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Abstract—Because of the increasing speed gap between
speed of compute and storage, caching is critical for im-
proving the throughput of distributed file systems. It has
been shown that prefetching can hide the latency resulted
by network communication or disk operations. However, con-
ventional client-based prefetching schemes are not efficient
in distributed file systems as the limited computing and
memory power of client nodes. In this paper, we present
an effective and load-aware server-side prefetching scheme
for distributed file systems, name SSPF. As an orthogonal
approach, SSPF can be coupled with any existing caching
scheme. First, SSPF exploits spatial locality to improve the
efficiency of the prefetching cache and minimize memory
requirement. Then, for maximizing the efficiency of cache, a
multi-queue based cache manager is designed to coordinate
between the prefetching blocks and other caching blocks.
Furthermore, a heuristic-based request distribution strategy
is proposed to optimize the balance between data server
nodes and improve the overall performance. Finally, we have
implemented and evaluated SSPF on the real distributed file
system. Experimental results show that SSPF can significantly
improve the read performance with negligible memory over-
head.

Index Terms—Prefetch, Cache, Distribution file systems,
Server-side, Load balance.

I. Introduction

In the era of Big Data, the amount of data in the world is

exploding. According to International Data Corp. (IDC) report

[1], the global data volume will grow to 175ZB in 2025, ten

times the 16.1ZB of data generated in 2016. Distributed file

system, which is well-known for its scalability and reliability,

provides storage capabilities for such large amounts of data.

However, the performance of disk is far slower than pro-

cessor and memory. In addition, the performance of disk in-

creases are also slower than processor and memory increases

[2]. The increasing gap between computing and storage has

become a major performance drawback of distributed file

systems.

Caching is a common approach to improve the disk perfor-

mance in distributed file systems. One approach is to cache

popular data in client-side cache and access the data directly

from the local cache when the cache hits, thus avoiding

accessing data from remote server nodes [3]–[5]. Another

approach is to add a caching layer to the I/O hierarchy of

a distributed file system, aggregating multiple small, discrete

requests into larger, contiguous requests, with the result that

the average latency is improved by accessing more data

from high-speed memory in cache layer [6], [7]. Many HPC

systems use burst buffers to absorb the bursty I/O of scientific

applications and relax the I/O provisioning requirement of

the distributed file systems [8]–[10].

Unlike caching, prefetching scheme for server-side cache

in distributed file systems have rarely been studied. In

distributed file system, prefetching data from disk to memory

before it is accessed can hide visible I/O costs, thus alleviating

the performance bottleneck of system. However, there are

several challenges in implementing prefetching scheme on

the server-side cache of distributed file systems.

1) There is a risk of wasting time by prefetching data that

will not be used. The penalty of prefetching misses in

server-side cache is less than that in client-side cache,

because of prefetching to the client-side cache requires

one additional network transmission.

2) Applications access data from the data server nodes

only when the client’s local cache miss. As a result,

it is hard to obtain the accurate access pattern of an

application on the server side. Therefore, the common

prefetching scheme based on access pattern prediction

is inefficient on the server side.

3) Because the server-side cache is shared by many clients,

prefetched data may be evicted without being accessed

due to limited cache. It is difficult to decide which

data should cache and prefetch to maximize overall

performance.

In this paper, we present the design and implementation

of SSPF: an effective and load-aware prefetching scheme

for distributed file systems with restricted memory. SSPF

uses a combination of new and existing techniques that are

carefully engineered to achieve this goal. 1) SSPF use the

hints about access patterns provided by the client to help

data server prefetches only the next data block into the

cache. The idea is to use spatial locality to improve the

efficiency of the prefetching cache and reduce the cache

requirements of prefetching. 2) If a data request arrives

while prefetching is not complete, it will be pending until

completion, which increases access latency. We use two

approaches to alleviate this problem : One approach tries to

distribute data requests to least-loaded data servers; Another

approach is to distribute data requests to different data

servers in a round-robin fashion, giving each data server



enough time to complete prefetching. The idea of both

approaches is to improve parallelism between data servers

and reduce access latency. 3) SSPF splits the data processing

into multiple stages, including first prefetching data to the

server-side cache, then transferring it to the client-side cache,

and finally completing the data processing. SSPF uses this

multi-stage processing to comprehensively schedule client-

side computing, network transfer and server-side disk I/O,

increasing the overall throughput of the system.

