need to maintain the
salient features of DRAM allocators for high-performance memory
management. More importantly, they should enforce crash con-
sistency so that they can safely recover allocated memory objects
after failures.

Many allocators have been designed for persistent memory [3,
4, 15, 30, 31, 37]. They need to manage persistent heaps via various
types of metadata (e.g., object bitmaps, slab structures, extent head-
ers, and write-ahead logs ) for efficiently serving memory allocation
and deallocation. In this paper, we name them heap metadata. For
example, PMDK [11] and nvm_malloc [37] use bitmaps to mark ob-
jects that have been allocated. PAllocator [31] uses logs to enforce
crash consistency of heap metadata. Updating the heap metadata
triggers frequent small writes to persistent memory ranging from
1 bit to 64 B. All of these persistent allocators use a size-segregated
algorithm for serving small allocation requests to reduce memory
fragmentation.

The existing allocators designed for persistent memory have
many issues related to heap metadata management. First, small
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writes to heap metadata may cause cache line reflushes. A typical
size of CPU cache line is 64 B [31]. The size of a bitmap is 8 B in
nvm_malloc. When the bitmap is updated repeatedly, the same
cache line should be flushed for persistence. The latency of cache
line reflush is 7.5x higher than the latency of writes [7]. We observe
that the number of cache line reflushes accounts for 40.4%~99.7%
of the total number of allocator-induced flush operations in four
well-known benchmarks (Section 3.1). Frequent cache line reflush
operations cause the degraded performance of persistent memory
allocators.

Second, heapmetadata of allocators tend to be randomly accessed
in persistent memory. Many allocators (e.g., PMDK, PAllocator, and
Makalu [3]) subdivide the heap into chunks of fixed sizes (e.g.,
4MB) for ease of management. They maintain bookkeeping meta-
data in each chunk’s header space which is separated from data
space to avoid metadata being modified by mistake. This layout
causes headers to be distributed over the whole heap space. After
serving a sequence of allocation and deallocation requests, alloca-
tors have to in-place update headers randomly located in persistent
memory. Recent work has shown that persistent memory exhibits
much worse random access performance than sequential access
performance [39, 40] for small writes. Consequently, serving these
small random writes to heap metadata prevents the allocators from
achieving optimal performance.

Third, static slab segregation causes persistent memory fragmen-
tation. This problem is intensified in persistent memory because
the persistent heap is stored on the DAX file systems in the form of
files. They cannot be eliminated by restarting the system. All the
allocators for persistent memory use size-segregated slabs for small
block allocation. Each slab is a container of multiple free blocks
and handles a memory allocation of a particular size class. Slabs
assigned to one size class cannot be reused for other size classes
even though the slabs are mostly empty and there is no free space
in slabs of other size classes [38]. This segregation-induced frag-
mentation increases memory usage by up to 2.8x for workloads
with changing allocation sizes and frequent “delete” operations
(Section 3.2).

In this paper, we introduce a fast and fail-safe persistent memory
allocator named NVAlloc. Its design emphasizes efficiently elimi-
nating cache line reflushes and small random writes and alleviating
slab-induced memory fragmentation in heap metadata manage-
ment. First, NVAlloc uses an interleaved memory mapping from
data blocks to their corresponding heap metadata and interleaved
layout of linked lists in thread-local caches to avoid accessing the
same CPU cache line repeatedly. Second, because in-place metadata
updates cause random accesses in persistent memory with the lim-
ited write buffer size [40], we add a persistent bookkeeping log to
store updates of small metadata in a sequential pattern. As a result,
we completely remove random metadata accesses from the critical
path of malloc() and free(). Third, it supports slab morphing
with which blocks in two size classes may be co-located in one
slab during the slab transformation. Therefore, the free space in
slabs of low memory usage can be well utilized, with 4.5% runtime
overhead for slab metadata management. Slab morphing is auto-
matically enabled when a slab is mostly idle but cannot be used to
serve requests in other size classes.

NVAlloc currently supports both log-based and garbage-collection-
based crash-consistency models1. Results on 6 benchmarks demon-
strate that NVAlloc improves the performance of state-of-the-art
persistent memory allocators by up to 6.4x for small allocations and
57x for large allocations. Using NVAlloc reduces memory usage by
up to 57.8%. We also integrate NVAlloc in a persistent FPTree [32].
With NVAlloc, the performance of this application is improved by
up to 3.1x compared with the state-of-the-art allocators.

2 BACKGROUND
2.1 Terminology
We first define the commonly used terms in persistent memory
allocators. Extents are a contiguous sequence of bytes allocated
from the persistent heap space directly for serving large allocation
requests. Slabs are pre-allocated extents in persistent memory and
containers of fixed-size free blocks. The slab size is 64 KB in this
paper. Small allocations are served using slabs based on their size
classes. Blocks are a contiguous sequence of bytes in persistent
memory allocated from the slab structure for serving small alloca-
tion requests. Slab bitmaps are located in slab headers, with each
bit denoting the state (allocated or free) of a slab block. Heap files
are files that reside on the DAX file system in persistent memory
and are mapped as a persistent heap.

Thread-local cache (tcache) tracks addresses of a distinct
list of free blocks assembled from local free requests, which may
come from multiple slabs. When an allocator receives a request,
it searches the tcache first to serve the request. When a block is
freed, it goes to the tcache of the thread that frees it, not the one
where it was allocated from previously. We use the LIFO algorithm
to manage the tcache. When tcache is empty, it is refilled with block
addresses from slabs.

Write-ahead logs (WALs) [31, 37] are used to record changes
to heapmetadata/data when persistent memory allocators use trans-
actions for fail-safe recovery. WAL entries are designed to save
essential metadata (e.g., memory addresses and current values).

2.2 Heap Management in Persistent Memory
Small allocations: Slabs are widely used for small allocations
(e.g., < 16 KB) to reduce memory fragmentation. We implement
a new slab structure for small allocations in persistent memory
leveraging the design principles of existing slab structures (i.e.,
those in jemalloc [17] and nvm_malloc [37]). Specifically, each
slab has a persistent header and a volatile header (called vslab).
The persistent header stores the metadata that is necessary for
recovery, including a bitmap whose bits are sequentially mapped
to the following blocks. The volatile 𝑣𝑠𝑙𝑎𝑏 serves for a fast search
of free blocks. It could be rebuilt during failure recovery.

Large allocations: Allocators also need to manage large alloca-
tions (e.g., ≥ 16 KB). We use the similar structures in jemalloc as
examples. Extents are managed using virtual extent headers (VEHs)
in DRAM for efficiently searching, splitting, and coalescing of heap
extents. Three lists are used to manage VEHs in NVAlloc. An ac-
tivated list stores the VEHs of allocated extents. A reclaimed list
stores the VEHs of freed extents with physical persistent memory

1The source code for NVAlloc is available at https://github.com/ISCS-ZJU/NVAlloc.
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Table 1: Workload configuration in Fragbench.

