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Abstract
Distributed training of graph neural networks (GNNs) has
become a crucial technique for processing large graphs. Preva-
lent GNN frameworks are model-centric, necessitating the
transfer of massive graph vertex features to GNN models,
which leads to a significant communication bottleneck. Rec-
ognizing that the model size is often significantly smaller
than the feature size, we propose LeapGNN, a feature-centric
framework that reverses this paradigm by bringing GNN mod-
els to vertex features. To make it truly effective, we first
propose a micrograph-based training strategy that leverages
a refined structure to enhance locality, combined with the
model migration technique, to minimize remote feature re-
trieval. Then, we devise a feature pre-gathering approach that
merges multiple fetch operations into a single one to elimi-
nate redundant feature transmissions. Finally, we employ a
micrograph-based merging method that adjusts the number of
micrographs for each worker to minimize kernel switches and
synchronization overhead. Our experimental results demon-
strate that LeapGNN achieves a performance speedup of up
to 4.2⇥ compared to the state-of-the-art method, namely P3.

1 Introduction

Motivation. The emerging graph neural networks (GNNs)
are designed for learning from graph-structured data. They are
widely employed in various graph-related tasks (e.g., vertex
classification [13, 52], edge prediction [48, 49], and graph
classification [3, 33]) and have shown superior performance
compared to traditional graph algorithms in diverse domains,
such as recommendation systems [41, 45], social networks
analysis [50], and drug discovery [38].

Input graph datasets for GNN training consist of both topol-
ogy and vertex features [44, 55]. The volume of real-world
graph datasets can easily surpass the memory capacity of a sin-
gle machine. For example, the sizes of the Pinterest [47] and
ByteDance [25] datasets are 18 TB and 100 TB respectively.

⇤Shuibing He is the corresponding author (heshuibing@zju.edu.cn).

Therefore, GNN models are typically trained on distributed
clusters. In distributed GNN training, graph datasets are parti-
tioned and distributed across multiple servers. During each
iteration, each worker on the server uses a subgraph as the
input to train a local copy of the GNN model. During the
training, a large amount of vertex features need to be fetched
from remote servers, leading to significant communication
bottlenecks [11, 25, 28].
Limitations of the state-of-the-art systems. Many recent
works are proposed to reduce the time of remote feature fetch-
ing. For the convenience of discussion, we name the exist-
ing approaches as model-centric GNN frameworks in which
vertex features are moved to the GPU servers where GNN
models are trained. Specifically, [24, 25, 28, 55] improve the
hit rate of local features but compromise the model accuracy
(§7.9) using approximation-based methods. Such approaches
are unsuitable for scenarios requiring high precision, as even
0.1% accuracy drop in recommendation systems may lead
to revenue losses of millions of dollars [2, 10, 23, 53]. Other
studies [25, 32, 44] use GPU memory to cache popular ver-
tex features. They are limited by the cache size especially
for large graphs. To avoid remote feature fetching, P3 [11]
combines model parallelism and data parallelism based on
random hash partitioning. However, it is designed for GNNs
that have small hidden dimensions and its performance gain
is reduced as the number of hidden layers increases [11, 25].
Because of the deficiencies of the model-centric GNN frame-
works, we need a novel solution, which provides high model
accuracy and can be applied to a wide range of GNNs.
Our work. In this paper, we propose LeapGNN, the first
feature-centric GNN framework that reverses the existing
model-centric paradigm by moving GNN models to the re-
quested vertex features. LeapGNN is motivated by the ob-
servation that the size of model parameters is significantly
smaller than the volume of vertex features (§3.1), thus trans-
ferring model parameters incurs less cost than fetching graph
features. However, a naive implementation of this framework
could still result in considerable data movement, due to the
complex computation dependencies of GNN models and the
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need to transmit intermediate data, such as partial aggregation
results and activations. In fact, despite being beneficial in
certain scenarios, it may increase the data movement by up to
2.59⇥ compared to the model-centric approach (§3.2).

To make LeapGNN truly effective, we devise three opti-
mization techniques. First, we propose to use micrograph
as the fundamental training unit for each worker (§4). As
a more refined unit compared to the traditional subgraph,
the micrograph offers superior data locality, i.e., there is a
higher probability that the root vertex of a micrograph and
its fanout neighbors reside on the same GPU server. Conse-
quently, on top of model migration, micrograph-based train-
ing streamlines computational dependencies, mitigates the
production of intermediate data, and reduces remote feature
retrieval (§5.1). Second, we devise a pre-gathering method
to elevate communication efficiency (§5.2). This approach
consolidates multiple feature fetch operations into a single
operation, thereby reducing redundant feature transmissions.
Finally, we introduce a micrograph merging approach that
adaptively allocates micrographs to each worker (§5.3) for
reduced model migrations, thus minimizing kernel switches
and synchronization overhead.
Contributions. We make the following contributions:

• To the best of our knowledge, we are the first to propose
the feature-centric distributed GNN training strategy us-
ing model migration to reduce the feature communica-
tion overhead.

• We further analyze the new challenges introduced by
the naive feature-centric approach and propose three
techniques which collectively enhance its efficacy and
practicality, without compromising model accuracy.

• We implement LeapGNN on the DGL framework [36]
and test it on five datasets with five GNN models on
a distributed GPU cluster. LeapGNN achieves up to
4.2⇥ speedup compared to the the state-of-the-art coun-
terpart, P3 [11]. The codebase of LeapGNN is available
at https://github.com/ISCS-ZJU/LeapGNN-AE.

2 Background

This section uses a vertex classification task as an example to
illustrate the basic concepts and training process of GNNs.
Input graph datasets. The input data for GNN training in-
cludes both the graph topology and the vertex features, as
shown in Figure 1. In the example, we use a social network
graph where each vertex corresponds to a user and each edge
represents a relationship between two users. Each vertex is
associated with a vertex feature, which is stored in an em-
bedding vector. The embedding vectors can encode vertex
features like age, gender, geographical location, etc. The goal
of the GNN task is to predict the preferred topic for each user.
Some users in the graph have revealed their preferences on
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topics numbered from 0-9 (denoted as ‘L-x’), each of which
represents a topic, e.g., sports, music, etc. We will use this
disclosed information as ground truth for training the GNN
model. After training, the trained model is used to predict
the preferred topics for users who have not disclosed their
preferences.
Subgraph-based GNN training on a single GPU server.
GNNs leverage labeled vertices, known as training vertices,
to train a multi-layer neural network model across multiple
epochs. Similar to traditional DNN training, each epoch in-
volves multiple iterations to process all training vertices once.
Each iteration randomly selects a batch of training vertices
and consists of three key steps.