In brief, we make the following three contributions:

1) We design and implement SSPF, a server-side prefetch-

ing scheme for distributed file systems, which only

needs a small amount of cache. Then a hybrid cache

manager is introduced to coordinate SSPF with a wide

range of existing caching schemes.

2) We introduce two data parallel access methods to

improve the system throughput. One method is to

use a load-aware request distribution strategy, which

distributes requests in a round-robin manner, to im-

prove parallelism among data server nodes. The other

method is to use a pipeline architecture to interleave

server-side prefetching, network transfer, and client-

side processing to increase parallelism among client and

server nodes.

3) We have implement and evaluate SSPF on a real dis-

tributed file system. The experimental results show that

SSPF can significantly improve I/O performance.

II. Design

A. Architecture Overview

Figure 1 shows the high-level architecture of SSPF. Dis-

tributed file system typically decouples data and metadata

management to provide better performance and scalability.

Metadata server stores, manages and delivers metadata of

entire file system while coordinating security, consistency

and load-balancing. It also determines the mapping of blocks

to data servers. Data servers are responsible for storing data

and serving read and write requests. When a client wants

to read data, it first contacts the metadata server to query

where the data should be read from. After that, the client has

the location of the data servers and sends read requests to

them. SSPF implements a prefetching scheme on the server-

side cache, which prefetch data into the cache of the data

server before the read request arrives, reducing disk I/O

waiting time. The prefetching scheme can effectively reduce

the overall read latency by increasing parallelism between

the network and the disk.

The SSPF consists of four major components, whose re-

sponsibilities are described as below:

1) Prefetcher in client: The responsibility of this compo-

nent is to transform file layout into the access sequence

of block for each data server, and send it to data server

as prefetching hint before the file is accessed.

2) Prefetcher in data server: The responsibility of this

components is to prefetch data blocks from disk into
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Fig. 1. The high-level architecture of SSPF.

cache and manage the lifetime of these prefetched

blocks.

3) Cache manager in data server: The manager coordinate

prefetching blocks with caching blocks managed by

other caching schemes, such as LRU, to improve the

efficiency of the entire cache system.

4) Load balancer in metadata server: Balancer evenly

schedules requests to underloaded data servers to im-

prove parallelism between data servers, giving each

data server enough time to complete prefetching and

reducing disk latency.

B. Prefetching

The challenge of server-side prefetching is that it is difficult

to get the exact access pattern of the application because of

the two-level cache in the distributed file system, where the

popular blocks are always cached in the client’s local cache.

The idea of SSPF is to use the file layout to predict next

accessed block. However, the file metadata obtained from

the metaserver is organized on a per-file basis, as shown in

Figure 2. Each file is stored as a sequence of fixed-length

blocks. Data distribution algorithms replicate these blocks

to different data servers for fault tolerance, such as Swift’s

consistent hashing and Ceph’s CRUSH. It is not possible

to obtain the access pattern of data servers directly from

these metadata. SSPF reorganizes the layout of file blocks

on the basis of data server, as show in Figure 3. Note

that it only needs to access one replica for each block.

The replica selection is described in Section 2.4. Then, the

reorganized sequence of blocks is send to the data server as

prefetching hints before the block is accessed. Figure 4 shows

the internals of the prefetching hint message. It places the

OpType used to indicate the type of message on the first

1-bytes. The ClientId and FileId, whose size are both 8-

bytes, are unique identifiers of the client and the file. The

BlockNum describes the total number of blocks in this

message, followed by multiple 16-byte records. Each record

describes the information of the block, including 8-bytes of

BlockId, 4-bytes of offset and 4-bytes of length.