Workload Before Delete After
W1 Fixed 100 B 90% Fixed 130 B
W2 Uniform 100-150 B 0% Uniform 200-250 B
W3 Uniform 100-150 B 90% Uniform 200-250 B
W4 Uniform 100-200 B 50% Uniform 1000-2000 B

being mapped to virtual addresses. And a retained list stores the
VEHs of free extents that only have virtual addresses allocated and
their physical memory has been unmapped in the process address
space.

Upon serving a large allocation, allocators search the reclaimed
list and retained list using the first-fit algorithm. If a block is found,
its VEH will be moved to the activated list. If none is found, a new
VEH is created and added to the activated list. When an extent is
freed, it is returned to the reclaimed list. NVAlloc uses a decay-based
approach to manage free extents in the reclaimed list and retained
list [17]. It uses a smootherstep function to calculate the maximum
amount of memory 𝑇𝐻𝑚𝑎𝑥 that can be used by the lists. If the
memory usage of the reclaimed list is higher than𝑇𝐻𝑚𝑎𝑥 , its extents
will be moved from the reclaimed list to the retained list. Similarly,
if the memory usage of the retained list is higher than its threshold,
its extents will be moved to OS. When a VEH is removed from the
retained list, its corresponding extent is unmapped in the process
address space and its header and extent are freed in persistent
memory. A similar approach has been used in the existing work
(e.g., jemalloc). We use the same parameters of the smootherstep
function and time intervals (i.e., 50ms) as those set in jemalloc.

3 MOTIVATION
We experimentally investigate the performance issue and memory
fragmentation induced by the poor heap metadata management in
the existing allocators. We use different applications to generate
workloads exposing various internal issues.

3.1 Allocator-Induced Cache Line Reflushes
A cache line reflush occurs when repeatedly flushing the same CPU
cache line to persistent memory for heap data/metadata persistence.
The latency of cache line reflushes is determined by the reflush
distance between two accesses to the same cache line. When ac-
cessing persistent memory becomes a performance bottleneck in
allocators, we can quantify the reflush distance as the number of
accesses to unique cache lines. For example, given a sequence of
cache lines (A, B, C, D, A) that are flushed consecutively, the reflush
distance of cache line A is 3. Our experiment shows that the latency
of cache line reflushes is decreased from 800 ns to 500 ns when re-
flush distance is increased from 0 to 3. In this paper, we assume a
cache line reflush occurs when its reflush distance is smaller than
4. Otherwise, a regular flush occurs. We choose 4 as the represen-
tative reflush distance because we observe that most cache line
reflush distance is smaller than 4 and a larger distance leads to a
smaller performance degradation. The average latency of cache line
reflushes is 3x and 7x higher than random and sequential writes in
persistent memory [7], respectively.

To study the number of allocator-induced cache line reflushes,
we run four well-known benchmarks including Threadtest, Prod-con,
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Figure 1: (a) Ratio of cache line reflush; (b) peak memory
consumption.

Shbench, and Larson. The details of the experimental setting are
presented in Section 6. The percentage of both cache line reflushes
and regular flushes are shown in Figure 1(a). We observe that the
number of cache line reflushes accounts for up to 99.7%, 94.4%, and
98.8% of the total number of flush operations when running PMDK,
nvm_malloc, and PAllocator respectively. This is because they con-
secutively update the small metadata objects in slab headers or
WALs or both to maintain strong consistency. These cache line
reflushes slow down the allocation and deallocation operations.

3.2 Fragmentation Caused by Static Slab
Segregation

For allocating small objects, slabs are widely used in the exist-
ing allocators including volatile memory allocators (e.g., jemalloc-
5.2.1 [17] and tcmalloc-2.9.1 [18]) and persistent memory allocators
(e.g., Makalu [3], Ralloc [4], nvm_malloc [37], and PMDK-1.11 [11]).
Slabs are segregated based on size classes. The size classes are deter-
mined when a slab is initialized and cannot be changed at runtime.
However, the request size of memory allocation is changing over
the execution of server applications [35, 38]. We run the fragmen-
tation benchmark [35] (which we refer to as Fragbench) to study
the memory usage of popular allocators. Fragbench has three ex-
ecution phases: Before, Delete, and After. In the Before and After
phases, Fragbench allocates 5GB of memory using objects from a
pre-defined size distribution and randomly deletes existing objects
to keep the amount of live data from exceeding 1GB. In the Delete
phase, Fragbench deletes objects randomly. The three phases are
executed in order. We change the object size distribution and the
ratio of deleted objects in four representative workloads2 (W1-W4
as shown in Table 1) derived from the benchmark to cover a wide
range of characteristics of real-world applications. Similar work-
loads have been used in the prior research (i.e., RAMCloud [35],
PAllocator [31], and log-structured NVMM [20]).

The peak memory consumption is presented in Figure 1(b). To
manage the 1GB live heap data, existing allocators require memory
usage of up to 2.8GB. This result indicates the persistent memory
is severely under-utilized. The reason is static slab segregation used
in the existing allocators responds to the change of request sizes
by allocating more slabs in other size classes [21]. It cannot use
the free space in the existing slabs of different size classes. This is
because the allocators cannot change a slab’s size class at runtime
until it is completely free. The memory fragmentation caused by

2Although there are eight workloads in the original Fragbench, we only choose the
four workloads because other workloads show similar issues and the space is limited.
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Figure 2: Small random writes in persistent memory. The
X-axis denotes the number of flushes.

static slab segregation in persistent memory has a larger impact
than in volatile memory because the memory fragments cannot be
eliminated by restarting.

3.3 Allocator-Induced Small Random Access
For large allocations, most modern allocators (e.g., PMDK and
Makalu) store bookkeeping metadata in the header space of a large
memory region (e.g., 4MB). The bookkeeping metadata tracks all
extents in the region. The header space is typically placed in a ded-
icated location separated from heap data space. This layout avoids
the header space being modified by users mistakenly. Updating the
metadata (e.g., bitmaps and logs) in the header space requires small
writes to persistent memory. To study its access pattern, we profile
the memory addresses of the first 1000 flush operations of metadata
when running the DBMStest benchmark [16] using 4 allocators in-
cluding nvm_malloc, PAllocator, PMDK, and Makalu. We show the
results in Figure 2. We observe that for managing the bookkeeping
metadata allocators issue a large number of small random writes to
persistent memory and the request addresses are distributed in the
whole heap space. The reason is that to serve a large request allo-
cators typically use allocation algorithms (i.e., best-fit, first-fit, or
their variants) to find an extent of the most suitable size. After that,
they in-place update the bookkeeping metadata in the header space.
After a sequence of allocations and deallocations, the best extent
candidate can be located in any memory region in the heap space,
leading to small random accesses for updating its bookkeeping
metadata.