The sampling step involves k-hop neighbor sampling from
the training vertices to generate a k-layer subgraph, where k
equals the number of model layers. The user-defined param-
eter ‘fanout’ dictates the number of neighbors sampled per
vertex. For instance, the subgraph depicted in Figure 1 is pro-
duced by a 2-hop neighborhood sample from a single training
vertex 5 with a fanout of 2. A subgraph may encompass a
batch of training vertices, as shown in Figure 3. The gather-
ing collects the features of each vertex within the constructed
subgraph. The computation processes the subgraph layer by
layer, beginning with the first layer. For each layer, aggre-
gation operations (like addition or averaging) are conducted
on the neighboring features of each vertex. Subsequently, a
neural network transformation updates the feature represen-
tations. The updated features of the training vertices are fed
into a classification network layer to produce predicted la-
bels. Using the true labels, a backward propagation step then
follows to refine the model parameters.
Distributed GNN training. For large-scale graphs that ex-
ceed the storage capacity of a single GPU server, it is nec-
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essary to distribute the graph’s topology and vertex features
across multiple servers. Figure 2 depicts the process of parti-
tioning the graph into two parts (denoted by two colors) for
distributed GNN training on two servers. Given that the size
of the graph topology is smaller than that of the vertex fea-
ture embeddings (for instance, 6 GB for topology vs. 53 GB
for vertex features in the OGB-Papers100M dataset), several
studies [24, 43, 55] opt to redundantly store a subset or the
entire topology (e.g. vertices 1 and 3 on server 0) in a small
portion of the host memory. This strategy aims to minimize
data transmission during the sampling process.

Figure 3 shows a typical distributed GNN training approach
that utilizes data parallelism. Each server hosts a complete
GNN model copy. At the beginning of each iteration, each
model is randomly assigned a disjoint mini-batch of vertices
for training. For example, Model 0 is allocated the training
vertices {6,3}, and model 1 receives {5,0}. Subsequently,
the training processes independently perform the 2-hop sam-
pling(∂), feature gathering from local or remote servers (∑),
and computation steps(∏). Finally, the parameter gradients
from different models are synchronized, and the model param-
eters are updated (π). Since the models remain stationary on
their respective servers without migration throughout the train-
ing process, this method is characterized as model-centric.

3 Motivation and Challenges

3.1 Communication Bottleneck in GNN Train-
ing

In this section, we study the performance of GNN training
using DGL [36] which is a widely used GNN framework in
industry. We train three popular GNN models (GCN [20],
GraphSAGE [12], and GAT [8]) on three graph datasets [14]
(OGB-Arxiv, OGB-Products, and UK). The fanout is two
or ten and the number of GNN layers is three, following the
settings in the previous works [24,44]. The detailed evaluation

methodology is described in §7.
Observation I: Vertex feature gathering causes the com-
munication bottleneck. We utilize PyTorch Profiler [31] to
collect time metrics and present the detailed breakdown of the
execution times in Figure 4. Notably, gathering remote vertex
features consumes between 44% to 83% of the total training
time. In comparison, the combined time for sampling and
computation stands at an average of merely 11%. Despite the
framework’s ability to parallelize graph sampling and compu-
tation via GPUs, it falls short in mitigating the time required
for inter-server communication, particularly when transfer-
ring substantial volumes of vertex features. For instance, with
GAT [8] on the OGB-Products dataset, a significant 35 GB of
vertex features are exchanged per epoch, contrasting sharply
with the 0.4 GB of graph topology data. This analysis under-
scores that remote feature gathering is the predominant factor
influencing the end-to-end training time in distributed GNN
training.
Observation II: The volume of data transferred for ver-
tex feature gathering is substantially greater than the size
of the model. To quantify this, we introduce a ratio a, rep-
resenting the amount of training data fetched from remote
servers per iteration relative to the size of the model parame-
ters. This ratio was measured across prevalent GNN models
with various number of layers. Figure 5 presents the find-
ings, with the y-axis depicting log2a to accommodate the
vast range of values. We observe that a varies from 13.4 to
2368.1. Notably, in sophisticated deep GNN architectures,
such as DeeperGCN [22] with 112 layers, a reaches an ex-
traordinary 2368.1. This disparity stems from the fact that the
number of vertices within a subgraph increases more rapidly
than the number of model parameters, a consequence of k-hop
sampling where each model layer corresponds to a layer of
the subgraph.

Based on these observations, we are inspired to leverage
model migration to reduce the amount of data transfers during
GNN training. Our goal is to move the model to GPU servers
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where the vertex features are located, rather than fetching
features from remote servers. For the sake of clarity, we term
this the “feature-centric” approach.

3.2 A Naive Feature-Centric Training Ap-
proach

A naive feature-centric approach. It involves migrating the
model to remote GPU servers when the vertex features needed
for a subgraph are not locally available. However, this method
necessitates transferring considerable amount of intermedi-
ate data along with the model, owing to the computational
dependencies intrinsic to GNNs. Specifically, aggregation op-
erations must be finalized after acquiring the vertex features
of all fanout neighbors. Additionally, backward propagation
is contingent on intermediate data produced during the for-
ward pass, and the computation of subgraphs must proceed
sequentially, layer by layer.