SSPF uses the client session structure to store the in-

formation about the currently accessed data, as shown in

table I. SSPF uses the file block map structures to store the

prefetching hint, which contains a unique FileId and one
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Fig. 3. Reorganized layout of file blocks (take a file with replication factor

3 as an example).

or more BlockInfo. Algorithm 1 presents the prefetching

process. The prefetching thread first gets the block being

accessed currently from client session, and then gets the

information of next block from file block map. If the data of

next block is not in cache, the thread will prefetches the block

from the disk to the cache. SSPF then checks whether the

previously prefetched block is accessed, and if so, proceeds

to prefetch the next block. Otherwise, if the prefetched block

is skipped, it will finish this prefetch and clean the prefetched

blocks.

TABLE I

The structure of client session.

Name Description

ClientId The unique identifier of a client node

FileId The unique identifier of a file

BlockId The unique identifier of a block

BlockVersion The version of the block

In addition, file block map is responsible for main-

taining the state of the prefetching block : unprefetch,
prefetching, prefetched, accessed. The state of block will

be changed to prefetching once the prefetching is started

and to prefetched when the prefetching is finished. During

prefetching, if the block is already in the cache, it’s status is

directly changed to prefetched to avoid duplicating disk I/O.

The prefetched blocks should be cached with high priority to

avoid these blocks being evicted before accessed. Once the

client has fetched the block, the state of the block is changed

to accessed. Then, these accessed blocks will be given low

priority because it may be cached in the local cache of client

and will not be accessed in the near future. If the block has

ClientId FIleId BlockNumber BlockInfo  BlockInfoOpType

1 byte 8 byte 8 byte 4 byte 16 byte 16 byte

BlockId Offset Length

8 byte 4 byte 4 byte

Fig. 4. The internals of the prefetching hint message.

Algorithm 1 The prefetching process.

1: procedure SSPF::Prefetch

2: cur bid = GetCurBlockId(client session)
3: next binfo = GetNextBlock(cur bid, file bmap)
4: existent = CheckExistInCache(next binfo.blkid)
5: if existent is false then
6: DoPrefetch(next binfo)
7: end if
8: MoveIntoPrefetchQueue(next binfo)
9: result = CheckPrefetch(client session)
10: if result denotes block is accessed then
11: continue prefetch

12: else if result denotes block is skipped then
13: start new prefetch

14: else
15: sleep

16: end if
17: return
18: end procedure

not been accessed for a long time or the file has been closed,

the state of the block is also changed to accessed to free the

cache.

C. Cache Manager
Besides prefetching blocks, server-side cache also contains

other caching blocks, such as read and write blocks. A

straightforward approach is to treat all these cached blocks

equally and use common caching schemes (e.g. LRU, LIRS) to

manage the cache. However, this ”uniform” caching approach

cannot distinguish the differences between prefetching blocks

and other caching blocks, and may evicted the prefetching

blocks before they are accessed. Therefore, it has to fetch data

from the disk to the cache again on the next access.

To solve this problem, we design a multi-queue based cache

management algorithm to coordinate between the prefetch-

ing blocks and other cache blocks, improving the efficiency

of cache. As shown in Figure 5, SSPF divides the cache into

3 individual queues : unaccessed queue, caching queue, and

accessed queue. The unaccessed queue stores prefetched

blocks that have not been accessed yet. The accessed queue

stores prefetched blocks that have already been accessed by

clients. Both of accessed and unaccessed queue are managed

by the FIFO policy which evicts the blocks in the order

they were added. Once the prefetched block is accessed, it

will be immediately moved from the unaccessed queue to

the accessed queue. If a block of unaccessed or accessed
queue is accessed by other client request, it will be moved to



caching queue. If the prefetched block are not accessed for a

long time, these blocks will be evicted from the unaccessed
queue by the FIFO policy. Caching queue stores popular

blocks accessed by the read and write requests, which is

managed by existing cache schemes (e.g. LFU, LIRS). When

the cache is full, the manager first replaces the cache blocks

in the accessed queue, then the cache blocks in the caching
queue, and finally the cache blocks in the unaccessed queue.

If a block in the accessed queue is re-accessed, it will be

promoted to the caching queue.
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Fig. 5. A multi-queue based cache manager.

A key design of the cache manager is how to allocate cache

among the three queues to achieve optimal performance.

The size of unaccessed queue is determined by the client

concurrency and the size of the data block, which is mostly

much less than that of the caching queue. The length of

accessed queue is fixed. If the client does not receive the

response, it will resend the read request to the data server.