4 NVALLOC
In this section, we present the programming model of NVAlloc
and describe the design of its major components: small allocator
and large allocator. The NVAlloc software is developed with three
optimizations including interleaved mapping which reduces cache
line reflushes, slab morphing which alleviates segregation-induced
fragmentation, and log-structured bookkeeping which improves
the write locality. We illustrate all the components of NVAlloc and
where each optimization is applied in Figure 3.
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Figure 3: Overview of NVAlloc.

4.1 Programming Model
We use nvalloc_init() to create a new NVAlloc instance and
nvalloc_exit() to safely exit. To avoid the memory leak, we adopt
the nvalloc_malloc_to() and nvalloc_free_from() API used
in other allocators [11, 31, 37] to atomically allocate and free objects
on persistentmemory, respectively. Function nvalloc_malloc_to()
allocates a block or an extent according to user-specified 𝑠𝑖𝑧𝑒 in
the persistent heap and attaches it persistently at a user-specified
𝑎𝑑𝑑𝑟𝑒𝑠𝑠 . We use an offset-based pointer representation to allow
persistent structures to be mapped at different virtual addresses af-
ter failure recovery. The same technique has been used in previous
projects [4, 6, 9]. The nvalloc_free_from() returns a block or an
extent specified by 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 to the persistent memory heap.

Currently, we implement two variants: NVAlloc-LOG supporting
log-based transactional model and NVAlloc-GC supporting GC-
based model (see Section 7). As future work, we wish to implement
another variant using internal collection for failure recovery. We ap-
ply the three novel optimization techniques to various components
in these allocators. As an example, we apply interleaved mapping
to its WAL, bookkeeping log, bitmaps, and tcache in NVAlloc-LOG.
Table 2 shows the details.

For small allocations, NVAlloc-LOG writes all metadata updates
in WALs and flushes them to persistent memory to enforce consis-
tency. All memory leaks can be resolved by replaying the WALs.
In NVAlloc-GC, no metadata or WALs flushing is used for small
allocations to achieve the best runtime performance. However, it
needs to execute the post-crash GC during recovery to rebuild heap
metadata and check memory leaks, which blocks the normal exe-
cution of applications [3]. For large allocations, NVAlloc-GC has
the same code path as NVAlloc-LOG.

4.2 Small Allocator
For small allocation (<16 KB), NVAlloc implements arena and tcache
to reduce the thread contention. Each CPU core owns an arena,
while each thread owns a tcache. Each thread will be assigned to
an arena which has the least number of assigned threads. An arena
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Table 2: Techniques used in the two variants of NVAlloc (IM
means interleaved mapping).

Allocator Small allocation Large allocation
NVAlloc-
LOG

IM(WAL,bitmaps,tcache)
Slab morphing

IM(WAL,bookkeeping log)
Log-structured bookkeeping

NVAlloc-
GC Slab morphing IM(WAL,bookkeeping log)

Log-structured bookkeeping

maintains one freelist of slabs (𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑠𝑙𝑎𝑏 ) for every size class.
The slabs in the freelists are partially full. A tcache maintains one
freelist of blocks per size class (𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑏𝑙𝑜𝑐𝑘 ). Each block in the
freelist is ready to serve an allocation.

When a small block of a certain size is requested, the working
thread gets its size class, and then tries to get a block from the
corresponding 𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑏𝑙𝑜𝑐𝑘 in tcache. If 𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑏𝑙𝑜𝑐𝑘 is empty, the
working threadwill fill it until full using slabs from their correspond-
ing 𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑠𝑙𝑎𝑏 in the arena. Thread synchronization is required
here because multiple threads may be attached to the same arena.
If there is no slab in 𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑠𝑙𝑎𝑏 , it will first use slab morphing
(Section 5.2) to find blocks of other size classes to fill tcache. When
no blocks can be found using slab morphing, it will require a new
slab by executing a large allocation. Once 𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑏𝑙𝑜𝑐𝑘 is filled,
users can retrieve a block from tcache immediately.

When a user releases a small block, the working thread will
first use an R-tree to find its size class. Then, it is returned to
its corresponding tcache. When 𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑏𝑙𝑜𝑐𝑘 is full, the working
thread will return the small block to its slab directly, bypassing
tcache.

NVAlloc uses interleaved mapping of slab bitmaps and inter-
leaved layout of tcache (Section 5.1) to avoid cache line reflushes
when small heap metadata accesses are required.

4.3 Large Allocator
The large allocator in NVAlloc is responsible for allocating slabs
and extents that are ranging from 16 KB to 2MB. For objects larger
than 2MB, NVAlloc calls mmap() to allocate a given size extent.
The architecture of the large allocator is shown in Figure 7. When
nvalloc_malloc_to() is called, it first searches the reclaimed list
using the best-fit algorithm. If no extent is found, the search is
repeated using the retained list. If an extent is found, its virtual
extent header (VEH) is moved to the activated list. The extent may
need to be split if the existing extent is larger than the request size.
To facilitate the extent splitting and coalescing, NVAlloc maintains
an R-tree in DRAM to help search the neighboring extents. Each
item in the R-tree is a key-value pair, whose key is the start/end
address of an extent and value is a pointer to its corresponding
VEH. If no extents are available in either the reclaimed list or the
retained list, NVAlloc calls mmap() to allocate a new extent of 4MB,
which is split into two parts. NVAlloc returns the first part to user
and adds it to the activated list. The second part is added to the
reclaimed list. Finally, for each part, NVAlloc adds an item to the
R-tree pointing to the VEH for the part.

When nvalloc_free_from() is called to free a large memory
region, NVAlloc searches for its VEH in the R-tree using its memory
address. The VEH is moved from the activated list to the reclaimed
list. NVAlloc uses a decay-based approach to manage VEHs in the
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cache line #0 cache line #1 cache line #2 cache line #3

Bitmap
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(a)

Blocks B0 B1 B2 B3 B4 B5 B6 B7 …

Bitmap
Interleaved

mapping

(b)

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 … …

M0 M4 M8 M12 M1 M5 M9 M13 M2 M6 M10 M14 M3 M7 … …

Figure 4: Mapping bitmap to data blocks.

reclaimed list and retained list (see Section 2.2). For failure recovery,
when a VEH is created or updated, its essential metadata is added
to the persistent bookkeeping log. The operations of the persistent
bookkeeping log are described in Section 5.3.

4.4 Recovery
After the recovery process, allocators must ensure that there is
no persistent memory leak, and the metadata of the allocators is
consistent. Then, the application can conduct normal allocation
and deallocation in the persistent heap again.

We use a per-arena flag to mark the states of an arena includ-
ing running, normal shutdown, and recovery. We change the state
to normal shutdown when nvalloc_exit() is completed. If the
recovery process finds the flag is running or recovery, it indicates a
failure has occurred during running or recovery. In this case, we
need to do an additional sanity check to ensure consistency.