Figure 6 shows an example of this method when training
two mini-batches in Figure 3. We focus on a single iteration
on model 0 for brevity. The process comprises three time
steps. At time step 0, model 0 initiates computation on layer
1 of subgraph 0. It gathers the features of vertices 4, 5, 6, and
7 locally and then inputs these into the model’s first layer for
forward propagation (∂). However, the features for vertices 0,
1, 2, and 3 in layer 1 of subgraph 0 are not locally available,
resulting in a partial completion of layer 1’s forward computa-
tion. We save the partial aggregation results and intermediate
data within model 0 for temporary storage. At time step 1,
model 0, with the temporarily stored data and the topology of
subgraph 0, migrates to server 1. There, it gathers the features
of vertices 0, 1, 2, and 3. Consequently, the forward com-
putation for layer 1 is fully executed, and layer 2’s forward
computation is partially completed (∑). At time step 2, model
0 returns from server 1 to server 0, carrying the stored data
and the topology of subgraph 0. It gathers the features of the
root vertex, 6, and uses the previously stored intermediate data
to complete the forward and backward computations for the
entire GNN model (∏). Subsequently, model 0 synchronizes

gradients with model 1 and performs parameter updates (π).
Challenges. While the naive feature-centric approach elimi-
nates the need for remote feature gathering, it may compro-
mise performance due to extensive intermediate data com-
munication and frequent model transfers. Figure 7 compares
the total data transmissions of the model-centric and naive
feature-centric methods. It shows that, despite being beneficial
in certain scenarios, the naive feature-centric approach can
demand up to 2.59⇥ the data communication of the model-
centric one. This significant communication overhead often
results in suboptimal performance for the naive feature-centric
strategy.

To fully capitalize on the unique characteristic of GNNs,
where model sizes are typically smaller than those of the
remote vertex features, a more sophisticated approach is es-
sential. This approach should facilitate model migration while
mitigating the high communication overhead stemming from
the computational dependencies inherent in GNNs.

4 Locality of Micrograph

A primary source of inefficiency in the naive feature-centric
approach lies in its fundamental training unit: the subgraph.
There is weak data locality when retrieving features for the
subgraph within a distributed environment. To address this,
we introduce the concept of a micrograph, a more refined
data structure. Building on model migration and leveraging en-
hanced data locality of micrographs, as detailed subsequently,
the micrograph significantly diminishes the need for exten-
sive intermediate data communication and frequent model
transfers.
Micrograph definition. A micrograph G0 is a computation
graph derived from a single mini-batch vertex v via k-hop
sampling in the original graph G. When the mini-batch size
is larger than one, a subgraph will consist of multiple mi-
crographs, as illustrated in Figure 8. For convenience, we
use the vertex ID to represent its corresponding micrograph.
We assume that (1) the mini-batch size is two, (2) vertex fea-
tures and graph topology data are distributed across two GPU
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Sam-
pling #S

METIS (%) Heuristic (%)
Rsub(%)Arxiv Products Papers IT

2L 10L 2L 10L 2L 10L 2L 10L

Node-
wise

2 75 73 95 88 93 61 66 64 50
4 66 45 92 79 89 43 54 46 25
8 59 27 88 68 84 35 48 36 12
16 63 35 86 61 84 30 46 32 6

Layer-
wise

2 79 54 55 52 85 58 80 53 50
4 70 30 34 28 77 31 67 30 25
8 65 18 25 14 56 24 63 18 12
16 61 12 21 9 57 12 61 12 6

Table 1: Data locality of micrographs with various sampling
and graph partition algorithms and model layers.

servers, and (3) the fanout and the number of computation lay-
ers are both set to two. Subgraph 0, associated with mini-batch
{6, 3}, comprises micrographs 6 and 3. Similarly, subgraph 1,
corresponding to mini-batch {5, 0}, includes micrographs 5
and 0.
Data locality in micrographs. Micrographs, due to their
finer granularity compared to subgraphs, inherently exhibit
superior data locality. Specifically, when employing widely-
used graph partitioning algorithms [7, 19, 24–26, 54], there is
a high probability that the root vertex of a micrograph and
its fanout neighbors reside within the same partition. Conse-
quently, the server hosting the root vertex’s features is also
likely to hold the features for its neighboring vertices

We use Figure 8 as an example for illustration. For clarifica-
tion, distinct colors are used to indicate the home locations of
vertices; for instance, red represents server 0, and blue repre-
sents server 1. In Figure 8(a), we need to retrieve the subgraph
for the mini-batch {6, 3}. Consequently, vertices 6 and 3 are
designated as the roots of micrographs 6 and 3, respectively.
Leveraging data locality, micrograph 6 retrieves vertices 6, 5,
and 7 from server 0. This process accesses 75% of the feature
vectors needed for training micrograph 6, as three out of four
vectors are read from server 0. Similarly, micrograph 3, when
trained, accesses 60% of its required feature vectors, with
three out of five vectors read from server 1. It’s noteworthy
that this feature locality is also present in micrograph 5 and 0.

To demonstrate the generality of this observation, we
conduct experiments on four real-world open-source graph
datasets. The first two datasets are partitioned with
METIS [19] used in DGL [36], and the last two large datasets
are partitioned with a heuristic algorithm, as utilized in
BGL [25] because the METIS algorithm runs out of memory
when partitioning these two graphs. We utilize both the node-

wise [12] and layer-wise [9] random sampling algorithms.
We vary the number of servers (#S) from 2 to 16 and observe
the locality of micrographs for both shallow-layer GNNs (i.e.,
two layers, denoted as ’2L’) and deep-layer GNNs (i.e., ten
layers, denoted as ’10L’).

We collect the number (Ncolocated) of non-root vertices
which are co-located with its root vertex in a micrograph
during GNN training. Then, we compute the ratio (Rmicro)
of Ncolocated and Ntotal , where Ntotal is the total number of
vertices in a micrograph. We show Rmico in Table 1. Likewise,
we calculate the locality (Rsub) of subgraphs by dividing the
count of non-root vertices co-located with a specified root ver-
tex by the total number of vertices in the subgraph. For ease
of presentation, we only show the mean value of Rsub. We
observe that Rmicro is consistently larger than Rsub, meaning
micrographs’ better locality. Furthermore, as the number of
GPU servers increases from 2 to 16, the difference between
Rmicro and Rsub is increased from 1.59⇥ to 10.60⇥.

We credit this enhanced data locality to the prevalent
graph partitioning strategies employed in GNNs, including
algorithms like METIS [7, 19, 26] and GNN-specific heuris-
tics [24, 25, 54]. These methods prioritize minimizing cross-
machine feature transmission by strategically assigning neigh-
boring vertices to the same partition, thus promoting data lo-
cality. As a result, when performing k-hop neighbor sampling
from a root vertex, the majority of vertices within the same
micrograph are likely to be co-located with the root on the
same GPU server.

