
KT-Store: A Key-Order and Write-Order
Hybrid Key-Value Store with High Write and

Range-query Performance

Haobo Wang12, Yinliang Yue12, Shuibing He3, and Weiping Wang12

1 Institute of Information Engineering, Chinese Academy of Sciences, China
2 School of Cyber Security, University of Chinese Academy of Sciences, China

3 School of Computer Science, Wuhan University, China
{wanghaobo,yueyinliang}@iie.ac.cn;heshuibing@whu.edu.cn;wangweiping@iie.ac.cn

Corresponding Author: Yinliang Yue

Abstract. With the data volume increasing, key-value (KV) store plays
an important role in today’s storage systems due to its flexible architec-
ture and good scalability. There are two types of data organization in cur-
rent KV stores: key-order layout and write-order layout, which organize
records according to key order and write sequence, respectively. While
the former and the latter layouts deliver high throughput for range-query
and write operations respectively, neither of them can perform well for
both write and range-query operations. In this paper, we propose a hy-
brid KV store, KT-Store, which combines the key-order and write-order
layout together to improve performance. More specifically, KT-Store s-
tores keys and value metadata into a LSM-tree, and stores values into
multiple tables called TrieTables. By inserting the value among multiple
TrieTables in a key-order fashion leveraging a trie, and into a specific
TrieTable in a write-order fashion, KT-Store can obtain the advantages
of existing two layout types and avoid their shortcomings. We implemen-
t KT-Store in RocksDB 5.7.2. Extensive evaluations demonstrate that
KT-Store can simultaneously obtain encouraging write and range-query
performance: compared with key-order based RocksDB, the write perfor-
mance is improved by 4.3×−12.6× on HDDs; compared with write-order
based Wisckey, KT-Store has 54.2 × −112.6× range-query performance
on HDDs. Besides, KT-Store also has encouraging performance on SSDs.

1 Introduction

Key-value stores play a critical role in today’s large-scale, high-performance,
data-intensive applications in recent years. Compared with conventional SQL
databases and other NoSQL data stores, key-value stores have stronger hor-
izontal scalability, more flexible architectures, and more portable supports of
different types of applications [1]. Due to their importance and benefits, KV
stores are widely used in distributed storage systems, such as BigTable , HBase
and local storage systems, such as LevelDB and RocksDB.

Similar to traditional databases, KV stores need to support basic system
workloads, such as data inserts, data updates, and range-queries. Data-intensive

applications often run with massive data. These operations involve a large num-
ber of I/O read and write activities on hard disk drives (HDDs), which are the
dominate media in current KV storage systems. As different workloads exhibit
various data access characteristics, previous KV stores use different index struc-
tures to organize the key-value items, such that the system can provide desirable
performance for different workloads.

There are two main types of data layouts in the data organization of current
KV systems. The first type is the key-order layout that organizes the key-value
items according to lexicographical order. Typical systems include conventional
LSM-tree, its variants [2] [3] [4], B+-tree [5], and its variants [6] [7]. As all the
key-value items are organized in key-order, such data layout can greatly improve
range-query performance by utilizing the sequential read I/Os on HDDs. The
second type is the write-order layout that organizes the key-value items based on
the order of write sequence, which is inspired by the idea of Log-structured file
system [8]. The typical systems applying this policy are Wisckey [9] and LSM-
Trie [10]. By performing the append operations, random write I/O operations are
translated into sequential ones on the HDDs, which means high I/O efficiency,
thus such data layout can bring high throughput for write operations.

While the above approaches show decent performance for write and range-
query workloads respectively. Unfortunately, to the best of our knowledge, none
of them can perform well for write and range-query simultaneously. For example,
while write-order layout can get high write throughput, it has inherent short-
coming of poor random read performance in the range-query operations; the
key-order layout would cost lots of time to sort the key-value items like LSM-
tree or to search the targeted storage location like B+-tree, which results in
limited write throughput.