For a normal shutdown recovery, we first recreate an arena for
each CPU core, and then open and map their respective heap files
and log files. After that, for each arena, we perform a slowGC on the
persistent bookkeeping log to clean up its tombstone entries (see
Section 5.3). Then, we scan and process every log entry. Specifically,
for each log entry, we first check its type to determine whether
its corresponding extent is a slab. For the slab, we reconstruct its
volatile 𝑣𝑠𝑙𝑎𝑏 based on the metadata in the slab header and add it
to the 𝑓 𝑟𝑒𝑒𝑙𝑖𝑠𝑡𝑠𝑙𝑎𝑏 . Next, we read its 𝑓 𝑙𝑎𝑔 field to identify whether
a slab was morphing when a normal shutdown happened. If it is a
𝑠𝑙𝑎𝑏𝑖𝑛 (see Section 5.2), we will reconstruct its 𝑐𝑛𝑡𝑏𝑙𝑜𝑐𝑘 and 𝑐𝑛𝑡𝑠𝑙𝑎𝑏
additionally. For normal extents, we reconstruct their VEHs and
add them to the activated list. We also treat the space gaps between
active extents as free extents and insert their VEHs to the reclaimed
list in DRAM.

Upon a failure recovery, we first conduct the normal-shutdown
recovery. Then, we additionally use different methods to do a mem-
ory sanity check to resolve possible memory leaks according to
the consistency model of allocators. For NVAlloc-LOG, we replay
WALs as in nvm_malloc. For NVAlloc-GC, we conduct conserva-
tive garbage collection [3] as in Makalu. As for slabs, we will read
the 𝑓 𝑙𝑎𝑔 field in the slab header to identify whether there is a fail-
ure during slab morphing. If a failure is detected, we undo all the
operations of metadata transformation.

5 OPTIMIZATION OF METADATA
MANAGEMENT

In this section, we introduce three optimizations which address the
metadata management issues in persistent memory allocators.
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Figure 5: Illustration of slab morphing.

5.1 Interleaved Mapping
Using the slab structure, contiguous small allocations from the
same slab need to update consecutive bits in slab bitmaps. Because
these bits are likely stored in one CPU cache line, it may cause
allocator-induced repeated cache line flushes, leading to longer
request latency. A naive approach is allocating blocks at random
offsets. Thus, multiple cache lines may be accessed in a random or-
der avoiding reflushing the same cache line. However, this approach
compromises the spatial locality of blocks in a persistent heap. An-
other approach used in the previous work [3, 4] is managing free
blocks in a slab using a linked list rather than bitmaps. Each free
block has an embedded link pointer. There are three issues with this
design. First, placing a header right before the allocated data blocks
is prone to metadata corruption from memory corruption bugs [15].
Second, the size of link pointers is much smaller than the size of
a cache line. When the link pointers and their corresponding data
blocks are stored in the same cache line, allocator-induced reflushes
are still possible. Third, blocks in tcache may still be mapped to the
same cache line. Therefore, none of the existing work completely
solves the problem.

We design a two-level interleaving scheme to produce ametadata
layout that eliminates cache line reflushes while maintaining the
spatial locality of blocks.

Interleaved mapping of slab bitmaps. Assume we have a
bitmap, which has 𝑁 bits in total. We divide the bitmap into bit
stripes, each of which is mapped to a cache line. The stripe size 𝑑 is
the total number of bits in a stripe and is capped by the cache line
size.We thenmap consecutive blocks to bits in different stripes in an
interleaved manner. We use Figure 4 for illustration. In this example,
we assume the number of bit stripes is 4. In the baseline, bits are
sequentially mapped to the data blocks. For example, bits 𝑀0,𝑀1,
and 𝑀2 are mapped to data blocks 𝐵0, 𝐵1, and 𝐵2, respectively.
As allocators need to persist the bitmap upon each allocation for
crash consistency, contiguous allocations of 𝐵0, 𝐵1, and 𝐵2 result in
reflushing the same cache line storing bits𝑀0,𝑀1, and𝑀2. In the
interleaved mapping, 𝑀0, 𝑀1, and 𝑀2 are placed in different bit
stripes and cache lines. Because𝑀0,𝑀1, and𝑀2 are respectively
stored in cache line #0, #1, and #2, there will be no cache line reflush
when 𝐵0, 𝐵1, and 𝐵2 are allocated in the slab.

Interleaved layout of tcache. When tcache is used, the order
of block allocation is determined by the LIFO algorithm managing
tcache. Therefore, it is still possible to have cache line reflushes of
contiguous allocations if the bits of blocks selected by tcache are
mapped to the same cache line. To avoid cache line reflush issue, we

sub-tcache #3

sub-tcache #2

sub-tcache #1

M0 M4 M8 M12 …

M1 M5 M9 M13 …

M2 M6 M10 M14 …

M3 M7 M11 M15 …

sub-tcache #0

Figure 6: Interleaved tcache layout.

design a new interleaved tcache layout (shown in Figure 6). Specif-
ically, we divide a tcache into multiple sub-tcaches. The number
of sub-tcaches is determined by the number of bit stripes. Each
sub-tcache caches addresses of blocks whose corresponding bits
are mapped to the same cache line. We maintain a cursor to indi-
cate which sub-tcache is used for current allocation. The cursor
points to the next sub-tcache after one allocation, which ensures
that sub-tcaches mapped to different cache lines are used to serve
contiguous allocations. For example, assume that tcache is filled
with blocks corresponding to bits𝑀0 to𝑀15 in Figure 6. Because
tcache selects the blocks alternatively from the 4 sub-tcaches for
serving contiguous small allocations, we can guarantee that tcache
does not select bits mapped to the same cache line. Consequently,
cache line reflushes are effectively eliminated.

5.2 Slab Morphing
The existing allocators use static slab segregation to manage slabs,
leading to memory fragmentation. We design a new technique,
named slab morphing, to address this issue. The idea is that when
memory usage of a slab is low, NVAlloc allows it to be transformed
to a slab of another size class. During the transformation, the slab
may store two types of data blocks of different sizes. We need to
address two challenges in the design of slab morphing. (1) The
scheme needs to guarantee the correctness of indexing two types of
blocks belonging to different size classes. (2) We need to minimize
the overhead of managing these blocks.

Block allocation using slab morphing. We manage all the
slabs using an LRU list. The slab that is least recently accessed is
placed at the head of the list. Slab morphing is only enabled when
a small object request comes but existing slabs of the request size
class have no space. NVAlloc will choose a slab for morphing and
transforming its metadata.

Selecting a slab candidate for morphing. NVAlloc scans the LRU
list from head to tail and chooses a slab for morphing when its
𝑅𝑎𝑡𝑖𝑜𝑜𝑐𝑐𝑢𝑝𝑦 is lower than a threshold of space utilization (𝑆𝑈 ),
where 𝑅𝑎𝑡𝑖𝑜𝑜𝑐𝑐𝑢𝑝𝑦 is defined as the ratio of the number of allocated
blocks to the number of total blocks in the slab. We set 𝑆𝑈 as 20%
in its current design (see Section 6.5). Because slab morphing needs
to change the format of slab headers, a slab will not be selected if
the new header space is overlapped with block spaces having live
data.