We clarify that the enhanced locality of the micrograph
alone does not mitigate remote feature fetching in model-
centric systems; it is essential to combine it with LeapGNN’s
model migration strategy to address this issue as shown
in §5.1.

5 Design of LeapGNN

In this section, we detail the key ideas of LeapGNN that tack-
les the aforementioned challenges by leveraging data locality
in micrographs. Subsequently, we present two enhancements
designed to augment the performance of LeapGNN.

5.1 Micrograph-Based GNN Training
Key idea. We propose a novel approach, micrograph-based
GNN training, which decomposes a subgraph into multiple
micrographs and executes the complete forward and backward
computations for each micrograph on a single GPU server.
Since a model may be assigned multiple micrographs for train-
ing, with their root vertices distributed across multiple servers,
LeapGNN first migrates the model to the target server where
the root vertex feature of the current micrograph is located
before training. Then, child vertex features of the micrograph
not available locally are fetched from remote servers. This
does not incur significant feature transfer overhead, as the
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root vertex’s feature is already on the local server, meaning
that most of the current micrograph’s child vertices are also
likely to reside on the local server due to the micrograph’s
data locality. This micrograph-based GNN training offers
two significant advantages: (1) It minimizes remote feature
gathering by exploiting data locality within micrographs. (2)
It eliminates intermediate data retrieval. Since micrographs
are processed on a single server, both forward and backward
propagation can be completed once vertex features are gath-
ered in each layer of the micrographs.
The procedure of micrograph-based GNN training. As-
sume that there are N GPU servers. Before training starts
at each iteration, each server s is assigned a model d where
s 2 [0,N � 1] and d is equal to s. Each model is randomly
assigned a mini-batch of training vertices. We assign a home
server for each vertex in the mini-batch based on where
the features for the vertex is located. When training begins,
micrograph-based GNN training consists of the following four
steps. (1) Redistribution of root vertices. We will group root
vertices in all mini-batches base on their home server IDs for
task redistribution. Then, each vertex group is assigned to
the worker running on the corresponding home server. Since
root vertices are randomly sampled from the global graph, the
number of vertices received by each server is approximately
equal at most cases. For instance, when we use four GPU
servers for training, the load difference among them is less
than 10% for 97.3% training iterations for the four datasets
used in our experiments. (2) Generating micrographs. After
the redistribution, each server i needs to use k-hop sampling
to generate a single set mgi

d of micrographs for each vertex
group, where d is determined by looking up the GNN model
which is originally selected to be trained using the vertex. (3)
Training in N time steps. At time step t, model-d migrates to
server snew = (d+ t)%N and trains using micrographs mgsnew

d .
If the vertex features of the current micrograph are not avail-
able on the local server, they will be fetched from the remote
ones. To ensure model parameters are updated only after the

whole subgraph training is completed, the temporary gradi-
ents obtained by training one micrograph is accumulated. (4)
Updating model parameters. When the training on the last
micrograph of the subgraph is completed, the accumulated
gradients are synchronized among all GPU servers. Finally,
the model parameters are updated to finish training for one
iteration.

Figure 9 shows an example of our micrograph-based GNN
training for two mini-batches in one iteration on two GPU
servers. Initially, both server 0 and 1 duplicate the DNN model.
Eight features are evenly distributed between these servers.
Then, training vertices are reassigned, with server 0 obtain-
ing vertices 6 and 5, and server 1 getting vertices 0 and 3
(∂). Next, each server independently generates micrographs
through sampling (∑). The training process is then divided
into two time steps (∏). During the first step, servers 0 and 1
train using micrographs 6 and 0, respectively. Upon complet-
ing the backward computation, intermediate data is discarded,
retaining only the accumulated gradients. Models are then
migrated with their gradients: model 0 moves to server 1, and
model 1 to server 0. In the second time step, the servers con-
tinue training using micrographs 5 and 3, respectively. Finally,
the gradients from both models are averaged, and parameter
updates are conducted (π). This micrograph-based approach,
as opposed to the subgraph-based training, reduces the trans-
mission of vertex features between servers through strategic
model migration (8 features in Figure 3 vs. 6 in Figure 9).
Limitations of the locality-optimized approach. One
might think that training models on redistributed micrographs
without model migration—such as model 0 on micrographs 6
and 5, and model 1 on micrographs 0 and 3—could enhance
feature locality. While it is true, this approach could inadver-
tently disrupt the training sequence for each model, as the
sequence would be randomized only within a local context
rather than globally. For instance, model 0 would never be
exposed to micrograph 3, as its features reside on a separate
server 1. This locality-optimized approach could introduce
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bias into the mini-batch training data, potentially degrading
the model’s accuracy, as discussed in [30, 42]. Conversely,
the micrograph-based training method preserves model accu-
racy by maintaining the globally randomized data sequence.
For instance, model 0 consistently trains on micrographs 6
and 3, matching the composition of the original mini-batch
0. Additionally, the use of gradient accumulation, as shown
in prior research [17, 46, 51], does not compromise training
accuracy. The impacts of the locality-optimized approach on
model accuracy are discussed in §7.9.

A special case arises when the number of micrographs
obtained from a subgraph is less than the number of GPU
servers in a cluster. This implies that on certain machines
there are no corresponding micrographs to train. In such cases,
we allow the model to do nothing on those machines until
other models have completed the corresponding micrographs’
training.