To bridge this gap, we propose a hybrid KV store, which combines the key-
order and write-order layout together to organize key-value items in the systems.
KT-Store consists of three parts, one LSM-tree, one trie and multiple TrieTables.
These components are used to store the keys and the metadata of values, to index
the TrieTables according to a given key, and to store the values, respectively. In
KT-Store, the values among multiple TrieTables are organized by the key-order
while the values within each TrieTable are organized by the write-order. Thus,
such hybrid structure can achieve high performance for both write and range-
query operations.

KT-Store separates values from keys and stores them into different locations
to eliminate the unnecessary compaction of values for enhanced write perfor-
mance. While this design is inspired by the idea of Wisckey [9], it differs from
Wisckey in that it stores the values into multiple tables while Wisckey [9] stores
them into a single table. By leveraging a trie and organizing all the TrieTables in
a key-order fashion, KT-Store can also achieve high throughput for range-query.

We implement KT-Store in RocksDB 5.7.2. Extensive evaluations demon-
strate that KT-Store can simultaneously obtain encouraging write and range-
query performance: it significantly outperforms RocksDB with 4.3 × −12.6×
write performance and Wisckey with 54.2×−112.6× range-query performance.

Fig. 1. LSM-tree data structure.

The proposed hybrid data layout scheme creates a better balance between
write performance and range-query throughput. It can be applied in both HDDs
and SSDs.

The following of this paper is organized as follows. Section 2 describes the
related work. Section 3 describes the system design and implementation. Section
4 presents and discusses the evaluation results. Finally, we conclude this paper
in Section 5.

2 Related Work

Key-order layout organizes key-value pairs ordered by the key. Log-Structured
Merge-Tree (LSM-tree) is the typical structure, which was proposed by Patrick
O’Neil et al in 1996 [11]. LSM-tree is composed of multiple components, general-
ly including one memory resident component and multiple disk resident compo-
nents, as shown in Fig. 1. The key-value pairs in each component is sorted and
arranged in lexicographical order. Each component size is limited to a predefined
threshold, which grows exponentially. LSM-tree first uses an in-memory buffer,
called MemTable, to hold the incoming KV items and keeps them sorted. When
an MemTable exceeds its capacity threshold, it will be dumped into the hard disk
as an immutable SSTable, such as T12. Every disk component consists of multiple
SSTables. Each SSTable containd the sorted KV items which have been sorted in
the compaction procedure. During compaction procedure, KV items are merged
and sorted. KV items of both Ci and Ci+1 within the same key-range are firstly
read into memory, then merged and sorted, and finally written back to Ci+1 as
the fix-sized SSTables. The compaction procedure is extremely I/O-intensive for
repeated reads and writes, and dominates the disk I/Os of LSM-tree [2]. As a
result, compactions that keep the key-value pairs in key-order layout bring write
throughput decrease seriously. Several methods have been adopted to improve
the write throughput key-order layout LSM-tree-based systems. First, fully u-
tilizing the available hardware/software resources. PCP [12] makes use of the
parallelism of CPUs and I/O devices. LOCS [13] leverages the multiple channels
of an SSD. Second, reducing the unnecessary data blocks moving. Skip-tree [2]
skips some compaction procedures. PebblesDB [14], VT-tree [3] reduce the data
rewrite. Third, accelerating the data flow. bLSM [15] and PE [16] partition the
key range into multiple sub-key range and confine compactions in hot data key
ranges. Others, like [17] applies LSM-tree to non-volatile memories, and GTSS-

L [18] uses layered mix of storage devices such as Flash SSDs and magnetic
disks.

Write-order layout organizes key-value pairs ordered by the write sequence
like LSM-trie [10] and Wisckey [9]. LSM-trie [10] stores data in a hierarchical
structure by sacrificing the supporting of range-query operations. Wisckey orga-
nizes values in a value-log file, named vLog. The values in vLog is ordered by the
write sequence. When a key-value pair is inserted, Wisckey first separates the
key and the value, and append the value to the vLog. Then Wisckey inserts the
key and the value metadata into LSM-tree. The values are appended to vLog as
the insert procedure goes on. The write throughput keeps a high level because
Wisckey spends no time to sort the values. As the value are arranged in vLog by
write-order, Wisckey implements the range-query operations by parallel search
the targeted key-value pairs. Under SSD environment, Wisckey could get compa-
rable range-query performance as RocksDB [9]. Although SSDs are widely used
nowadays, hard disks are still the main devices for conventional data stores. The
range-query operations of Wisckey performs undesirable in hard disks for the
reason that the search procedure is through random I/Os and can’t utilize the
sequential I/Os.