Transforming slab metadata. Then, NVAlloc needs to reset the
metadata of the chosen slab. For the convenience of our discus-
sion, we call the slab before, in, and after morphing 𝑠𝑙𝑎𝑏𝑏𝑒𝑓 𝑜𝑟𝑒 ,
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������ , and ������ ��� respectively; we refer to the blocks allocated
in ������� ��� as ������� � ��� . ������� ��� and ������ ��� are regular
slabs whose headers consist of a size_class field, a data_offset field
(the offset of the starting address of the data region relative to
the starting address of a slab), and its bitmap field. ������ needs
to support indexing blocks of two size classes. Therefore, we add
additional metadata to help implement this functionality. Specifi-
cally, we add an old_size_class field and old_data_offset field in the
header of ������ to support the index of ������� � ��� . We also add
an index_table to ensure the recoverability of �������� ��� . Each
������� � ��� has an index table entry, which stores its block index in
������� ��� and its allocation state (i.e., allocated or free). The index
table has a small memory footprint because (1) each table entry
is only 2 B and (2) we only have a limited number of ��������� ���
since we only select a slab for morphing when its slab usage is low.
Finally, we add a counter ������� in the volatile header vslab to de-
note the number of allocated �������� ��� in the slab. If ������� > 0,
the slab is a ������ , otherwise it is a regular slab. We also maintain a
counter �������� in the volatile memory for each block in the ������
to denote the number of �������� ��� that occupy it. The �������� is
used to indicate whether a new block can be safely released.

We transform metadata in the following steps. Step 1: set the
old_size_class and old_data_offset; Step 2: set the index_table; Step
3: set the size_class, data_offset, and bitmap in the new slab header.
Because slab transforming involves multiple steps of modification
of metadata, we add a flag field to indicate the step of transfor-
mation to ensure crash consistency. Flag is set to 0 for ������ and
������ ��� . During the transformation, we atomically increment flag
by 1 after each step. Size_class, data_offset, and allocation informa-
tion in the bitmap will be changed after we have a copy of them
in old_size_class, old_data_offset, and index_table. We can undo the
morphing if a crash happens during the transformation using flag,
which denotes which step has been completed. After metadata trans-
formation, ������ is removed from the LRU list because it cannot
morph again. It is also removed from the slab list of old_size_class
and inserted into the slab list of size_class.

Figure 5 shows an example of transforming a slab of a small size
class to a slab of a large size class with the slab morphing technique.
Before morphing, �1, �5, and �6 are allocated in ������ � ��� . During
the transformation, �������� are set for each block. For ��0, its
�������� is set to 1 because only �1 of ������� ��� is occupied in
��0. For ��2, its �������� is set to 2 because both �5 and �6 are
occupied in ��2. Note that the slab morphing also supports slab
transforming from a large size class to a small size class.

Block release.When a block is released, NVAlloc determines
whether it is a block in ������� ��� by querying ������� and �������� .
������� � ��� will be directly put back to ������ bypassing tcache
with its state set to free in index_table. When ������� becomes 0,
������ is reset to a regular slab ������ ��� and is inserted into the
LRU list again.

The slab morphing scheme introduces a small overhead because
it is enabled infrequently. For allocation and release of blocks of a
new size class, blocks in ������ can be used to fill the tcache as nor-
mal blocks without extra overhead. For the release of ��������� ��� ,
NVAlloc needs to modify its state in the index_table and flush it.
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Figure 7: Illustration of log-structured bookkeeping.

These operations have a low cost because ��������� ��� only ac-
count for up to 20% of the total blocks as set in our experiments.
We quantify its overhead in Section 6.4.

5.3 Log-Structured Bookkeeping
For large allocation and release, NVAlloc uses a virtual extent header
(VEH) in DRAM to manage every extent in persistent memory.
VEHs are moved between the activated list, the reclaimed list, and
the retained list. The essential metadata (e.g., size and address) needs
to be updated in their corresponding extent headers in persistent
memory. Because of in-place extent header updates, random access
to the headers is unavoidable. To eliminate the random accesses in-
duced by large allocations, we design a log-structured bookkeeping
scheme as shown in Figure 7. Specifically, when a virtual extent
header (e.g., ���1) is updated, its essential metadata is appended
to a persistent bookkeeping log. The log is sequentially written and
cleaned up when it is full. We trade persistent memory space for
better spatial locality.

The overhead of log-structured bookkeeping in allocators is very
low for the following reasons. First, the persistent bookkeeping
log only stores small essential metadata. Each log entry is only
8 B, consisting of 26 bits for "size", 36 bits for "addr", and 2 bits for
"log type". For "addr", we only need 36 bits because (1) only the
low-order 48 bits are used in 64-bit address space in Intel x86 pro-
cessors [31] and (2) our address is 4 KB-aligned, thus the lower
12 bits are not needed in the log entry. This is different from tradi-
tional log-structured file systems, whose log entry can be as large
as a request size. Consequently, the space overhead of metadata log-
ging is much smaller than data logging in traditional log-structured
file systems. Therefore, we can afford to trade more space for a
better space locality without incurring the overhead of garbage col-
lection. Second, log entry size is unified in persistent bookkeeping
logs, leading to a simplified log management process.

One major challenge is cache line reflushes for writing small log
entries. We introduce the layout of persistent bookkeeping logs and
how to prevent cache line reflushes in logging and how to reduce
GC overhead.

The layout of persistent bookkeeping log. The persistent
bookkeeping log has two components in DRAM and persistent
memory, respectively. Its layout is shown in Figure 8. At the time of
initialization, NVAlloc creates a file of 100MB in persistent memory
to store log entries. A log file is divided into chunks of 1 KB, each
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of which can store 128 log entries. The chunks are managed as a
linked list. The log file has a log header, which stores two pointers
and an alt bit. One of the pointers refers to the head of the linked
list of active log chunks upon recovery; the other one is only used
by GC for building a new linked list. The alt bit indicates which
one of the two pointers is active. Each chunk has a chunk header,
which stores its ID number, an activeness bit, and a pointer to the
next active chunk.

To speed up the log operation, each log chunk has a correspond-
ing volatile chunk, vchunk in DRAM. It stores a bitmap indicating
the valid log entries in the chunk. Besides, NVAlloc uses a red-black
tree to manage the vchunks of the allocated chunks. After GC, all
the freed chunks are retained in a linked list for fast allocation in
the future. When a new log chunk is needed, it is first retrieved
from the free list. If the free list is empty, a new chunk is created
and appended to the tail of the log file in persistent memory.

Basic log operation. In NVAlloc, the log entry has two different
types: normal entry and tombstone entry. When allocating a large
block, a normal entry will be created and added in the current chunk.
To avoid cache line reflushes, we map consecutive log entries to the
chunk in an interleavedmanner, similar to themethod in Section 5.1.
Then the corresponding bit in the bitmap of its vchunk will be set.