5.2 Vertex Feature Pre-Gathering
Although micrograph-based GNN training significantly di-
minishes the need for remote feature retrieval by leveraging
data locality within micrographs, it can inadvertently lead to
redundant transmissions of vertex features across consecutive
time steps, potentially resulting in suboptimal performance.
We use the example in Figure 9 to illustrate this. Utilizing
micrograph-based GNN training, the worker on server 0 at
time step 0 must obtain the feature of vertex 1 from server
1. Upon completing the computations for that time step, the
vertex feature memory is cleared to prevent GPU memory
overflow. However, at time step 1, the worker on server 0 is
required to retrieve the features for both vertices 1 and 0 from
server 1. Consequently, for processing just two micrographs,
server 0 ends up fetching a total of three features from server
1, including a redundant transmission for the feature of vertex
1.
Key idea. We introduce vertex feature pre-gathering to miti-
gate redundant transmissions. This approach capitalizes on
the predictability of which vertices from the micrographs will
undergo training on a given server, regardless of the specific
models involved (e.g., model 0 or 1). For instance, referring
to Figure 9, we can anticipate that at time step 0, vertex 1 will
be utilized by micrograph 6, and at time step 1, both vertices
1 and 0 will be utilized by micrograph 5. Pre-gathering allows
us to fetch the features for vertex 1 and 0 from server 1 to
server 0 in a single batch, thereby reducing the communication
cost from three feature transmissions without pre-gathering
to just two.
Space overhead. While pre-gathering additional non-local
features could further minimize redundant transmissions, it
necessitates extra memory space. To manage this, we limit
pre-gathering to the features of vertices required for a single
iteration of GNN training. As detailed in §4, due to the feature
locality inherent in micrographs, this pre-gathering strategy

ensures that the memory footprint remains within the bound
of that required by model-centric GNN training, as depicted
in Figure 3. For example, when training GAT on the OGB-
Products dataset, the model-centric approach requires 530
MB of host memory for temporary feature storage, whereas
pre-gathering demands only 87 MB.

5.3 Micrograph Merging in GNN Training
Micrograph-based GNN training tends to necessitate more
frequent GPU kernel launches and may also entail synchro-
nization overhead at the end of each time step. Consequently,
a trade-off is required between the advantages of reduced
remote feature fetching through model migration and the ad-
ditional overhead imposed by micrograph-based training.
Key idea. By merging micrographs, we can potentially de-
crease the number of time steps during the GNN model train-
ing, thereby reducing the associated training overhead. How-
ever, the merging process must be approached strategically;
random micrograph consolidation could lead to load imbal-
ance across GPU servers. When considering the merging of
micrographs, two critical questions arise.
Which micrographs to merge? Merging micrographs could
lead to an increase in remote feature fetching. To counteract
this, we should strategically select micrographs that rely on
the fewest number of remote feature vectors. Additionally, it
is imperative to ensure that different models are concurrently
trained on separate servers after merging. Therefore, all micro-
graphs utilized within a single time step should be considered
for merging. Specifically, for each time step, we calculate the
total count of vertex features, denoted as Numvertex, for all
micrographs slated for training. We then pinpoint the time
step tsmin with the lowest Numvertex value. However, since
we must make decisions before the execution of an iteration
and before micrographs are generated, Numvertex is not yet
determinable. To circumvent this, we approximate Numvertex
using the total number of root vertices, designated for training
in a given time step. Subsequently, we merge the micrographs
scheduled for tsmin with those from other time steps, ensuring
they are used as evenly as possible by the same model. By
doing so, we can balance the time the model takes across
different time steps.
How many micrographs should be merged? If we merge
all the micrographs, micrograph-based training degrades to
subgraph-based training. If we did not merge enough micro-
graphs, the training overhead can be still significant. There-
fore, we require an examination period to determine how
many micrographs should be merged. During this period start-
ing from the second epoch, for each iteration, we identify a
time step tsmin and merge the micrographs in the time step
with those in other time steps but for the same model. Then,
we measure the execution time of the current epoch and com-
pare it to that of the previous epoch. If the execution time
is not reduced by merging, we stop the process and use the
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Figure 10: Illustration of micrograph merging. Squares of the same color
indicate the same GNN model. Model migration paths of m2 and m3 are
omitted. The total number of root vertices of each model keeps consistent
before and after merging.

existing micrographs for training. Otherwise, we repeat the
identifying-and-merging process until the execution time can-
not be reduced. After that, all the following epochs will use
the same merging pattern.

We use an example in Figure 10 to illustrate the micro-
graph merging. We assume that there are three GPU servers
including server 0, 1, and 2. Hence, the initial training needs
three time steps t0, t1, and t2. We use a matrix to show the
assignment of models (i.e., m0, m1, and m2) across the three
time steps. The initial model distributions and migration paths
are shown in Figure 10(a). For merging, we count the total
number of redistributed root vertices for each model at each
time step and show them in Figure 10(b). Then, t1 is identi-
fied as tsmin. Consequently, we can merge the micrographs
from time step t1 with those from time steps t0 and t2. Taking
model m1 for instance, its two root vertices assigned at time
step t1 are evenly distributed across model m1 at time step
t0 and t2, resulting in model m1 having 5 vertices at t0 and 3
at t2. Models m2 and m3 follow a similar redistribution pro-
cess. After merging, we can remove time step t1. The revised
training process consists of only two time steps t0’ and t1’.
The root vertex distribution and model migration paths after
merging are shown in Figure 10(c).

6 Implementation

We implemented LeapGNN based on one of the most popular
GNN frameworks, DGL [36] (with PyTorch backend). We
reutilized DGL’s graph data partitioning module, sampling
module. The GNN computation module includes both for-
ward and backward propagation, gradient synchronization,
and parameter updates. Our primary focus is on the gath-
ering phase, which has been identified as the bottleneck of
distributed GNN training.

Before implementing the micrograph-based training, we
first developed a distributed cache using Golang to store the
partitioned graph data on each machine. The Python-based
GNN application utilizes Google Remote Procedure Call
(gRPC) to request and retrieve vertex features from other ma-
chines. The model migration is implemented using PyTorch’s
distributed module. For pre-gathering, we utilized a Python
list to temporarily store multiple micrographs and detected

Dataset #Vertex #Edge Dim. VolG VolF
Arxiv 169K 1.17M 128 3.3 MB 85 MB

Products 2.45M 61.9M 100 464 MB 980 MB
UK 1M 41.2M 600 12 MB 2.3 GB
IN 1.38M 16.9M 600 8.2 MB 3.2 GB
IT 41.3M 1.15B 600 363MB 92.3 GB

Table 2: The details of graph datasets used in GNN training.
#Vertex and #Edge denote the number of graph vertices and
edges. Dim. denotes the dimension of vertex features. VolG
and VolF denote the data volume sizes of the graph topology
and features.

and removed duplicate vertices before requesting features
from the cache server. To implement micrograph merging, we
monitored the runtime for each epoch’s training and stored
its value in a temporary list. After that, we utilized this infor-
mation to adjust the number of time steps of one iteration as
described in §5.3.