Key-order data layout can obtain attractive range-query performance but
bad write performance, while write-order data layout can obtain attractive write
performance but bad range-query performance. In RocksDB, we insert 100GB
data volume with value size as 4KB by random order and by sequential order.
The result shows that random insert performance only reaches about 30% of
sequential insert performance. In Wisckey, the range-query performance with
the values is randomly arranged only reaches about 22% of that with the value
is sorted when the value size is 4KB [9] with SSDs. There remains a need to well
balance the write performance and range-query performance. Consequently, we
are motivated to propose a hybrid KV store, KT-Store, to obtain attractive write
and range-query performance simultaneously in one typical key-value store.

3 Design and Implementation

3.1 The Basic Idea Of KT-Store

For effective balancing write and range-query throughput, we suggest KeyTrie-
Store(KT-Store), which is designed as a replacement of RocksDB or Wisckey.
The major distinction of KT-Store is that it uses a new key-and-write hybrid
data layout to organize values. Fig. 2 depicts the overall architecture of KT-
Store. Each KT-Store instance consists of three parts, one LSM-tree, one trie,
and multiple TrieTables. The basic concept of organizing keys and light-weighted
value metadata into LSM-tree is similar to Wisckey. But different from Wisckey
arranging values to one vLog, KT-Store leverages trie to split the input values
into multiple TrieTables. Trie divides the whole key-range into multiple sub-
ranges and sorts the sub-ranges in key-order. Every sub-range is correspond to
a TrieTable, while trie keeps track of TrieTable locations in memory. TrieTables
are in key-order among multiple TrieTables. Within a specific TrieTable, values

ab

TTab TTba TTbb …TrieTables

LSM-tree Trie

cb

ba bb ...

a

a b c

b a b

TTIN

Fig. 2. The overall architecture of KT-Store (the strings in circles present the path
from the root node to the child node or leaf node).

Table 1. The data structure of the trie node

Type Property Value

Internal Node ID Denote the trie node and corresponding to one TrieTable.
Leaf Flag false
Children
Mapping

Map to the child node with a mapping of <Character,
Trie Node>(The character is the edge value in Fig. 2).

Leaf Node ID Denote the trie node and corresponding to one TrieTable.
Leaf Flag true

are organized by write-order. Each leaf node of trie is correspond to a TrieTable,
while all the internal nodes are correspond to one TrieTable TTIN . In the write
operation, all incoming values are appended at the end of the corresponding
TrieTable to get the desirable write performance. In the range-query operation,
the required values are stored in TrieTables under the key-and-write layout for
the random I/Os can be avoided.

3.2 The Three Parts of KT-Store

The LSM-tree, which is originated from the conventional LSM-tree structure,
is designed to store the key-metadata pairs. The value metadata includes its
corresponding TrieTable ID, the offset in TrieTable, and the value size. We could
locate the value based on the metadata.

One index structure of KT-Store, trie, is one of the most popular search
trees, where keys are arranged in order. As shown in the Fig. 2, the root node
is associated with empty string and each edge presents one character. The path
from the root node to the child node contributes to a key prefix or a key. Hence,

TTaTrieTables
Write Order

TTba TTbb ...TTab

Key Random Order

Fig. 3. The key-and-write hybrid order layout.

TrieTables

LSM-tree Trie

③

K1

TT1

V1
Offset1

VSize1

<K1 , TT1 | Offset1 | VSize1 >

①

②

Fig. 4. The insert procedure of KT-
Store.

LSM-tree Trie

Start key, Range Length
①

< K1 , TT1 | Offset1 | VSize1 >
< K2 , TT1 | Offset2 | VSize2 >

…
< K3 , TT2 | Offset3 | VSize3 >
< K4 , TT2 | Offset4 | VSize4 >
< K5 , TT2 | Offset5 | VSize5 >

…

②

④ < K1 , V1 >
< K2 , V2 >
< K3 , V3 >
< K4 , V4 >
< K5 , V5 >

...