Similar to the normal entries, a tombstone entry will be added
when freeing a large extent. In addition, the tombstone entry will
store the pointer of the normal entry to be deleted and clean its cor-
responding bit in the bitmap of vchunk for fast garbage collection.

Garbage collection (GC). To control the size of the log file, we
need to execute garbage collection (GC) to drop the log entries that
are marked as deleted by the tombstones. NVAlloc supports two GC
algorithms including fast GC and slow GC [20], which are designed
to make different tradeoffs between the GC overhead and memory
efficiency.

The fast GC algorithm scans the bitmap of each vchunk in the
red-black tree. If the bitmap of a vchunk is empty, it will be moved
to the free list. Because the fast GC algorithm does not need to
access persistent memory, its overhead is trivial. NVAlloc executes
fast GC most of the time and only switches to execute slow GC
when the size of the log file is larger than a memory usage threshold
𝑈𝑠𝑎𝑔𝑒𝑝𝑚𝑒𝑚 . When the slow GC algorithm is executed, a new active
chunk list 𝑙𝑖𝑠𝑡𝑛𝑒𝑤 will be created to store the active log entries. The
slow GC algorithm scans all the log entries in the existing active
chunk list 𝑙𝑖𝑠𝑡𝑜𝑙𝑑 and checks whether the log entries are alive via
bitmap. The log entries that are alive in 𝑙𝑖𝑠𝑡𝑜𝑙𝑑 will be copied to
chunks in 𝑙𝑖𝑠𝑡𝑛𝑒𝑤 . The tombstone entries will be removed in the

process. When the scanning is completed, NVAlloc marks 𝑙𝑖𝑠𝑡𝑛𝑒𝑤 as
the current active chunk list by flipping the alt bit. Then it recycles
all the chunks in 𝑙𝑖𝑠𝑡𝑜𝑙𝑑 .

6 EVALUATION
6.1 Experimental Setup
Experimental platform. We run the experiments on a Linux
server (kernel 5.3.0-050300-generic) with two Intel Xeon Gold 5218R
CPUs. Each CPU has 20 physical cores (40 hyperthreads), 64GB
DRAM, and two Intel Optane DIMMs (128GB per DIMM). Every
pair of DIMMs attached to a CPU is mounted with the Ext4-DAX
file system and configured in App Direct mode. To avoid the NUMA
effects, we use the numactl utility to bind every thread to one core
in the first socket. All source codes are compiled with g++7.5 with
-O3.

Compared allocators. We compare NVAlloc with state-of-the-
art persistent allocators, including PMDK [11], nvm_malloc [37],
PAllocator [31], Makalu [3], and Ralloc [4]. Since all of them except
PAllocator are open-source, we use their public implementations
for tests. We reimplement PAllocator as faithfully as possible ac-
cording to the description in the paper. We exclude jemalloc [17],
Hoard [2], and tcmalloc [18] because they are volatile allocators. To
support existing consistency models, we implement two versions of
NVAlloc: NVAlloc-LOG and NVAlloc-GC, which leverage WAL and
GC to keep crash consistency and avoid memory leaks, respectively.

For ease of description, we call PMDK and WAL-based alloca-
tors (i.e., nvm_malloc, PAllocator, and NVAlloc-LOG) as strongly
consistent allocators. In contrast, we call GC-based allocators (i.e.,
Makalu, Ralloc, and NVAlloc-GC) weakly consistent allocators.

6.2 Evaluations using Benchmarks
Benchmarks. We use five representative benchmarks, each of
which has a unique allocation pattern, in the evaluation.

Threadtest [2] measures multi-threaded performance of an allo-
cator for 𝑖 iterations of allocations. In every iteration, each thread
allocates 𝑛 objects in size of 𝑠 and then frees all of them indepen-
dently. In the experiment, we set 𝑖 = 104, 𝑛 = 105, and 𝑠 = 64 B.

Prod-con [2, 36] simulates a producer-consumer workload for
𝑡 threads. Each pair of threads produces and consumes 𝑛 objects,
whose total size is 𝑠 . One thread of each pair allocates objects while
the other one frees them. Our experiment sets 𝑛 = 2×107

𝑡 and 𝑠 =
64 B.

Shbench [29] is a stress test for an allocator. In each iteration,
each thread allocates and frees objects of varying sizes from 64 B to
1000 B. The smaller objects are allocated and freed more frequently.
We run 105 iterations.

Larson [22, 31] simulates a behavior where some objects allocated
by one thread are freed by another thread. In each iteration, each
thread randomly allocates and frees 103 varied-size objects. After
104 iterations, each thread creates a new thread that starts with the
remaining objects and repeats the same allocation/deallocation pro-
cedure. We generate two workloads: Larson-small managing small
objects (64 B to 256 B) and Larson-large managing large objects
(32 KB to 512 KB). We run the test for 30 seconds.

DBMStest [16]: it simulates the allocation in a database with
TPC-DS benchmark for 𝑡 threads. In each iteration, each thread
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Figure 9: Performance (log10 scaled) of small allocations with strongly consistent allocators.
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Figure 10: Performance (log10 scaled) of small allocations with weakly consistent allocators.
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Figure 11: Performance breakdown analysis.

allocates 𝑛 large objects, whose sizes follow a Poisson distribution
between 32 KB to 512 KB, and then randomly deletes 90% of them.
We choose 𝑛 = 104

𝑡 objects. We run 50 iterations for warmup and
50 iterations for evaluation.

Performance of small allocations.Wefirst evaluate the alloca-
tor performance for small object allocations with varying numbers
of threads on Threadtest, Prod-con, Shbench, and Larson-small.
For a fair comparison, we show the results of strongly and weakly
consistent allocators in Figure 9 and Figure 10, respectively. Overall,
NVAlloc outperforms and scales better than all the counterparts on
all benchmarks.

Figure 9 shows that NVAlloc-LOG is up to 6.4x, 3.5x, and 3.9x
faster than PMDK, nvm_malloc, and PAllocator, respectively, on
the four benchmarks. NVAlloc-LOG outperforms its counterparts
because the interleaved mapping reduces the number of cache line
reflushes in both metadata updating and WAL updating. To further
analyze these results, we use the linux perf tools [14] to measure
the breakdown of execution time of different benchmarks. We only
evaluate Threadtest, Larson-small, and DBMS-test because other
benchmarks show similar results and the space is limited. The exe-
cution time consists of object searching, splitting, and coalescing
of extents in allocation/deallocation (denoted as Search), metadata
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Figure 12: Performance (log10 scaled) of large allocations.

flushing time (FlushMeta), WAL flushing time (FlushWAL), and
other time (Other). We show the results with eight threads in Fig-
ure 11. Base denotes NVAlloc-LOG without enabling any optimiza-
tions described in Section 4. +Interleaved denotes the version in
which only interleaved tcache layout is enabled. +Log denotes the
version in which only log-structured bookkeeping is enabled. As
Figure 11(a) shows, the FlushMeta and FlushWAL account for 87%
of the execution time of Base on Threadtest. +Interleaved reduces
the FlushMeta time and the total execution time of Base by 51% and
35%, respectively. NVAlloc-LOG further reduces the total amount of
flush time (FlushMeta and FlushWAL) by 48% when the interleaved
mapping is additionally used in both slab bitmaps and WALs.