7 Evaluation

7.1 Experimental Setup
System configurations. We conduct the experiments on a
cluster with four GPU servers, each with 2⇥Intel(R) Xeon(R)
Gold 5318Y CPUs (48 cores), 128 GB CPU memory, and an
NVIDIA A100 40GB GPU. All servers are interconnected
with a 10 Gb/s Ethernet network, running Ubuntu v18.04,
PyTorch v1.10.1+cu113, and Python v3.9.0.
Models and datasets. We use three shallow models (G-
CN [20], GraphSAGE [12], GAT [8]) and two deep models
(DeepGCN [21] and GNN-FiLM [6]) to evaluate LeapGNN.
Following the paper [6], we set DeepGCN to include seven
layers and GNN-FiLM to comprise ten layers. Other models
all have three layers. Beyond the variation in the number of
layers, these models are distinguished by their distinct meth-
ods for aggregating neighboring vertices. We use ’Model(16)’
and ’Model(128)’ to denote the neural network with hidden
dimension sizes of 16 and 128 respectively.

We carefully choose five well-established datasets, detailed
in Table 2, to ensure that both the raw graph data and inter-
mediate data (e.g., the buffered features and temporary data
for sampling) can fit in the server memory. The Arxiv [15]
and Products [15] datasets represent smaller graph instances,
while the UK [4] and IN [4] datasets are indicative of medium-
scale graphs. In contrast, the IT [5] dataset exemplifies a large-
scale graph [27]. It is important to note that the original UK,
IN, and IT datasets lack vertex features; therefore, we intro-
duce random features for these datasets, assigning a dimen-
sion of 600 to each vertex, a method akin to those in [11, 24].
Across all datasets, we implement a standard neighbor sam-
pling fanout of 10, aligning with the setup in [44]. Owing to
the protracted training durations associated with certain evalu-
ations on the large IT dataset, we limit our analysis to a select
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Figure 11: Performance comparison of various training frameworks for three shallow models.

DeepGCN
GNN-FiLM0

8

16

24

32

(a) Arxiv

Tr
ai

ni
ng

 ti
m

e 
(s

)

DeepGCN
GNN-FiLM

5k

10k

15k

(b) Products
DeepGCN

GNN-FiLM

0.5k

1.0k

1.5k

2.0k

(c) IN
DeepGCN

GNN-FiLM

0.5k
1.0k
1.5k
2.0k
2.5k

(d) UK

DGL P3 Naive LeapGNN

Figure 12: Performance comparison results on deep models.

subset of tests, with outcomes presented in §7.5. We use the
default METIS partitioning algorithm in the DGL framework,
and the maximum variance in the number of vertices across
partitions is < 1% for partition load balance.
Compared systems. We evaluate LeapGNN against the
industry-leading DGL framework [36] and the state-of-the-art
P3 [11] and NeutronStar [37] frameworks. DGL facilitates
GNN model training by fetching required features, either
locally or remotely. P3 integrates model-parallel and data-
parallel approaches, minimizing the transfer of original ver-
tex features but necessitating additional intermediate data
movement. NeutronStar enhances training efficiency by op-
timizing the balance between redundant computation and
communication time. Unlike these frameworks, which adopt
a "model-centric" approach, LeapGNN is "feature-centric".
Note that, we categorize P3 as model-centric in our paper,
even though it avoids moving vertices’ input features. This is
because it introduces the transmission of vertices’ hidden fea-
tures (i.e., activations), while LeapGNN does not. This is also
why LeapGNN outperforms P3 when the hidden dimension
is large (§7.2). As P3 is not open-source, we reimplemented
it based on the original paper’s description. We also assess
a naive feature-centric approach (Naive) in §3.2 to under-
score the value of LeapGNN’s techniques. Direct comparison
with ROC [18] is omitted, as P3 has already surpassed it [11].
Most experiments use mini-batch training, except for Neu-
tronStar, which only supports full-batch training. We compare
LeapGNN with NeutronStar in §7.7.

7.2 Overall Performance

Figures 11 and 12 respectively show the end-to-end training
times for shallow and deep GNN models, due to their sig-
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Figure 13: Improvements of each individual technique. The
training time of DGL is normalized to one.

nificant numerical differences. We train each model for ten
epochs and report the average training time. We have four
observations.

First, LeapGNN outperforms other frameworks by mini-
mizing feature and intermediate data transmissions, offering
1.3–3.1⇥ speedups over DGL and 1.2–4.2⇥ over P3 across
various GNN models, and up to 4.8⇥ over Naive. Second,
while Naive can be efficient, it does not consistently improve
on DGL and P3. In constrast, LeapGNN consistently out-
performs existing frameworks, highlighting the necessity of
LeapGNN’s techniques. Third, LeapGNN’s speedup varies
for different GNN models. It achieves 2.5⇥ acceleration for
GCN whereas 2.2⇥ for GAT on Products. This variation
mainly arises from the varying time proportion of feature
gathering in the training, resulting in different potential for
performance improvements. Fourth, LeapGNN’s improve-
ment is independent of the hidden dimension of the models,
while P3’s speedup is sensitive to this [11, 25]. For example,
with GAT on the IN dataset, when the hidden dimension size
is 128, P3 is 1.2⇥ slower than DGL, while LeapGNN still
achieves 1.8⇥ performance improvement. This is because
LeapGNN performs the forward and backward propagation
of a micrograph on a single server, eliminating the inter-server
transmission of hidden embeddings of P3.

7.3 Impact of Individual Techniques

Figure 13 illustrates the impact of each optimization. Using
DGL as the baseline, +MG enables micrograph-based GNN
training, +PG adds pre-gathering on +MG, and All further
includes micrograph merging. We observe that each technique
enhances performance, with All achieving the highest (2.14⇥
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Figure 17: Details after us-
ing micrograph merging.

on Products, 2.72⇥ on UK). Besides, the most impactful tech-
nique varies across scenarios. For example, in GCN(16), the
third technique contributes the most (i.e., 47%) on Products,
while the first technique is most effective (i.e., 61%) on UK.