④

MinOffset MaxOffset

TT1 , MaxOffset1 ,MinOffset1
< K1 , Offset1 | VSize1 >
< K2 , Offset2 | VSize2 >

…

TT2 , MaxOffset2 ,MinOffset2
< K3 , Offset3 | VSize3 >
< K4 , Offset4 | VSize4 >
< K5 , Offset5 | VSize5 >

…

③ ③

⑤

TT1 TT2

⑤

Fig. 5. The range-query procedure of KT-Store.

the child nodes of one common node share the same key prefix. When one key-
value pair is inserted, trie nodes are searched to match the key prefix and the
matched node determines the TrieTable.

The two node formats of trie, also shown in TABLE 1, are: (1) internal node;
and (2) leaf node. For example, the leaf node ‘ab’ in Fig. 2 has the proper-
ties of <ab, true, TTab>. If there exists one key-value pair with key as ‘b’, its
value would be appended to TrieTable TTIN , since all the internal nodes are
corresponding to one TrieTable TTIN .

TrieTables are used to store the values. The values are organized by key-
and-write hybrid order as shown in Fig. 3. For example, TTab, TTba and TTbb

are in lexicographical order which denote the key prefix of ‘ab’, ‘ba’ and ‘bb’
respectively. In a specific TrieTable, the values are arranged by write-order which
is in key random sequence.

3.3 The main Procedures in KT-Store

Write Procedure When a insert request of a key-value pair K1V1 arrives, KT-
Store would separate K1V1 into the key and the value. Fig. 4 presents the insert
procedure. First, search the trie nodes to match the key prefix. A node and corre-
sponding TrieTable are created when the node doesn’t exist. Second, the value of
K1V1 would be appended at the end of corresponding TrieTable. Third, original
key and value metadata are bounded as <key, TrieTable ID|offset|value size>
to be stored into LMS-tree. For example, for a key-value pair <abh, V alue>,
we search trie to get the ‘ab’ node first. Next, the value ‘Value’ will be ap-
pend to TrieTable TTab. We presumes that the start offset is 500. Then the
<abh, Tab|500|6> would be inserted into LSM-tree as one key-value pair. Since
disk writes are performed sequentially for appending to the TrieTable, the write
performance of KT-Store is much better than that of RocksDB.

Range-query Procedure A range-query operation first does the range-query
operation in the LSM-tree to get the LSM-values in 2O of Fig. 5. Then parse
the LSM-values and group them by the TrieTable ID and compute the minimal
offset and the maximal offset for each TrieTable in 3O. Contiguously Read each
TrieTable and get the data from the minimal offset to the maximal offset. This
makes that every TrieTable would be read no more than once in one range-
query operation. As known that disk I/Os cost a lot of time, KT-Store utilizes

the sequential I/Os to decrease the range-query latency. Then, we pick the data
that is read from TrieTables into key-value pairs according to their metadata.
Last, aggregate the key-value pairs from TrieTables as output and return them
in 5O. For the TrieTable, we contiguously read the part rather than the whole
TrieTable. Values are arranged on TrieTable by time sequence. Thus, in small
length range-query operations or sequential insert, the targeted values only locate
in part of one TrieTable.

Read Procedure The read procedure begins with searching LSM-tree to find
the key and the metadata, then it gets the value according to the metadata.
KT-Store first searches the targeted TrieTable through the TrieTable ID, then
it reads the targeted TrieTable to obtain the value. The beginning location is
the offset ddress and the length is the value size. As this procedure is relative-
ly straightforward and the page space is limited, here we ignore the detailed
procedure.

3.4 Implementation

We build KT-Store with insert, update, read, delete and range-query interfaces.
We integrate RocksDB 5.7.2 into KT-Store as the LSM-tree part. As RocksDB is
written by C++, we develop KT-Store by C++. Except RocksDB, we implement
all the other structures without utilizing other existing code. We implement the
range-query API through the iterator in RocksDB referred to the RocksDB wiki
in GitHub. We implement Wisckey also by integrate RocksDB 5.7.2 and develop
it by C++ according its design.