Figure 11(b) shows the breakdown of the execution time on
Larson-small. With the interleaved tcache layout, the FlushMeta
time in Base-tcache is reduced by 14% and the total time is reduced
by 7%. +Interleaved achieves the gain because the tcache selects the
blocks from each sub-tcache in turn, avoiding cache line reflushes in
updating the persistent bitmaps. With interleaved mapping enabled
in both slabs and WALs, NVAlloc-LOG achieves a 31% performance
gain over Base. Another observation is that NVAlloc-LOG obtains
more benefits on Threadtest compared to Larson-small. The reason
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is that there are more cache line reflushes on Threadtest because of
its fixed allocation size.

Figure 10 shows that NVAlloc-GC achieves a maximal speedup
of 70x and 6x over Makalu and Ralloc on the four benchmarks.
NVAlloc-GC has better performance because Makalu and Ralloc use
the embedded linked list to manage free blocks in persistent slabs
while NVAlloc-GC uses bitmaps to manage blocks, improving data
access locality in persistent memory. NVAlloc-GC also maintains
a volatile bitmap copy in DRAM for fast free block indexing and
reducing accesses to persistent memory.

Performance of large allocations. Figure 12 shows the per-
formance of large object allocations. Because NVAlloc-GC and
NVAlloc-LOG perform the same for large allocations and Ralloc
does not work correctly in its open-source implementation for
large objects, we exclude them in Figure 12. On Larson-large and
DBMStest, NVAlloc-LOG is up to 40x, 18x, 55x, and 57x faster than
PMDK, nvm_malloc, PAllocator, andMakalu. NVAlloc-LOG is faster
than its counterparts because of using log-structured bookkeeping
and the interleaved mapping in WALs.

To show the impact of log-structured bookkeeping and inter-
leaved mapping, we measure the breakdowns of the execution time
with DBMS-test. Figure 11(c) shows the results. +Log is the version
with only log-structured bookkeeping added to Base. It reduces
the total amount of flush time (FlushMeta and FlushWAL) by 45%
because the log-structured bookkeeping provides sequential write
pattern to persistent memory. NVAlloc-LOG further reduces the
flush time by 26% because the repeated cache line flushes of log
entries are eliminated.

Space usage results. Figure 13 shows the memory consumption
of different allocators. We only take Threadtest and DBMS as an
example for small and large object allocations respectively because
other benchmarks exhibit similar results. As the NVAlloc-LOG and
NVAlloc-GC show the same space consumption, we only include
NVAlloc-LOG. NVAlloc-LOG yields comparable or better space
consumption than other allocators on both benchmarks.We exclude
RAlloc in Figure 13 (b) because RAlloc does not work correctly for
large objects in their open-source implementation.

6.3 Evaluation using FPTree
We also evaluate NVAlloc with a real-world key-value store applica-
tion, FPTree [32]. It is a persistent concurrent B+tree, which stores
the inner nodes in DRAM and the leaf nodes in persistent memory.
Each node of FPTree contains 64 children. To support varied-size
values, FPTree uses the original value in the leaf node as a pointer
to an actual key-value pair. We set the size of original keys and
values as 8 B. Since most key-value pairs are small in Facebook [5],
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Figure 14: Performance of FPTree.

we set the size of the actual key-value pair as 128 B. We measure the
performance of FPTree with a mixed workload of 50% insertions
and 50% delete operations. We warm up the FPTree with 50M key-
value pairs, then execute 50M operations with a varying number
of threads.

Figure 14 shows the throughputs of FPTree using different allo-
cators. With NVAlloc-LOG, FPTree yields up to 1.2x, 1.5x, and 3.1x
throughput compared with PMDK, nvm_malloc, and PAllocator, re-
spectively. With NVAlloc-GC, FPTree brings a speedup up to 35.4%.
FPTree with NVAlloc yields comparable space consumption over
other allocators since the slab morphing technique is not triggered
for the given workload.

6.4 Evaluations using Fragbench
We then evaluate NVAlloc on Fragbench [35] with the four work-
loads listed in Table 1 in Section 3. Figure 15(a) shows the space con-
sumption of different allocators. We exclude the ones in Figure 1(b)
except Makalu to avoid redundant representation. As NVAlloc-
LOG and NVAlloc-GC yield the same space consumption, we only
include NVAlloc-LOG. For comparison, we also evaluate NVAlloc-
LOG without the slab morphing strategy (NVAlloc-LOG w/o SM).
The result shows that NVAlloc-LOG achieves the smallest space
consumption because of the slab morphing technique.

To verify this, Figure 15(b) shows the space breakdown of NVAlloc-
LOG. We divide the slabs into three categories according to their
memory utilization: 0-30%, 30-70%, 70-100%. Figure 15(b) shows
that, with the slab morphing, NVAlloc-LOG greatly increases the
number of slabs with high utilization, compared to the scheme with-
out using slab morphing. Thus, it decreases the overall memory
consumption.

Figure 15(c) and (d) show the performance of NVAlloc. NVAlloc
outperforms all other allocators because of using the interleaved
mapping technique, as discussed in Section 6.2. We also observe
that the slab morphing approach may introduce a performance
degradation of 4.5% on average because it needs to flush slab meta-
data. Despite the slight performance slowdown, the slab morphing
reduces memory usage by up to 41.9%.

6.5 Sensitivity Analysis
Number of bit stripes. The efficiency of interleaved mapping is
related to the number of bit stripes. A larger number of bit stripes
decreases the number of reflushes because each bit stripe has fewer
bits and thus fewer blocks are mapped to the same cache line. How-
ever, it may increase the flushing latency because we may exhaust
the XPBuffer [40] in persistent memory when a large number of
cache lines flush concurrently. To explore the impact of the number
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Figure 15: Results of Fragbench. SM denotes slab morphing.

of bit stripes, we run NVAlloc-LOG on Threadtest with varying
numbers of threads as a study case.

As Figure 16(a) shows, the execution time of NVAlloc-LOG is
not linearly decreased as we increase the number of bit stripes.
This is because the execution time is determined by both software
parameters (i.e., the number of bit stripes and the number of threads)
and hardware parameters (i.e., the number of XPBuffer lines in
persistent memory and its size). In this paper, we choose the number
of bit stripes as 6 because it achieves the best performance for most
cases. We leave it as future work to dynamically choose the number
of stripes with varying levels of thread concurrency.

