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Abstract—Because of the increasing speed gap between
speed of compute and storage, caching is critical for im-
proving the throughput of distributed file systems. It has
been shown that prefetching can hide the latency resulted
by network communication or disk operations. However, con-
ventional client-based prefetching schemes are not efficient
in distributed file systems as the limited computing and
memory power of client nodes. In this paper, we present
an effective and load-aware server-side prefetching scheme
for distributed file systems, name SSPF. As an orthogonal
approach, SSPF can be coupled with any existing caching
scheme. First, SSPF exploits spatial locality to improve the
efficiency of the prefetching cache and minimize memory
requirement. Then, for maximizing the efficiency of cache, a
multi-queue based cache manager is designed to coordinate
between the prefetching blocks and other caching blocks.
Furthermore, a heuristic-based request distribution strategy
is proposed to optimize the balance between data server
nodes and improve the overall performance. Finally, we have
implemented and evaluated SSPF on the real distributed file
system. Experimental results show that SSPF can significantly
improve the read performance with negligible memory over-
head.

Index Terms—Prefetch, Cache, Distribution file systems,
Server-side, Load balance.

I. INTRODUCTION

In the era of Big Data, the amount of data in the world is
exploding. According to International Data Corp. (IDC) report
[1], the global data volume will grow to 175ZB in 2025, ten
times the 16.1ZB of data generated in 2016. Distributed file
system, which is well-known for its scalability and reliability,
provides storage capabilities for such large amounts of data.
However, the performance of disk is far slower than pro-
cessor and memory. In addition, the performance of disk in-
creases are also slower than processor and memory increases
[2]. The increasing gap between computing and storage has
become a major performance drawback of distributed file
systems.

Caching is a common approach to improve the disk perfor-
mance in distributed file systems. One approach is to cache
popular data in client-side cache and access the data directly
from the local cache when the cache hits, thus avoiding
accessing data from remote server nodes [3[]-[5]. Another
approach is to add a caching layer to the I/O hierarchy of
a distributed file system, aggregating multiple small, discrete
requests into larger, contiguous requests, with the result that
the average latency is improved by accessing more data

from high-speed memory in cache layer [6], [7]. Many HPC
systems use burst buffers to absorb the bursty I/O of scientific
applications and relax the I/O provisioning requirement of
the distributed file systems [8]]-[10].

Unlike caching, prefetching scheme for server-side cache
in distributed file systems have rarely been studied. In
distributed file system, prefetching data from disk to memory
before it is accessed can hide visible I/O costs, thus alleviating
the performance bottleneck of system. However, there are
several challenges in implementing prefetching scheme on
the server-side cache of distributed file systems.

1) There is a risk of wasting time by prefetching data that
will not be used. The penalty of prefetching misses in
server-side cache is less than that in client-side cache,
because of prefetching to the client-side cache requires
one additional network transmission.

2) Applications access data from the data server nodes
only when the client’s local cache miss. As a result,
it is hard to obtain the accurate access pattern of an
application on the server side. Therefore, the common
prefetching scheme based on access pattern prediction
is inefficient on the server side.

3) Because the server-side cache is shared by many clients,
prefetched data may be evicted without being accessed
due to limited cache. It is difficult to decide which
data should cache and prefetch to maximize overall
performance.

In this paper, we present the design and implementation
of SSPF: an effective and load-aware prefetching scheme
for distributed file systems with restricted memory. SSPF
uses a combination of new and existing techniques that are
carefully engineered to achieve this goal. 1) SSPF use the
hints about access patterns provided by the client to help
data server prefetches only the next data block into the
cache. The idea is to use spatial locality to improve the
efficiency of the prefetching cache and reduce the cache
requirements of prefetching. 2) If a data request arrives
while prefetching is not complete, it will be pending until
completion, which increases access latency. We use two
approaches to alleviate this problem : One approach tries to
distribute data requests to least-loaded data servers; Another
approach is to distribute data requests to different data
servers in a round-robin fashion, giving each data server



enough time to complete prefetching. The idea of both
approaches is to improve parallelism between data servers
and reduce access latency. 3) SSPF splits the data processing
into multiple stages, including first prefetching data to the
server-side cache, then transferring it to the client-side cache,
and finally completing the data processing. SSPF uses this
multi-stage processing to comprehensively schedule client-
side computing, network transfer and server-side disk I/O,
increasing the overall throughput of the system.
In brief, we make the following three contributions:

1) We design and implement SSPF, a server-side prefetch-
ing scheme for distributed file systems, which only
needs a small amount of cache. Then a hybrid cache
manager is introduced to coordinate SSPF with a wide
range of existing caching schemes.