Figure 14 shows that micrograph-based GNN training re-
duces the local feature missing rate by an average of 53%,
cutting the average remote feature gathering time by 2.3⇥
for Products (Figure 15). Figure 16 displays the number of
remote feature requests and local feature miss requests with
pre-gathering enabled. It shows pre-gathering further reduces
the former by 1.9⇥ and the latter by 1.4⇥. Figure 17 shows
the epoch time and time steps per iteration for the GAT model
on the Products dataset using micrograph merging. Starting
with four machines and four time steps in epoch 0, LeapGNN
dynamically reduces the time steps to three in epoch 1 and
two by epoch 2. It then settles on three time steps per iteration
for the rest of training, achieving optimal training efficiency.

7.4 Micrograph Merging Selection
To demonstrate the effectiveness of our selection method
(§5.3) in the micrograph merging, we compare it with a ran-
dom scheme (RD), where a micrograph is randomly selected
to merge with other micrographs for each model. Figure 18(a)
illustrates that our method outperforms RD by 1.4–1.9⇥ on
IN and Products. Figure 18(b) shows the number of GNN
training models on each GPU server at each time step with
RD. It shows that RD has an uneven workload distribution
among servers, thereby degrading the training performance.

7.5 Results on Large-Scale Graph
Figure 19 illustrates the epoch training time of different
systems on the large dataset IT. Due to the extensive train-
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Figure 18: The impact of selection schemes.
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Figure 20: GPU utilization
with different systems.

ing times, we only conduct a subset of the tests. LeapGNN
achieves an average acceleration of 1.91⇥ and 1.48⇥ against
DGL and P3, respectively. The improvement is attributed
to the increase in the local feature hit rate from 24.4% to
92.3% after employing the techniques in LeapGNN. This
result shows LeapGNN is still effective on the large dataset.

7.6 GPU Utilization
Figure 20 illustrates the GPU utilization of LeapGNN, DGL,
and P3 for the GAT model on the UK dataset. Similar results
are observed on other models and datasets. We utilize the
Python library GPUtil [1] (which relies on nvidia-smi) to
capture the GPU utilizations every 250ms during a steady
400-second running time window. We observe that the peak
GPU utilization is smaller than 20% in all these systems due
to the sparse nature of computations [11] and the high speed
of A100. However, LeapGNN is able to keep GPU busy (i.e.,
at least one core active) for 52% of the total time, while DGL
and P3 only achieve 13% and 18%, respectively. This explains
why LeapGNN achieves the shortest training time.

7.7 Comparison with NeutronStar
Since NeutronStar does not support sampling, we disable
sampling in all compared systems. For fair comparison, we re-
produce NeutronStar based on the DGL framework. Figure 21
shows that both NeutronStar and LeapGNN outperform DGL,
with LeapGNN being the best. LeapGNN is 1.05–1.82⇥ faster
than NeutronStar. This is because, despite NeutronStar’s ac-
celeration of DGL by reducing redundant computations, the
proportion of feature communication is larger in our test sce-
nario. LeapGNN reduces this communication through model
migration, leading to a shorter overall training time.
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Figure 21: Performance comparison with full-batch training.
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Figure 22: Performance comparison with various batch sizes
and feature dimensions.

7.8 Sensitivity Analysis
Batch size. Figure 22(a) depicts the training time of GCN
on Products with various batch sizes. LeapGNN consistently
outperforms DGL for batch sizes from 512 to 16K, with per-
formance improvements of 2.2–2.8⇥. This can be mainly
attributed to LeapGNN’s ability to reduce remote feature
fetching time.
Feature dimension. Figure 22(b) shows the system perfor-
mance on Products with different feature dimensions. As the
feature dimension increases, LeapGNN’s speedup is increased
from 2.1⇥ to 2.9⇥. This is because the proportion of remote
feature gathering time in DGL rises from 36.8% to 72.0%,
leaving more space for acceleration with LeapGNN.
Fanout size. Figure 23(a) shows the system performance
of LeapGNN with different fanouts. LeapGNN consistently
outperforms DGL by 2.3⇥ on average. Furthermore, it offers
better scalability than DGL on high-dimensional large graph
datasets. Specifically, when the feature dimension expands
by a factor of 8 (from 5 to 40), LeapGNN’s training time is
increased by 5.3⇥ while DGL’s time is increased by 6.6⇥.
Number of distributed machines. Figure 23(b) presents the
system performance of GCN on Products with various number
of machines. We observe that LeapGNN consistently outper-
forms DGL by 2.27⇥ on average. Furthermore, as the number
of machines increases from 2 to 6, LeapGNN’s speedup is
increased from 1.69⇥ to 2.55⇥. This shows LeapGNN has
better scalability than DGL in multi-machine scenarios.

7.9 Model Accuracy
So far we have compared LeapGNN with the state-of-the-art
systems with accuracy fidelity. Approximate methods, such
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Figure 23: Performance comparison with various fanouts and
number of machines.

Dat-
aset Models DGL

Acc.
LO LeapGNN

Acc. Drop Acc. Drop

Arxiv
GCN 60.24 59.71 0.53 60.24 S
SAGE 61.96 61.96 S 61.98 S
GAT 59.28 59.15 0.13 59.25 S

Products
GCN 83.16 83.17 S 83.20 S
SAGE 82.80 82.77 S 82.80 S
GAT 83.95 83.96 S 83.92 S

Table 3: Model accuracy (%). The column in bold indicates
accuracy drop. "S" stands for "same", indicating that the ac-
curacy drop is within 0.1%.

as selectively ignoring remote vertex features [28], proximity-
aware ordering [25], and locality-optimized method (LO)
[24, 55], have also been proposed to reduce remote feature
gathering time. However, these systems may compromise
model accuracy. For example, [28] has demonstrated a 0.95%
accuracy drop for SAGE on Products and [25] has shown a
0.2% accuracy drop on the OGB-Papers dataset [15]. Since
the impact of LO on GNN accuracy has not been studied, we
conduct tests to study this on the Arxiv and Product datasets.
We do not test accuracy for the other three datasets because
their vertex features are randomly generated and meaningless
for accuracy testing. Table 3 shows that LeapGNN maintains
the same accuracy as DGL on both datasets, while LO fails
to maintain accuracy on the Arxiv dataset. This is because
LO only chooses the vertices from the local node, introduc-
ing bias into the training sequence, potentially degrading
the model’s accuracy, as discussed in [30, 42]. Given that
0.1% accuracy loss could lead to substantial economic con-
sequences [2, 10, 23, 53] and our work is able to maintain ac-
curacy fidelity, we do not compare LeapGNN’s training time
with systems that may compromise accuracy [24, 25, 28, 55].