In this case, if the prefetched block is still in the cache, it

can be directly fetched from accessed queue and save a disk

I/O. Therefore, the length of the accessed queue is calculated

based on the retry time of the message to improve the hit

ratio of retry requests.

When the cache is too small to store all the prefetched

blocks, we introduce a benefit-aware cache reassignment

scheme to determine how to allocate cache blocks between

unaccessed queue and caching queue. One approach is to

first build accurate model for cache blocks and then solve the

issue by formulating an optimization problem to maximize

the overall performance. However, this approach depends on

heavy computation. Besides, the optimal solution needs to be

frequently recalculated to follow the change of access pattern.

In contrast, SSPF proposes a lightweight adjustment scheme

to solve this issue. The allocation of unaccessed queue and

caching queue is dynamically adjusted by their benefits. The

benefit can be defined as the number of saved disk I/O, which

can be expressed as follows:

E[SavedIO] =

n∑
i=1

hi × fi +

m∑
j=1

hj × fj (1)

where n means the size of unaccessed queue, m means

the size of caching queue, hi denotes the cache hit ratio of

blocki, fi denotes the access frequency of blocki. In practice,

the cache manager records the cache hit number of each

queue for a given time period to reflect its benefits. The

cache of low-benefit queue will be periodically reassigned

to the high-benefit queue. To reduce the overhead of tracing,

the cache manager further divide each queue into multiple

regions, called chunk, and only traces and adjusts one chunk

per period. For unaccessed queue, the cache manager peri-

odically traces the caching hit number of the header chunk

and uses it as the benefit of reassignment. For caching queue,

we use the LRU as an example to explain the adjustment.

The LRU policy puts the least recently used blocks into the

head of caching queue, so the cache manager always chooses

the tail chunk as victim for reassignment. For LRU policy,

since the most recently used blocks are placed at the tail of

caching queue, the cache manager chooses the tail chunk as

victim. Therefore, the number of cache hits in the tail chunk

is used as the reassignment cost of the caching queue. In

order to avoid frequent reassignment, similar to the cache

thrashing problem, the cache manager reassigns the cache

chunk only when the difference exceeds the threshold. The

default threshold is empirically set to 20% and the hit rate

should be greater than 5.

D. Load-Aware Request Distribution

Request distribution strategy plays a critical role in the

overall system performance. For example, if client distributes

two sequential read requests to the same data server, it is

possible that the latter request has to wait for prefetching

to complete as the slow speed of disk, increasing access

latency.Besides, the access latency of read requests on over-

loaded server is significantly larger than that on the under-

load server. Therefore, a load-aware distribution strategy not

only increases the parallelism between data servers, but also

decreases the latency of read requests, thus increasing the

overall system throughput.

However, it is challenging to obtain optimal distribution

among multiple data server because load balancing prob-

lem is known to be NP-hard. Instead, we propose a near-

optimal approach to mitigate the performance impact in

I/O path, whose goal is to find an acceptable result with

negligible overhead. The idea of this approach is to reduce

the number of candidate data server in distribution using

the following filtering criteria. 1) First, the data servers are

classified into two categories : underloaded or overloaded.

Next, the strategy selects underloaded data servers as the

candidate. However, if all replicas are overloaded, candidates

are selected according to the load on data servers. 2) For a

sequence of read requests, this strategy only guarantees that

the selected data server does not overlap with the n previous

data servers, where n should be large enough to ensure that

most of prefetching can be completed before read request

arrives.



III. Evaluation

We have implemented SSPF in the RacoonFS to verify its

performance. RacoonFS is a HDFS-like file system written in

C++ for high performance. It has the same architecture as

HDFS and also supports write-once-read-many semantics on

files. A file once created, written, and closed will then become

immutable. We conducted various experiments to evaluate

SSPF’s performance and memory usage. In this section, we

first present the hardware and software environments used

in the experiments, and then present and discuss the results

of the experiments.