2) We introduce two data parallel access methods to
improve the system throughput. One method is to
use a load-aware request distribution strategy, which
distributes requests in a round-robin manner, to im-
prove parallelism among data server nodes. The other
method is to use a pipeline architecture to interleave
server-side prefetching, network transfer, and client-
side processing to increase parallelism among client and
server nodes.

3) We have implement and evaluate SSPF on a real dis-
tributed file system. The experimental results show that
SSPF can significantly improve I/O performance.

II. DEsIGN

A. Architecture Overview

Figure 1] shows the high-level architecture of SSPF. Dis-
tributed file system typically decouples data and metadata
management to provide better performance and scalability.
Metadata server stores, manages and delivers metadata of
entire file system while coordinating security, consistency
and load-balancing. It also determines the mapping of blocks
to data servers. Data servers are responsible for storing data
and serving read and write requests. When a client wants
to read data, it first contacts the metadata server to query
where the data should be read from. After that, the client has
the location of the data servers and sends read requests to
them. SSPF implements a prefetching scheme on the server-
side cache, which prefetch data into the cache of the data
server before the read request arrives, reducing disk I/O
waiting time. The prefetching scheme can effectively reduce
the overall read latency by increasing parallelism between
the network and the disk.

The SSPF consists of four major components, whose re-
sponsibilities are described as below:

1) Prefetcher in client: The responsibility of this compo-
nent is to transform file layout into the access sequence
of block for each data server, and send it to data server
as prefetching hint before the file is accessed.

2) Prefetcher in data server: The responsibility of this
components is to prefetch data blocks from disk into
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Fig. 1. The high-level architecture of SSPF.

cache and manage the lifetime of these prefetched
blocks.

3) Cache manager in data server: The manager coordinate
prefetching blocks with caching blocks managed by
other caching schemes, such as LRU, to improve the
efficiency of the entire cache system.

4) Load balancer in metadata server: Balancer evenly
schedules requests to underloaded data servers to im-
prove parallelism between data servers, giving each
data server enough time to complete prefetching and
reducing disk latency.

B. Prefetching

The challenge of server-side prefetching is that it is difficult
to get the exact access pattern of the application because of
the two-level cache in the distributed file system, where the
popular blocks are always cached in the client’s local cache.
The idea of SSPF is to use the file layout to predict next
accessed block. However, the file metadata obtained from
the metaserver is organized on a per-file basis, as shown in
Figure [2| Each file is stored as a sequence of fixed-length
blocks. Data distribution algorithms replicate these blocks
to different data servers for fault tolerance, such as Swift’s
consistent hashing and Ceph’s CRUSH. It is not possible
to obtain the access pattern of data servers directly from
these metadata. SSPF reorganizes the layout of file blocks
on the basis of data server, as show in Figure Note
that it only needs to access one replica for each block.
The replica selection is described in Section 2.4. Then, the
reorganized sequence of blocks is send to the data server as
prefetching hints before the block is accessed. Figure |4| shows
the internals of the prefetching hint message. It places the
OpType used to indicate the type of message on the first
1-bytes. The ClientId and F'ileld, whose size are both 8-
bytes, are unique identifiers of the client and the file. The
BlockNum describes the total number of blocks in this
message, followed by multiple 16-byte records. Each record
describes the information of the block, including 8-bytes of
BlockId, 4-bytes of offset and 4-bytes of length.