3.5 Discussion

Reliability Mechanisms When the system crashed, KT-Store needs to restore
two types of data during the recovery procedure. One type is the key-value pairs
that have been written into the TrieTables but have not been written into LSM-
tree. The other is the key-value pairs that stored in MemTable of LSM-tree.
For the former type, we utilize the write-ahead log to rerun the operations and
ignore the data that have been appended to the TrieTable. For the latter one, we
utilize the existing LSM-tree reliability mechanism to recover the LSM-tree. Trie
works as an index of the TrieTable in the insert procedure. As the trie changes
infrequently, we persist the trie to the disk when the trie changes. When the
storage server crashed, we recover trie from the disk.

Trie Scalability In the current implementation, we only use fixed levels in trie
part of KT-Store. We acknowledge that dynamic level numbers that varies with
data volume would further improve the performance of KT-Store and adapt to
the workloads with un-uniform key distribution. However, the focus of this study
is to balance the write and range-query performance well. Thus, we believe the
fixed levels do not hurt the conclusions and contributions of this study. We will
develop adaptive policy in the future work.

35703.41
14121.03

5064.25
1734.10

8394.69

2177.45

570.32

137.87

49630.44
22822.75

7247.55
2066.91

1

10

100

1000

10000

100000

1KB 4KB 16KB 64KB

W
rit

e
 T

hr
ou

gh
pu

t (
op

s/
s)

Value Size

KT-Store
RocksDB
Wisckey

(a) On HDDs

41575.66
19855.67

6486.32
1980.66 13027.82

2181.55

577.29

129.05

48634.86
24035.85

7271.05

1993.35

1

10

100

1000

10000

100000

1 KB 4KB 16 KB 6 4KB

W
rit

e
 T

hr
ou

gh
pu

t (
op

s/
s)

Value Size

KT-Store
RocksDB
Wisckey

(b) On SSDs

Fig. 6. The average write throughput of KT-Store, RocksDB and Wisckey for the value
sizes vary from 1KB to 64KB for a 100GB dataset.

4 Evaluation

4.1 Experiment Setup

We evaluate KT-Store and RocksDB, Wisckey on one Linux servers with hard
disk devices and Solid State Drives. RocksDB is a persistent key-value store
based on LSM-tree, started by Facebook. In every evaluation, we compare KT-
Store with RocksDB and Wisckey. Except the compression type, which we set it
as non-compression, the parameter values of RocksDB are applied to its defaulted
settings as described following. The compaction style is level compaction which
is the same as LSM-tree designed to be. The SSTable size is 64MB and the ratio
of Ci+1 size to Ci size is 10. We use YCSB to generate workload traces, which
are replayed in a light-weight workload generator. YCSB generates synthetic
workloads with various degrees of read/write ratio, statistical distribution and
value size. We configure YCSB to generate different datasets that are described
in following subsections.

4.2 Write Performance

We load datasets with different value sizes and different scales into KT-Store,
RocksDB and Wisckey to evaluate the write performance. The YCSB workload
is set to 100% insert operations and insert key-value pairs randomly with uni-
form key distribution. We use the parameter of insert operations per second to
evaluate the write performance.

We conduct experiments on KT-Store, RocksDB and Wisckey with the value
size grows from 1KB to 4KB, 16KB and 64KB, and the data volume is 100G-
B. Fig. 6(a) shows the write throughput of KT-Store is about 4.3 × −12.6× of
that of RocksDB with HDDs. With the value size increasing, KT-Store obtain
better write throughput than RocksDB. Moreover, KT-Store has comparable
write throughput with Wisckey, which is about 16% decrease in best case. For
SSDs, KT-Store outperforms RocksDB in all the cases and has almost the same
performance with Wisckey in the best case as Fig. 6(b) depicts. To evaluate
the write performance under different scales, we conduct experiments with the
data volumes are 5GB, 20GB, 50GB and 100GB and the value size as 4KB as
Fig. 7 shows. With the data volume increasing, KT-Store outperforms RocksDB

15368.91 16583.16 17352.42 14121.03
7085.64

4105.13 2708.25 2177.45

21775.99 21663.70 22468.23 22822.75

1

10

100

1000

10000

100000

5GB 20GB 50GB 100GB

W
ri

te
 T

hr
ou

gh
pu

t (
op

s/
s)

Data Volume

KT-Store
RocksDB
Wisckey

Fig. 7. The average write throughput of
KT-Store, RocksDB and Wisckey for the
data volumes vary from 5GB to 100GB for
a 4KB value size on HDDs.