A. Experimental Setup

Figure 6 shows the topology of the SSPF test environment

whose system configurations are shown in table II. The clus-

ter consists of five client nodes, three data servers, and one

metadata server. The local cache of all client nodes is set to

2GB. All of these nodes are connected by 40Gb/s InfiniBand

or 1Gb/s Ethernet. To evaluate the effect of SSPF, we tested

the performance of RacoonFS with and without SSPF, where

the performance without SSPF was used as a baseline. To

evaluate performance with more realistic workloads, we run

the Sysbench benchmark [11] on all experiments.

192.168.2.84~88

Client

InfiniBand/1GitE

192.168.2.81

MetaServer

192.168.2.79

Data Server

192.168.2.80

Data Server

192.168.2.83

Data Server

Fig. 6. The topology of the SSPF test environment.

TABLE II

Machine configuration.

CPU Intel(R) Xeon(R) CPU E5620 @ 2.4GHz*16

Memory DDR3REG 12GB

Disk SATA 300GB @ 7200R/M

Operating System Red Hat Enterprise Linux Server release 5.4

Kernel Version Linux 2.6.18-163.el5

Network InfiniBand 40Gb/s 1Gigabit Ethernet

B. Different Network

In this chapter, we deployed SSPF in InfiniBand and Ether-

net networks and evaluated its effectiveness in both kind of

networks.The bottleneck of the system is the disk in 40Gb/s

InfiniBand and the network in 1Gb/s Ethernet respectively.In

summary, we tested the following versions of SSPF:

1) IB-prefetch : it runs in the IB network and enables the

prefetching scheme;

2) IB-no-prefetch : it runs in the IB network and disables

the prefetching scheme;

3) Ethernet-prefetch : it runs in the Ethernet network and

enables the prefetching scheme;

4) Ethernet-no-prefetch : it runs in the Ethernet network

and disables the prefetching scheme.

1) Read Throughput: In this experiment, files were created

with different sizes, whose sizes were 1MB, 50MB, 100MB,

500MB, 1GB, 2GB and 3GB, respectively. The data block size

was fixed to 64MB. All experiment used throughput as the

performance metrics of the system. The results of read perfor-

mance are shown in Figure 7. As shown in Figure 7, there is

little performance improvement when deploying prefetching

scheme for distributed file systems in 1Gb/s Ethernet. The

reason is that the throughput of network is less than the

throughput of disk in the slow network. Therefore, even if

the data is prefetched to the cache before accessed, it still

needs to wait for the network transfer to complete. As shown

in Figure 7, in IB network, the performance of distributed file

system with prefetching scheme had significant improvement

compared to that without prefetching scheme. Especially,

the throughput of IB-prefetch is increased by up to 41.9%

when the file size is 3GB. However, SSPF has very limited

performance improvements for small files. It can be seen from

Figure 7 that the throughput of IB-prefetch is increased by

only 3.89% when the file size is 10MB. The reason is that

small file has only one block and will access the data server

immediately after sending the prefetching hint, thus causing

the read request to wait for the completion of prefetching.

Figure 8 plots the throughput of SSPF varying with the

number of data server nodes. In this experiment, the file size

was set to 1GB. As shown in Figure 8, the throughput gains

of both Ethernet-prefetch and Ethernet-no-prefetch are very

small as the number of data servers increase. As we explained

above, the bottleneck of a distributed file system in the slow

network is the network communication. So, the improvement

of disk performance has a negligible impact on the overall

performance. In IB network, for both IB-prefetch and IB-no-

prefetch, throughput of RacoonFS increases with the number

of data servers. As the number of data server increases, the

throughput of RacoonFS is improved by 2.87%∽8.05% in IB-

prefetch and 2.44%∽6.03% in IB-no-prefetch. The reason is

that the access parallelism increases as the number of data

server nodes increases, reducing the overhead of disk.

2) Write Throughput: In this experiment, it tested the write

throughput of SSPF. Files were created with different sizes,

whose sizes were 1MB, 300MB, 400MB, 500MB, 800MB, 1GB,
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Fig. 7. The read throughput of the SSPF.
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Fig. 8. The throughput of RacoonFS varying with the number of data server

nodes.

respectively. The data block size was fixed to 64MB. The

results of the write throughput are shown in Figure 9. As

shown in Figure 9, the throughput gains for prefetching

scheme are in the range of -5.64%∽6.13% in 1Gb/s Ether-

net and the average is -0.63%. The throughput gains for

prefetching scheme are in the rage of -3.1%∽5.47% in the

40Gb/s IB and the average is 1.66%. It can find that the write

overhead introduced by the prefetching scheme is negligible.