SSPF uses the client session structure to store the in-
formation about the currently accessed data, as shown in
table [l SSPF uses the file block map structures to store the
prefetching hint, which contains a unique F'ileld and one
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or more BlockInfo. Algorithm [1| presents the prefetching
process. The prefetching thread first gets the block being
accessed currently from client session, and then gets the
information of next block from file block map. If the data of
next block is not in cache, the thread will prefetches the block
from the disk to the cache. SSPF then checks whether the
previously prefetched block is accessed, and if so, proceeds
to prefetch the next block. Otherwise, if the prefetched block
is skipped, it will finish this prefetch and clean the prefetched
blocks.

TABLE I
THE STRUCTURE OF CLIENT _SESSION.
Name Description
Clientld The unique identifier of a client node
Fileld The unique identifier of a file
BlockId The unique identifier of a block
BlockVersion The version of the block

In addition, file block map is responsible for main-
taining the state of the prefetching block : unprefetch,
prefetching, prefetched, accessed. The state of block will
be changed to prefetching once the prefetching is started
and to prefetched when the prefetching is finished. During
prefetching, if the block is already in the cache, it’s status is
directly changed to prefetched to avoid duplicating disk I/O.
The prefetched blocks should be cached with high priority to
avoid these blocks being evicted before accessed. Once the
client has fetched the block, the state of the block is changed
to accessed. Then, these accessed blocks will be given low
priority because it may be cached in the local cache of client
and will not be accessed in the near future. If the block has
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Fig. 4. The internals of the prefetching hint message.

Algorithm 1 The prefetching process.

1: procedure SSPF::PREFETCH

2 cur _bid = GetCurBlockld(client _session)

3 next binfo = GetNextBlock(cur bid, file _bmap)
4 existent = CheckExistInCache(next bin fo.blkid)
5: if existent is false then

6 DoPrefetch(next binfo)

7 end if

8 MovelntoPrefetchQueue(next bin fo)

9 result = CheckPrefetch(client session)

10: if result denotes block is accessed then

11: continue prefetch

12: else if result denotes block is skipped then

13: start new prefetch

14: else

15: sleep

16: end if

17: return

18: end procedure

not been accessed for a long time or the file has been closed,
the state of the block is also changed to accessed to free the
cache.

C. Cache Manager

Besides prefetching blocks, server-side cache also contains
other caching blocks, such as read and write blocks. A
straightforward approach is to treat all these cached blocks
equally and use common caching schemes (e.g. LRU, LIRS) to
manage the cache. However, this "uniform” caching approach
cannot distinguish the differences between prefetching blocks
and other caching blocks, and may evicted the prefetching
blocks before they are accessed. Therefore, it has to fetch data
from the disk to the cache again on the next access.

To solve this problem, we design a multi-queue based cache
management algorithm to coordinate between the prefetch-
ing blocks and other cache blocks, improving the efficiency
of cache. As shown in Figure |5| SSPF divides the cache into
3 individual queues : unaccessed queue, caching queue, and
accessed queue. The unaccessed queue stores prefetched
blocks that have not been accessed yet. The accessed queue
stores prefetched blocks that have already been accessed by
clients. Both of accessed and unaccessed queue are managed
by the FIFO policy which evicts the blocks in the order
they were added. Once the prefetched block is accessed, it
will be immediately moved from the unaccessed queue to
the accessed queue. If a block of unaccessed or accessed
queue is accessed by other client request, it will be moved to



caching queue. If the prefetched block are not accessed for a
long time, these blocks will be evicted from the unaccessed
queue by the FIFO policy. Caching queue stores popular
blocks accessed by the read and write requests, which is
managed by existing cache schemes (e.g. LFU, LIRS). When
the cache is full, the manager first replaces the cache blocks
in the accessed queue, then the cache blocks in the caching
queue, and finally the cache blocks in the unaccessed queue.
If a block in the accessed queue is re-accessed, it will be

promoted to the caching queue.
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Fig. 5. A multi-queue based cache manager.

A key design of the cache manager is how to allocate cache
among the three queues to achieve optimal performance.
The size of unaccessed queue is determined by the client
concurrency and the size of the data block, which is mostly
much less than that of the caching queue. The length of
accessed queue is fixed. If the client does not receive the
response, it will resend the read request to the data server.
In this case, if the prefetched block is still in the cache, it
can be directly fetched from accessed queue and save a disk
I/O. Therefore, the length of the accessed queue is calculated
based on the retry time of the message to improve the hit
ratio of retry requests.