Morphing parameter. The slab space utilization threshold (SU)
in the morphing technique also impacts the efficiency of NVAlloc.
A larger SU allows more slabs to be morphed and thus decreases
memory consumption, while a smaller SU decreases the morph-
ing cost and thus improves performance. Figure 16(b) shows the
impact of SU on NVAlloc-LOG on the W4 workload. Based on the
results, we empirically set SU as 20% to achieve a decent trade-off
between memory consumption and allocator performance. While
this parameter works well in our initial prototype, using a more
sophisticated parameter could be more beneficial. We leave such
exploration for future work.

6.6 Overhead Discussion
GC overhead. To evaluate the efficiency of log cleaning on log-
structured bookkeeping for large allocations, we run NVAlloc-LOG
on Larson-large and DBMStest. Figure 17 shows, with GC, the
throughput drops slightly (only 3%) on Larson-large and 8% on
DBMS when 𝑈𝑠𝑎𝑔𝑒𝑝𝑚𝑒𝑚 = 0.2%. The GC overhead is trivial be-
cause the log-structured file is light-weight since it only keeps the
allocation metadata thus the copying overhead is low.

Recovery. Figure 18 shows the recovery time of open-source
allocators. We first create a single linked list with 10M nodes whose
sizes are uniformly distributed between 64 B and 128 B, and then we
execute the recovery using a single thread. For strongly consistent
allocators, NVAlloc-LOG is slower than PMDK and nvm_malloc
because it needs to scan WALs and the log-structure bookkeeping
while PMDK only needs to travel the WALs and nvm_malloc defers
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some metadata reconstruction to the runtime deallocation process.
However, NVAlloc-LOG outperforms them in runtime performance.
For weakly consistent allocators, NVAlloc-GC performs comparably
over Makalu. It is slower than Ralloc because Ralloc only needs to
scan part of nodes in the recovery.

6.7 Evaluation on Emulated eADR Platform
eADR (extended ADR) is a new feature supported in the 3rd gener-
ation Intel Xeon Scalable Processors, which ensures CPU caches
are also in the power fail protected domain [12]. Thus, explicit
cache line flushes are not necessary on eADR. Implementing eADR
requires higher energy consumption, hardware cost, and system
maintenance burden. Given these issues, both ADR and eADR plat-
forms will co-exist in the foreseeable future, as pointed out by
Intel [34]. In this section, we evaluate NVAlloc on the eADR plat-
form. Because the eADR is not commercially available, we emulate
it by removing flush operations (i.e., clwb) on the ADR platform for
all evaluated allocators. We only evaluate the strongly consistent
allocators because the weakly consistent allocators removed most
of the flush operations by performing post-crash GC.

First, we evaluate the impact of interleaved mapping on eADR.
We run Threadtest with 4 threads while the number of bit stripes
is increased from 1 to 32. As shown in Figure 19, the number of
bit stripes has no impact on the performance of NVAlloc-LOG.
Because the interleaved mapping increases the cache usage, we
disable the interleaved mapping on the emulated eADR platform
in the following experiments. For the real eADR platform, we use
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Figure 21: Performance (log10 scaled) of large allocations on
the emulated eADR platform.

𝑝𝑚𝑒𝑚_ℎ𝑎𝑠_𝑎𝑢𝑡𝑜_𝑓 𝑙𝑢𝑠ℎ() in PMDK [11] to automatically detect the
eADR feature and then disable the interleaved mapping technique.

Second, we study the small allocation performance on eADR.
The results in Figure 20 show that NVAlloc-LOG improves the
performance of the benchmarks by 240% on average compared to
other strongly consistent allocators. The execution time of PAllo-
cator with Threadtest is 27% smaller than that with NVAlloc-LOG
when the number of threads is 64. This is because PAllocator uses
dedicated small allocators for each thread. It achieves better scala-
bility for thread-local allocations but leads to worse performance
of frequent cross-thread operations in Prod-con and Larson-small.

Third, Figure 21 shows the performance of NVAlloc-LOG for
large allocations. We can observe that it has an 11x performance
improvement on average with Larson-large and DBMStest. This is
because our design of VEH and log-structured bookkeeping reduces
the total number of persistent memory access and improves the
write locality for eADR.

7 RELATED WORK
Log-based allocators. Persistent memory allocators supporting
transactional models record changes of memory addresses and heap
metadata in logs. After replaying the logs, allocators can rebuild
their heap metadata after a crash. For example, nvm_malloc [37]
divides its heap metadata into volatile and non-volatile parts to
reduce data accesses on persistent memory. Its small writes to its
bitmaps and logs may lead to cache line reflushes. PAllocator [31]
serves small block allocation using segregated-fit strategy and large
block allocation using index trees. It also suffers from the cache
line reflush issue because of accessing 2-B block metadata in page
headers andmicro-logs. Poseidon [15] is the first persistent memory
allocator enforcing page-based protections. It also uses bitmaps and
logs for heap metadata management.

GC-based allocators. To avoid the overhead of writing logs
and flushing metadata, recent allocators [3, 4, 28] use garbage col-
lection (GC) to rebuild heap metadata post crash by traversing the

persistent heap from persistent root pointers. Makalu [3] is the
first allocator that uses offline GC to relax heap metadata persis-
tence constraints online, resulting in faster small-block allocations.
Ralloc [4] turns transient lock-free allocator LRalloc into a persis-
tent allocator. Same as Makalu, Ralloc uses post-crash GC to avoid
cache line reflushes. DCMM [28] eliminates the long heap metadata
recovery time by simply allocating new blocks appending to the
existing heap area and employing background recovery threads
running in parallel.

Allocators using internal collection. The allocator in PMDK
provides non-transactional atomic allocations [11]. Using PMDK’s
interface (e.g., POBJ_FIRST() and POBJ_NEXT()), users will never
lose a reference to an object in persistent memory. Therefore, the
allocators using PMDK’s internal collection do not need to maintain
write-ahead logs.

The approaches proposed in NVAlloc can be used to implement
log-based, GC-based, or internal-collection-based persistence mod-
els. In any of these models, we can eliminate the allocator-induced
cache line reflushes and random writes to persistent memory, com-
pared to the existing allocators. Besides, because we use slab mor-
phing, NVAlloc no longer has the memory fragmentation issue
caused by static slab segregation.

8 CONCLUSION
In the paper, we design a novel allocator, named NVAlloc, to al-
locate/deallocate memory objects in persistent memory. NVAl-
loc leverages interleaved metadata mapping, log-structured book-
keeping, and slab morphing techniques to eliminate the allocator-
induced cache line reflushes, small random writes, and memory
fragmentation issues. Our experimental results demonstrate that
NVAlloc can significantly improve allocator performance and space
utilization. As persistent memory becomes more and more popu-
lar, we hope the various optimization techniques in NVAlloc will
inspire the future generation of persistent memory systems.
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