The reason is that SSPF introduces a novel cache manager

to coordinate the prefetching blocks and caching blocks,

improving the efficiency of overall cache.

C. Different Workloads

In this chapter, we evaluated the throughput of SSPF under

different type of read workload. We simulated concurrent
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Fig. 9. The write throughput of the SSPF.

read by varying the number of threads in sysbench Files were

created with diffrent sizes, whose sizes were 1GB/2GB/3GB

respectively.

1) Sequential Read: Table III shows the results of the

sequential read experiment. The experimental results show

that when the number of threads was greater than 1, the

performance improvement of SSPF is higher than when the

number of threads is 1. When the number of thread was set

1, the average performance improvement is only 0.96% with

the prefetching scheme. When the number of thread was

set 2/4/8, the average performance improvement achieves

9.13%/8.88%/12.03% respectively with the prefetching scheme.

Parallel file reading can reduce performance due to the

interference, such as increasing the randomness of I/O access,

reducing the server cache efficiency of the file system, and

increasing the overhead of system calls. SSPF prefetchs files

to the client node and then directly accesses these files, thus

alleviating performance degradation caused by interference

on the file system server.

TABLE III

Seqential read throughput varying thread number and file size.

File Size Prefetch
The Number of Threads

1(MB/s) 2(MB/s) 4(MB/s) 8(MB/s)

1GB Enable 130.81 139.06 137.34 149.45

1GB Disable 129.04 128.36 126.52 126.35

2GB Enable 130.38 140.81 139.32 138.45

2GB Disable 128.91 128.1 126.98 126.16

4GB Enable 129.75 139.88 137.37 135.78

4GB Disable 129.27 128.16 126.77 125.64

2) Random Read: Table IV shows the results of the ran-

dom read experiment. The experimental results show that

when the thread number was set to 1, the performance

improvement of SSPF was higher than any other thread

number settings. When the number of thread was set 1,

the average performance improvement achieves 11.16% with



the prefetching scheme. When the number of thread was

larger than 1, the average performance improvement is only

3.74% with the prefetching scheme. Because the prefetch

accuracy of random reads is generally lower than that of

sequential reads, the lower prefetch accuracy will reduce

the effectiveness of SSPF. Especially, when serving multiple

threads, the accuracy of prefetching will be further reduced

due to interference between these threads.

TABLE IV

Random read throughput varying thread number and file size.

File Size Prefetch
The Number of Threads

1(MB/s) 2(MB/s) 4(MB/s) 8(MB/s)

1GB Enable 9.89 19.16 38.79 80.2

1GB Disable 9.27 18.77 38.21 79.1

2GB Enable 9.54 17.83 36.37 73.14

2GB Disable 8.34 16.91 34.02 68.88

4GB Enable 8.61 16.06 32.99 66.04

4GB Disable 7.66 15.77 31.63 63.48

D. Cache Usage

In this experiment, we tested the cache usage of SSPF in

RacoonFS. Files were created with different sizes, whose sizes

were 100MB, 200MB, 500MB, 1GB, 2GB, 3GB, respectively.

The data block size was fixed to 64MB. The experiments used

the Linux’s top command to collect the memory usage and

collected it every second. It first collected the average mem-

ory usage with deploying SSPF and without deploying SSPF.

Then we got the memory overhead of SSPF by subtracting

these two values. Table V records the memory overhead of

IB-prefetch in each data server when reading different file

sizes. As shown in table V, the memory overhead of SSPF is

very small. The reasons are as follows: 1) The first is because

SSPF prefetches only the next data block of the file, thus

reducing the requirement of the prefetching cache; 2) The

second is because the entire cache is shared by prefetching

and caching blocks and its allocation is adjusted by their

efficiency. 3) The third is because the use of cache pooling

technology, which allocates cache from the pool and releases

them to the pool, avoiding memory fragmentation.

TABLE V

The memory overhead of IB-prefetch.