When the cache is too small to store all the prefetched
blocks, we introduce a benefit-aware cache reassignment
scheme to determine how to allocate cache blocks between
unaccessed queue and caching queue. One approach is to
first build accurate model for cache blocks and then solve the
issue by formulating an optimization problem to maximize
the overall performance. However, this approach depends on
heavy computation. Besides, the optimal solution needs to be
frequently recalculated to follow the change of access pattern.
In contrast, SSPF proposes a lightweight adjustment scheme
to solve this issue. The allocation of unaccessed queue and
caching queue is dynamically adjusted by their benefits. The
benefit can be defined as the number of saved disk I/O, which
can be expressed as follows:

E[SavedIO] = Z hi X fi + Z hj < fj (1)
i=1 Jj=1

where n means the size of unaccessed queue, m means
the size of caching queue, h; denotes the cache hit ratio of
block;, f; denotes the access frequency of block;. In practice,
the cache manager records the cache hit number of each
queue for a given time period to reflect its benefits. The
cache of low-benefit queue will be periodically reassigned
to the high-benefit queue. To reduce the overhead of tracing,
the cache manager further divide each queue into multiple
regions, called chunk, and only traces and adjusts one chunk
per period. For unaccessed queue, the cache manager peri-
odically traces the caching hit number of the header chunk
and uses it as the benefit of reassignment. For caching queue,
we use the LRU as an example to explain the adjustment.
The LRU policy puts the least recently used blocks into the
head of caching queue, so the cache manager always chooses
the tail chunk as victim for reassignment. For LRU policy,
since the most recently used blocks are placed at the tail of
caching queue, the cache manager chooses the tail chunk as
victim. Therefore, the number of cache hits in the tail chunk
is used as the reassignment cost of the caching queue. In
order to avoid frequent reassignment, similar to the cache
thrashing problem, the cache manager reassigns the cache
chunk only when the difference exceeds the threshold. The
default threshold is empirically set to 20% and the hit rate
should be greater than 5.

D. Load-Aware Request Distribution

Request distribution strategy plays a critical role in the
overall system performance. For example, if client distributes
two sequential read requests to the same data server, it is
possible that the latter request has to wait for prefetching
to complete as the slow speed of disk, increasing access
latency.Besides, the access latency of read requests on over-
loaded server is significantly larger than that on the under-
load server. Therefore, a load-aware distribution strategy not
only increases the parallelism between data servers, but also
decreases the latency of read requests, thus increasing the
overall system throughput.

However, it is challenging to obtain optimal distribution
among multiple data server because load balancing prob-
lem is known to be NP-hard. Instead, we propose a near-
optimal approach to mitigate the performance impact in
I/O path, whose goal is to find an acceptable result with
negligible overhead. The idea of this approach is to reduce
the number of candidate data server in distribution using
the following filtering criteria. 1) First, the data servers are
classified into two categories : underloaded or overloaded.
Next, the strategy selects underloaded data servers as the
candidate. However, if all replicas are overloaded, candidates
are selected according to the load on data servers. 2) For a
sequence of read requests, this strategy only guarantees that
the selected data server does not overlap with the n previous
data servers, where n should be large enough to ensure that
most of prefetching can be completed before read request
arrives.



III. EVALUATION

We have implemented SSPF in the RacoonFS to verify its
performance. RacoonFS is a HDFS-like file system written in
C++ for high performance. It has the same architecture as
HDFS and also supports write-once-read-many semantics on
files. A file once created, written, and closed will then become
immutable. We conducted various experiments to evaluate
SSPF’s performance and memory usage. In this section, we
first present the hardware and software environments used
in the experiments, and then present and discuss the results
of the experiments.

A. Experimental Setup

Figure [6] shows the topology of the SSPF test environment
whose system configurations are shown in table [[I} The clus-
ter consists of five client nodes, three data servers, and one
metadata server. The local cache of all client nodes is set to
2GB. All of these nodes are connected by 40Gb/s InfiniBand
or 1Gb/s Ethernet. To evaluate the effect of SSPF, we tested
the performance of RacoonFS with and without SSPF, where
the performance without SSPF was used as a baseline. To
evaluate performance with more realistic workloads, we run
the Sysbench benchmark [[11]] on all experiments.
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MetaServer
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Client
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192.168.2.80 192.168.2.83
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Fig. 6. The topology of the SSPF test environment.