151.49 110.26
196.28

551.90 667.26 1127.97

518.53 492.96
1081.79

2639.07 2657.34
6552.55 8212.89 12414.98 20851.92

41749.71 63186.53 85701.43

1

10

100

1000

10000

100000

2000 3000 5000 10000 15000 20000

Ra
ng

e-
qu

er
y

La
te

nc
y

(m
s)

Range Length

KT-Store
RocksDB
Wisckey

Fig. 8. The average range-query latencies
of KT-Store, RocksDB and Wisckey for d-
ifferent range length with the value size as
4KB on HDDs.

879.99 551.90 666.58

5302.05
2639.07

1684.28

161153.02
41749.71

9358.75

1

10

100

1000

10000

100000

1000000

1KB 4KB 16KB

Ra
ng

e-
qu

er
y

La
te

nc
y

(m
s)

Value Size

KT-Store

RocksDB

Wisckey

(a) On HDDs

337.63 191.46 154.38
98.95 83.72 64.97

526.76
284.94

189.66

1

10

100

1000

1 KB 4KB 16KB
Ra

ng
e-

qu
er

y
La

te
nc

y
(m

s)

Value Size

KT-Store
RocksDB
Wisckey

(b) On SSDs

Fig. 9. The average range-query latencies of KT-Store, RocksDB and Wisckey for
different value sizes with querying 40MB data from a 100GB database.

further. KT-Store matches Wisckey for about only 23% decrease. Without sort-
ing every key-value pairs, KT-Store obtain attractive write performance than
RocksDB, and get comparable write performance than Wisckey.

4.3 Range-query Performance

YCSB supplies the range-query interface required two parameters, the ‘startkey’
and the ‘recordcount’. The former denotes the first key searched in range-query
operation. The latter denotes the number of key-value pairs that this range-
query operation requires, that is, the range length. We measure range-query
performance for workloads with different range length of 2000, 3000, 5000, 15000
and 20000, and with different value sizes of 1KB, 4KB and 16KB respectively.
The data that already in the store is with uniform key distribution and inserted
randomly. And the data volume is 100GB.

Fig. 8 presents the comparison of average range-query latencies in KT-Store,
RocksDB and Wisckey with HDDs. It can be found that the range-query perfor-
mance of KT-Store is 54.2×−112.6× of that of Wisckey. And is 3.42×−5.81×
of that of RocksDB. Fig. 9(a) and Fig. 9(b) depict the range-query latencies
of KT-Store, RocksDB and Wisckey for querying 40MB data from a 100GB
database on HDDs and on SSDs. KT-Store outperforms Wisckey in all our cas-
es. The range-query operation in RocksDB is complemented by the iterator, and
the index block and data block have iterators respectively. First, the data block
of targeted key-value pair is determined by the index block iterator. Then ac-
cording to the index which contains the offset information, RocksDB reads the

102.44
108.49

146.91

4026.06 188.89
242.02

170.21

9000.14

73.45 69.81

274.12
5200.29

1

10

100

1000

10000

5GB 20GB 50GB 100GB

Re
ad

 L
at

en
cy

 (u
s)

Data Volume

KT-Store

RocksDB

Wisckey

Fig. 10. The average read latencies of KT-
Store, RocksDB and Wisckey for the dif-
ferent data volume with the value length
of 4KB.

16
00

8.
52

36
4.

56

36
3.

11

39
5.

41

14
70

.5
9

13
.7

2

34
1.

30
 22

57
.4

5

19
3.

16

14
2.

35

14
7.

78

52
5.

21

54
.4

8

12
4.

12

24
19

6.
63

39
2.

16

21
4.

13

20
3.

42
 15

97
.4

4

5.
91

27
5.