8 Discussion

Graph partitioning time. While the METIS graph partition-
ing algorithm used by LeapGNN is more time-consuming
than P3’s random partitioning method, it runs offline and only
once. Thus, its partitioning time can be amortized over the
large number of training epochs and GNN tasks. For exam-
ple, when partitioning a large IT graph, although LeapGNN
takes approximately 2800 seconds (roughly the time of one
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training epoch) longer than random partitioning, it still out-
performs P3 by 1.6⇥ on GAT in a typical 200-epoch training
scenario, with partitioning time included. Moreover, several
recent GNN-tailored partitioning algorithms [24, 25, 28, 54]
have shown potential to further reduce partitioning durations
while maintaining high locality.
Time and space overhead. LeapGNN incurs additional com-
munication time due to the migration of models and gradients
across servers compared to DGL. However, the added time
overhead is negligible, averaging only 4.6% of the total train-
ing time. As shown in §7.2, its training time (including the
communication) still outperforms other approaches. Regard-
ing memory usage, despite receiving multiple partial gradients
per model during each iteration, LeapGNN maintains mem-
ory efficiency equivalent to DGL. This is because LeapGNN
accumulates incoming partial gradients with the existing ones
and updates them in place.
Failure recovery. In LeapGNN, models migrate between ma-
chines at each time step but revert to their origin machines at
the end of each iteration. Therefore, we perform the check-
pointing at the end of each iteration, not after every time step,
aligning with standard checkpointing practices. Additionally,
since only a single model resides on each server at the iter-
ation’s end, each server only needs to handle checkpointing
for one model, mirroring typical GNN system designs.
Generality of LeapGNN. Since LeapGNN does not modify
the GNN computation kernel functions and performs forward
and backward computations for each micrograph on a sin-
gle server, it maintains robust compatibility with GNN mod-
els that use different aggregation operations (e.g., sum, max,
LSTM) as supported by the original DGL framework. The
efficacy of LeapGNN stems from the locality of the micro-
graph, rendering it unsuitable for random graph partitioning
algorithms [11]. However, most of GNN partitioning algo-
rithms provide strong locality [7, 19, 24–26, 54], endowing
LeapGNN with excellent practicality and applicability.

9 Related Work

Graph partitioning optimizations. DGL [36] utilizes the
METIS graph partitioning algorithm to minimize the num-
ber of cut edges. ByteGNN [54] and BGL [25] considers
multiple-hop neighbors to further reduce cross-machine ver-
tex accesses. ROC [18] proposes an online linear regression
model to optimize graph partitioning. These efforts aim to
maximize the co-location of adjacent vertices on the same
machine, thereby reducing inter-machine feature transmis-
sion. They are orthogonal to our work and could potentially
enhance LeapGNN’s performance.
Sampling algorithm optimizations. These works focus on
improving the locality of feature accesses by changing sam-
pling algorithms [24, 25, 28, 55]. As mentioned before, these
works tend to compromise the randomness of GNN sam-
pling, thereby impacting GNN training accuracy. In contrast,

LeapGNN has the model accuracy fidelity.
Cache optimizations. These studies aim to design GPU
memory caches to reduce the feature fetching time from CPU
memory. PaGraph [24] and GNNLab [44] implement static
caches to store features of vertices with the highest degree
or access frequency. BGL [25], on the other hand, employs
a dynamic FIFO cache to balance cache management over-
head with hit rate efficiency. Legion [34] contributes a unified
multi-GPU cache strategy to reduce topology and feature
transmissions over PCIe. These methods leverage additional
GPU memory and are complementary to our research. We
posit that integrating these techniques into LeapGNN could
significantly enhance training performance.
Computation optimizations. Considerable research efforts
[16, 26, 39, 40] accelerate GNN computation via fine-grained
pipeline and balanced workload scheduling across multiple
GPU cores. They are designed for small graphs that can fit
entirely into GPU memory. In contrast, LeapGNN focuses on
large graphs with distributed GNN training.
Others system optimizations. DGCL [7] enhances GPU-to-
GPU communication via a multi-path selection algorithm.
Betty [46] tackles large batch training on single GPUs using
batch splitting. Dorylus [35] optimizes communication for
serverless training scenarios with Lambda servers. These
methods are orthogonal and complementary to LeapGNN.

10 Conclusion

In this paper, we present LeapGNN, a feature-centric dis-
tributed GNN training framework to reduce inter-machine
communication overhead. LeapGNN moves the GNN model
towards the training features, rather than moving the features
to the models as in the existing model-centric frameworks.
To tackle the challenges of implementing this approach, we
propose the micrograph-based GNN training, vertex feature
pre-gathering, and micrograph merging, to reduce remote fea-
ture fetching, intermediate data, and synchronization over-
head over network. Our experimental results demonstrate that
LeapGNN can achieve a speedup of up to 4.2⇥ compared to
the state-of-the-art framework, P3, across a variety of GNN
models and datasets.
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A Artifact Appendix

A.1 Abstract
The artifact provides the implementation code, testing prepa-
rations, and scripts for our LeapGNN system. It implements a
feature-centric distributed GNN training method using model
migration, based on the DGL framework.

A.2 Scope
The artifact facilitates a deeper understanding of our design
and implementation details, including aspects not covered in
the paper due to space constraints. It enables the reproduction
of the experimental results presented in the paper and allows
developers to integrate our system into their own applications.

A.3 Contents
The implementation includes the three key optimization tech-
niques of LeapGNN. Additionally, the README.md file pro-
vides instructions for setting up the environment, downloading
datasets, and using the testing scripts. Each test script corre-
sponds to an evaluation figure in the paper, and all scripts are
located in the test directory.

A.4 Hosting
The artifact is hosted at https://github.com/ISCS-ZJU/
LeapGNN-AE. The latest content can be found in the dis-
tributed_version branch, with commit version 9af29d1e7e.
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