100MB 200MB 500MB 1GB 2GB 3GB

DataServer1 0.45% 0.56% 0.98% 0.81% 0.23% 1.01%

DataServer2 0.87% 0.32% 0.47% 0.35% 0.53% 0.96%

DataServer3 0.39% 0.62% 0.78% 0.42% 0.92% 0.62%

IV. Related Work

Prefetching is widely used in distributed file systems

because it can hide the latency caused by network communi-

cation and disk operations. Some researches [12]–[15] have

investigated the benefits of local cache, which prefetches

remote data to local cache to improve I/O performance for

distributed file system. When an I/O request hits in the cache,

the data can be fetched directly from the local cache, reducing

access latency. In these client-side prefetching schemes, the

client is responsible for predicting future accesses by storing

and analyzing the history of I/O access requests. Griffioen

et al. proposes Automatic Prefetching [15], which takes a

heuristic-based approach using knowledge of past file ac-

cesses to predict future access requests. Similar as Automatic

Prefetching, Kroeger et al. build prediction model based on

the sequences of historical file access requests and use this

model to predict the next request of the file [12]. FARMER

[13] mines file correlations from several typical file system

traces and uses it to improve the performance of prefetching

scheme. However, as the prediction requires considerable

amount of storage and computational power, the client-side

prefetching scheme is not well suitable for client machines

with limited memory and computing power.

A requirement of client-side caching is that it must guar-

antee the consistency of the cached data for ensuring all

relevant clients have a consistent view of data. However, the

overhead of guaranteeing data consistency is so high that it

may offset the performance benefits of data caching. There

is a lot of researches on how to achieve data consistency

with low overhead [16]–[18]. The research [16] uses a write-

through approach to ensure data consistency. However, the

performance penalty of this approach is so large that it

only adapts to the Write-Once-Read-Many workload. GPFS

[19] uses the token, which is first revoked when modifying

the data, to maintain cache consistency between clients.

Similarly, Lustre [20] uses a distributed lock manager, named

DLM, to guarantee cache consistency. LPCC [3] proposes

an SSD-based hierarchical persistent client cache for Lustre.

It integrates with the Lustre Hierarchical Storage Manage-

ment and the Lustre DLM to guarantee consistent persistent

caching. The work [4] further applies hierarchical persistent

client cache to NVM. In Ceph [21], when a client updates

a file, other clients will be notified to invalidate it’s cached

copy.

However, the limited power of computing and memory of

client nodes make it sometimes impracticable to do prefetch-

ing. To solve this problem, several researches [22]–[25] have

proposed server-side prefetching schemes. Padmanabhan and

Mogul [22] investigated a prefethcing scheme for reducing

the user’s latency by predicting and prefetching files that are

likely to be requested soon in servers. Since the computing

node in the cloud always has limited memory resources, chen

et al. propose a scheduling-aware data prefetching scheme

in the server [23], [26], which prefetches data and release

memory resources based on the scheduling information. Sim-

ilarly, li et al. propose a scheduling-aware data prefetching

scheme to enhance the data locality [27]. In the work [28],

the storage server first models disk I/O access operations

and then prefetches data directly after predicting future I/O

accesses. However, the model requires extra space to store

logs and its correctness is affected by dynamic changes in

workload.



V. Conclusion

We present SSPF, a novel server-side prefetching scheme

for distributed file systems. The goal of SSPF is to hide the

latency in distributed file systems caused by network commu-

nication and disk operations by aggressive prefetching. The

core ideas include (1) To minimize the memory requirement,

SSPF prefetches only the next block into cache with the

help of access pattern hint; (2) A multi-queue based cache

manager is proposed to coordinate between the prefetching

blocks and other caching blocks; (3) A heuristic-based request

distribution strategy is proposed to optimize the balance

among data server nodes to improve the overall throughput.

We have implemented and evaluated SSPF on the real

distributed file system. Our evaluation results shows that

SSPF has 41.9% better read throughput in the fast network,

such as 40Gb/s InfiniBand. Since the bottleneck of distributed

file systems in the slow network (e.g., 1Gb/s Ethernet) is

network communication, it found that the performance gain

of the prefetching scheme is very limited in the slow network.
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