10

1

10

100

1000

10000

100000

LOAD A B C D E F

Th
ro

ug
hp

ut
 (o

ps
/s

)

KT-Store

RocksDB

Wisckey

Fig. 11. The throughput of KT-Store,
RocksDB and Wisckey in terms of the load
and the six standard workloads with the
key distribution is Zipf.

targeted key-value pairs. KT-Store utilizes the sequential I/Os to read the part-
ed TrieTable into the memory. Then KT-Store matches each key with its value
and returns the range-query result.

We attribute the difference of above evaluation to the following observations.
First, RocksDB reads key-value pairs one by one with the key-order, but multi-
ple versions of a same key can exist in different components in the same time.
Multiple component searches make that RocksDB can’t fully utilize the sequen-
tial I/Os of hard disk and affects the range-query performance seriously. Second,
KT-Store reads TrieTables one by one to fully utilize the sequential I/Os. The
key-and-write hybrid order layout of TrieTables decreases the number of TrieTa-
bles that need to be read. As for Wisckey, the range-query operation relies on
multiple read operations which results in massive random I/Os.

4.4 Read Performance

We conduct read operations on 5GB, 20GB, 50GB and 100GB YCSB datasets
and evaluate the average read latencies on KT-Store, RocksDB and Wisckey on
HDDs. We set the number of read operations as 1000 in each experiment and the
value size as 4KB. The dataset that already in the store is inserted randomly.
Fig. 10 shows the average read latencies of KT-Store, RocksDB and Wisckey.
We can see that KT-Store shows a average read performance with RocksDB and
Wisckey.

4.5 YCSB Standard Workload Evaluation

Our final set of experiments compares the performance with YCSB standard
workloads, which can be treated as a basic benchmark for storage systems. Each
of the six standard workload combines one or two operation types and can make
us understanding the performance of the system. All the standard workloads are
based on the Zipf distribution of key-value pairs.

Workload A is an update heavy workload. Workload B is a read mostly
workload. Workload C is a read only workload. Workload D is a read latest
workload which has 95% reads of the most recently inserted KV pairs. Workload
E is a short ranges workload which does the short range-query operations. In

Workload E, the max range-query length is 100 and the range-query length
is under uniform distribution. Workload F is a read-modify-write workload. In
Workload F, the key-value pairs will be read first, be modified next, and then
be written back to the storage system.

We perform the six workloads on KT-Store, RocksDB and Wisckey with the
4KB value size on HDDs. For each value size, we load 100GB dataset with Zipf
key distribution, then perform each workload and evaluate the throughput.

Fig. 11 presents the operations throughput of KT-Store, RocksDB and Wis-
ckey. In load stage, Workload A-D and F, KT-Store outperforms RocksDB by
1.8×−7.0× throughput and obtains comparable performance with Wisckey. In
Workload E, KT-Store performance is about 2.32× of that of Wisckey. As have
been discussed in Subsection 3.5, each range-query almost read the whole Tri-
eTable since the key-value pairs are organized by write-order in every TrieTable.
In short range-query, KT-Store would only read one TrieTable in most case,
while RocksDB maybe only read several blocks. Since the I/Os cost most time,
reading the TrieTable in KT-Store would take much more time than reading
several blocks in RocksDB. As a consequence, KT-Store performs a little worse
than RocksDB in short range-query, but outperforms RocksDB in normal or long
range-query as described in Subsection 4.3. Moreover, KT-Store gets attractive
performance compared with Wisckey in Workload E.

5 Conclusion

In this paper, we propose KT-Store, based on a key-and-write hybrid order data
layout. KT-Store well balance the write and range-query performance. Extensive
evaluations demonstrate that KT-Store can simultaneously obtain encouraging
write and range-query performance: compared with key-order based RocksDB,
write performance is improved by 4.3 × −12.6×; compared with write-order
based Wisckey, KT-Store has 54.2 × −112.6× range-query performance. The
YCSB standard workload evaluation shows that KT-store balances RocksDB
and Wisckey well in various workload. In the future, we will dynamically extend
the trie and limit each TrieTable in a threshold size, which would make KT-Store
adapted to more workloads. We will also do some research to collect garbage.