TABLE II
MACHINE CONFIGURATION.

CPU Intel(R) Xeon(R) CPU E5620 @ 2.4GHz*16
Memory DDR3REG 12GB
Disk SATA 300GB @ 7200R/M

Operating System
Kernel Version
Network

Red Hat Enterprise Linux Server release 5.4
Linux 2.6.18-163.el5
InfiniBand 40Gb/s 1Gigabit Ethernet

B. Different Network

In this chapter, we deployed SSPF in InfiniBand and Ether-
net networks and evaluated its effectiveness in both kind of
networks.The bottleneck of the system is the disk in 40Gb/s
InfiniBand and the network in 1Gb/s Ethernet respectively.In
summary, we tested the following versions of SSPF:

1) IB-prefetch : it runs in the IB network and enables the
prefetching scheme;

2) IB-no-prefetch : it runs in the IB network and disables
the prefetching scheme;

3) Ethernet-prefetch : it runs in the Ethernet network and
enables the prefetching scheme;

4) Ethernet-no-prefetch : it runs in the Ethernet network
and disables the prefetching scheme.

1) Read Throughput: In this experiment, files were created
with different sizes, whose sizes were 1MB, 50MB, 100MB,
500MB, 1GB, 2GB and 3GB, respectively. The data block size
was fixed to 64MB. All experiment used throughput as the
performance metrics of the system. The results of read perfor-
mance are shown in Figure [7] As shown in Figure [7] there is
little performance improvement when deploying prefetching
scheme for distributed file systems in 1Gb/s Ethernet. The
reason is that the throughput of network is less than the
throughput of disk in the slow network. Therefore, even if
the data is prefetched to the cache before accessed, it still
needs to wait for the network transfer to complete. As shown
in Figure [7] in IB network, the performance of distributed file
system with prefetching scheme had significant improvement
compared to that without prefetching scheme. Especially,
the throughput of IB-prefetch is increased by up to 41.9%
when the file size is 3GB. However, SSPF has very limited
performance improvements for small files. It can be seen from
Figure [7| that the throughput of IB-prefetch is increased by
only 3.89% when the file size is 10MB. The reason is that
small file has only one block and will access the data server
immediately after sending the prefetching hint, thus causing
the read request to wait for the completion of prefetching.

Figure [8| plots the throughput of SSPF varying with the
number of data server nodes. In this experiment, the file size
was set to 1GB. As shown in Figure 8] the throughput gains
of both Ethernet-prefetch and Ethernet-no-prefetch are very
small as the number of data servers increase. As we explained
above, the bottleneck of a distributed file system in the slow
network is the network communication. So, the improvement
of disk performance has a negligible impact on the overall
performance. In IB network, for both IB-prefetch and IB-no-
prefetch, throughput of RacoonFS increases with the number
of data servers. As the number of data server increases, the
throughput of RacoonFS is improved by 2.87%-~8.05% in IB-
prefetch and 2.44%-6.03% in IB-no-prefetch. The reason is
that the access parallelism increases as the number of data
server nodes increases, reducing the overhead of disk.

2) Write Throughput: In this experiment, it tested the write
throughput of SSPF. Files were created with different sizes,
whose sizes were 1MB, 300MB, 400MB, 500MB, 800MB, 1GB,
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respectively. The data block size was fixed to 64MB. The
results of the write throughput are shown in Figure [9} As
shown in Figure [9] the throughput gains for prefetching
scheme are in the range of -5.64%-6.13% in 1Gb/s Ether-
net and the average is -0.63%. The throughput gains for
prefetching scheme are in the rage of -3.1%5.47% in the
40Gb/s IB and the average is 1.66%. It can find that the write
overhead introduced by the prefetching scheme is negligible.
The reason is that SSPF introduces a novel cache manager
to coordinate the prefetching blocks and caching blocks,
improving the efficiency of overall cache.