6 Acknowledgments

This work was partially supported by Youth Innovation Promotion Association
of Chinese Academy of Sciences No.2016146, the National Science Foundation
of China under Grant No.61303056, No.61572377, No.61602467 and No.6173396,
and the Natural Science Foundation of Hubei Province of China under Grant
No.2017CFC889.

References

1. Beaver, D., Kumar, S., Li, H.C., Sobel, J., Vajgel, P., et al.: Finding a needle in
haystack: Facebook’s photo storage. In: OSDI. Volume 10. (2010) 1–8

2. Yue, Y., He, B., Li, Y., Wang, W.: Building an efficient put-intensive key-value
store with skip-tree. IEEE Transactions on Parallel and Distributed Systems 28(4)
(2017) 961–973

3. Shetty, P., Spillane, R.P., Malpani, R., Andrews, B., Seyster, J., Zadok, E.: Building
workload-independent storage with vt-trees. In: FAST. (2013) 17–30

4. Yao, T., Wan, J., Huang, P., He, X., Gui, Q., Wu, F., Xie, C.: A light-weight
compaction tree to reduce i/o amplification toward efficient key-value stores. In:
Proceedings of the 33rd International Conference on Massive Storage Systems and
Technology (MSST’17). (2017)

5. Comer, D.: Ubiquitous b-tree. ACM Computing Surveys (CSUR) 11(2) (1979)
121–137

6. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley db. In: Conference on Usenix
Technical Conference. (1999) 43–43

7. Frhwirt, P., Huber, M., Mulazzani, M., Weippl, E.R.: Innodb database forensics.
(2010) 1028–1036

8. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-
structured file system. In: Thirteenth ACM Symposium on Operating Systems
Principles. (1991) 1–15

9. Lu, L., Pillai, T.S., Gopalakrishnan, H., Arpaci-Dusseau, A.C., Arpaci-Dusseau,
R.H.: Wisckey: Separating keys from values in ssd-conscious storage. ACM Trans-
actions on Storage (TOS) 13(1) (2017) 5

10. Wu, X., Xu, Y., Shao, Z., Jiang, S.: Lsm-trie: an lsm-tree-based ultra-large key-
value store for small data. In: Proceedings of the 2015 USENIX Conference on
Usenix Annual Technical Conference, USENIX Association (2015) 71–82

11. ONeil, P., Cheng, E., Gawlick, D., ONeil, E.: The log-structured merge-tree (lsm-
tree). Acta Informatica 33(4) (1996) 351–385

12. Zhang, Z., Yue, Y., He, B., Xiong, J., Chen, M., Zhang, L., Sun, N.: Pipelined
compaction for the lsm-tree. In: IEEE International Parallel and Distributed Pro-
cessing Symposium. (2014) 777–786

13. Wang, P., Sun, G., Jiang, S., Ouyang, J., Lin, S., Zhang, C., Cong, J.: An efficient
design and implementation of lsm-tree based key-value store on open-channel ssd.
In: Proceedings of the Ninth European Conference on Computer Systems, ACM
(2014) 16

14. Raju, P., Kadekodi, R., Chidambaram, V., Abraham, I.: Pebblesdb: Building key-
value stores using fragmented log-structured merge trees. In: Proceedings of the
26th Symposium on Operating Systems Principles, ACM (2017) 497–514

15. Sears, R., Ramakrishnan, R.: blsm: a general purpose log structured merge tree. In:
Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, ACM (2012) 217–228

16. Jermaine, C., Omiecinski, E., Yee, W.G.: The partitioned exponential file for
database storage management. The VLDB Journal-The International Journal on
Very Large Data Bases 16(4) (2007) 417–437

17. Kannan, S., Bhat, N., Gavrilovska, A., Arpaci-Dusseau, A., Arpaci-Dusseau, R.:
Redesigning lsms for nonvolatile memory with novelsm. In: 2018 USENIX Annual
Technical Conference (USENIX ATC 18), USENIX Association (2018) 993–1005

18. Spillane, R.P., Shetty, P.J., Zadok, E., Dixit, S., Archak, S.: An efficient multi-tier
tablet server storage architecture. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing, ACM (2011) 1