C. Different Workloads

In this chapter, we evaluated the throughput of SSPF under
different type of read workload. We simulated concurrent
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Fig. 9. The write throughput of the SSPF.

read by varying the number of threads in sysbench Files were
created with diffrent sizes, whose sizes were 1GB/2GB/3GB
respectively.

1) Sequential Read: Table shows the results of the
sequential read experiment. The experimental results show
that when the number of threads was greater than 1, the
performance improvement of SSPF is higher than when the
number of threads is 1. When the number of thread was set
1, the average performance improvement is only 0.96% with
the prefetching scheme. When the number of thread was
set 2/4/8, the average performance improvement achieves
9.13%/8.88%/12.03% respectively with the prefetching scheme.
Parallel file reading can reduce performance due to the
interference, such as increasing the randomness of I/O access,
reducing the server cache efficiency of the file system, and
increasing the overhead of system calls. SSPF prefetchs files
to the client node and then directly accesses these files, thus
alleviating performance degradation caused by interference
on the file system server.

TABLE III
SEQUENTIAL READ THROUGHPUT VARYING THREAD NUMBER AND FILE SIZE.
e The Number of Threads
File Size | Prefetch | —romra—T—>B/s) [ a(MB/s) | S(MB/s)
1GB Enable | 130.81 139.06 | 13734 | 149.45
1GB Disable | 129.04 | 12836 | 12652 | 12635
2GB Enable | 13038 | 140.81 13932 | 138.45
2GB Disable | 128.91 128.1 12698 | 126.16
4GB Enable | 129.75 | 139.88 | 137.37 | 135.78
4GB Disable | 129.27 | 12816 | 12677 | 125.64

2) Random Read: Table shows the results of the ran-
dom read experiment. The experimental results show that
when the thread number was set to 1, the performance
improvement of SSPF was higher than any other thread
number settings. When the number of thread was set 1,
the average performance improvement achieves 11.16% with



the prefetching scheme. When the number of thread was
larger than 1, the average performance improvement is only
3.74% with the prefetching scheme. Because the prefetch
accuracy of random reads is generally lower than that of
sequential reads, the lower prefetch accuracy will reduce
the effectiveness of SSPF. Especially, when serving multiple
threads, the accuracy of prefetching will be further reduced
due to interference between these threads.

TABLE IV
RANDOM READ THROUGHPUT VARYING THREAD NUMBER AND FILE SIZE.
s The Number of Threads

File Size | Prefetch | —roma—T—>B/s) [ a(MB/s) | S(MBJs)
1GB Enable 9.89 19.16 38.79 80.2

1GB Disable 9.27 18.77 38.21 79.1

2GB Enable 9.54 17.83 36.37 73.14
2GB Disable 8.34 16.91 34.02 68.88
4GB Enable 8.61 16.06 32.99 66.04
4GB Disable 7.66 15.77 31.63 63.48

D. Cache Usage

In this experiment, we tested the cache usage of SSPF in
RacoonFS. Files were created with different sizes, whose sizes
were 100MB, 200MB, 500MB, 1GB, 2GB, 3GB, respectively.
The data block size was fixed to 64MB. The experiments used
the Linux’s top command to collect the memory usage and
collected it every second. It first collected the average mem-
ory usage with deploying SSPF and without deploying SSPF.
Then we got the memory overhead of SSPF by subtracting
these two values. Table [V| records the memory overhead of
IB-prefetch in each data server when reading different file
sizes. As shown in table [V] the memory overhead of SSPF is
very small. The reasons are as follows: 1) The first is because
SSPF prefetches only the next data block of the file, thus
reducing the requirement of the prefetching cache; 2) The
second is because the entire cache is shared by prefetching
and caching blocks and its allocation is adjusted by their
efficiency. 3) The third is because the use of cache pooling
technology, which allocates cache from the pool and releases
them to the pool, avoiding memory fragmentation.

TABLE V
THE MEMORY OVERHEAD OF IB-PREFETCH.
100MB | 200MB | 500MB | 1GB 2GB 3GB
DataServerl 0.45% 0.56% 0.98% 0.81% | 0.23% 1.01%
DataServer2 | 0.87% 0.32% 0.47% 0.35% | 0.53% | 0.96%
DataServer3 | 0.39% 0.62% 0.78% 0.42% | 0.92% | 0.62%

IV. RELATED WORK

Prefetching is widely used in distributed file systems
because it can hide the latency caused by network communi-
cation and disk operations. Some researches [12[]-[15] have
investigated the benefits of local cache, which prefetches
remote data to local cache to improve I/O performance for
distributed file system. When an I/O request hits in the cache,
the data can be fetched directly from the local cache, reducing

access latency. In these client-side prefetching schemes, the
client is responsible for predicting future accesses by storing
and analyzing the history of I/O access requests. Griffioen
et al. proposes Automatic Prefetching [15], which takes a
heuristic-based approach using knowledge of past file ac-
cesses to predict future access requests. Similar as Automatic
Prefetching, Kroeger et al. build prediction model based on
the sequences of historical file access requests and use this
model to predict the next request of the file [12]. FARMER
[13] mines file correlations from several typical file system
traces and uses it to improve the performance of prefetching
scheme. However, as the prediction requires considerable
amount of storage and computational power, the client-side
prefetching scheme is not well suitable for client machines
with limited memory and computing power.

A requirement of client-side caching is that it must guar-
antee the consistency of the cached data for ensuring all
relevant clients have a consistent view of data. However, the
overhead of guaranteeing data consistency is so high that it
may offset the performance benefits of data caching. There
is a lot of researches on how to achieve data consistency
with low overhead [[16]-[18]]. The research [[16] uses a write-
through approach to ensure data consistency. However, the
performance penalty of this approach is so large that it
only adapts to the Write-Once-Read-Many workload. GPFS
[19] uses the token, which is first revoked when modifying
the data, to maintain cache consistency between clients.
Similarly, Lustre [20] uses a distributed lock manager, named
DLM, to guarantee cache consistency. LPCC [3] proposes
an SSD-based hierarchical persistent client cache for Lustre.
It integrates with the Lustre Hierarchical Storage Manage-
ment and the Lustre DLM to guarantee consistent persistent
caching. The work [[4] further applies hierarchical persistent
client cache to NVM. In Ceph [21], when a client updates
a file, other clients will be notified to invalidate it’s cached

copy.

However, the limited power of computing and memory of
client nodes make it sometimes impracticable to do prefetch-
ing. To solve this problem, several researches [22[]-[25] have
proposed server-side prefetching schemes. Padmanabhan and
Mogul [22] investigated a prefethcing scheme for reducing
the user’s latency by predicting and prefetching files that are
likely to be requested soon in servers. Since the computing
node in the cloud always has limited memory resources, chen
et al. propose a scheduling-aware data prefetching scheme
in the server [23[], [26], which prefetches data and release
memory resources based on the scheduling information. Sim-
ilarly, 1i et al. propose a scheduling-aware data prefetching
scheme to enhance the data locality [27]]. In the work [28],
the storage server first models disk I/O access operations
and then prefetches data directly after predicting future I/O
accesses. However, the model requires extra space to store
logs and its correctness is affected by dynamic changes in
workload.



V. CONCLUSION

We present SSPF, a novel server-side prefetching scheme
for distributed file systems. The goal of SSPF is to hide the
latency in distributed file systems caused by network commu-
nication and disk operations by aggressive prefetching. The
core ideas include (1) To minimize the memory requirement,
SSPF prefetches only the next block into cache with the
help of access pattern hint; (2) A multi-queue based cache
manager is proposed to coordinate between the prefetching
blocks and other caching blocks; (3) A heuristic-based request
distribution strategy is proposed to optimize the balance
among data server nodes to improve the overall throughput.

We have implemented and evaluated SSPF on the real
distributed file system. Our evaluation results shows that
SSPF has 41.9% better read throughput in the fast network,
such as 40Gb/s InfiniBand. Since the bottleneck of distributed
file systems in the slow network (e.g., 1Gb/s Ethernet) is
network communication, it found that the performance gain
of the prefetching scheme is very limited in the slow network.
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