IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025

2325

Mapping Large-Scale Spiking Neural Network on
Arbitrary Meshed Neuromorphic Hardware

Ouwen Jin ¥, Qinghui Xing*“, Zhuo Chen

Shuiguang Deng

Abstract—Neuromorphic hardware systems—designed as 2D-
mesh structures with parallel neurosynaptic cores—have proven
highly efficient at executing large-scale spiking neural networks
(SNNs). A critical challenge, however, lies in mapping neurons
efficiently to these cores. While existing approaches work well with
regular, fully functional mesh structures, they falter in real-world
scenarios where hardware has irregular shapes or non-functional
cores caused by defects or resource fragmentation. To address
these limitations, we propose a novel mapping method based on
an innovative space-filling curve: the Adaptive Locality-Preserving
(ALP) curve. Using a unique divide-and-conquer construction al-
gorithm, the ALP curve ensures adaptability to meshes of any
shape while maintaining crucial locality properties—essential for
efficient mapping. Our method demonstrates exceptional computa-
tional efficiency, making it ideal for large-scale deployments. These
distinctive characteristics enable our approach to handle complex
scenarios that challenge conventional methods. Experimental re-
sults show that our method matches state-of-the-art solutions in
regular-shape mapping while achieving significant improvements
in irregular scenarios, reducing communication overhead by up to
57.1%.

Index Terms—Neuromorphic computing, spiking neural net-
works (SNN), network on chip (NOC), mapping.

I. INTRODUCTION

EUROMORPHIC computing is an emerging research

field focused on developing artificial intelligence that
consumes less energy. Central to this field are Spiking Neural
Networks (SNNs), regarded as the next generation of neural
networks. These networks are designed to replicate the functions
of biological brains, employing neuron and synapse models for
processing information in both spatial and temporal dimensions.
A critical aspect of this research is the development of neuromor-
phic hardware specifically designed to run SNNs. This includes
various platforms like DYNAP-SE [1], TrueNorth [2], Neuro-
grid [3], SpiNNaker [4], Loihi [5], Tianji [6], and Darwin [7],
each uniquely engineered to leverage the energy-efficient qual-
ities of spike-based computing.

Received 16 March 2025; revised 11 July 2025; accepted 13 August 2025.
Date of publication 25 August 2025; date of current version 26 September 2025.
This work was supported in part by the National Science and Technology Pro-
gram under Grant 2024YDLNO000S5, in part by the Natural Science Foundation
of China under Grant 61925603 and Grant 62172361, and in part by the Major
Projects of Zhejiang Province under Grant LD24F02001. Recommended for
acceptance by A. Li. (Corresponding author: Gang Pan.)

The authors are with the Zhejiang University, Hangzhou 310058, China (e-
mail: gpan@zju.edu.cn).

Digital Object Identifier 10.1109/TPDS.2025.3601993

, Ming Zhang
, Senior Member, IEEE, and Gang Pan

,De Ma"?, Ying Li"?, Xin Du, Shuibing He ",

, Senior Member, IEEE

A 2D-mesh structure Network-on-Chip (NOC) [8] is a widely
adopted design in many neuromorphic hardware systems. This
architecture features an array of neurosynaptic cores, such as the
crossbars in Loihi [5] and ARM cores in SpiNNaker [4], which
are dedicated to storing synaptic weights and simulating neural
activities in parallel. The 2D-mesh layout not only facilitates
easy expansion to accommodate larger networks but also proves
highly effective for the free flow of spiking messages.

The deployment of SNN applications on such hardware re-
quires careful mapping as a crucial initial step. This process
entails two main phases: first, partitioning the network’s neurons
into hardware-compatible clusters, and then strategically posi-
tioning these clusters on computing cores. By placing strongly
connected neurons on physically adjacent cores based on neural
connectivity patterns, this approach minimizes inter-core com-
munication overhead and optimizes overall system efficiency.

Researchers have developed various mapping approaches
to address these challenges, including PACMAN [9], Py-
CARL [10], SpiNeMap [11], DFSynthesizer [12], eSpine [13]
and our previous works [14], [15]. These studies have conclu-
sively shown that mapping configurations significantly influence
multiple aspects of SNN application performance, from power
consumption and processing latency to system throughput.

The development of large-scale neuromorphic hardware
brings a new challenge: mapping SNNs to meshes with irregular
shapes. This requirement emerges from two real-world sce-
narios: (i) Neuromorphic hardware systems serve as platforms
handling multiple concurrent SNN workloads. These tasks have
varying resource needs, arrival times, and durations, leading to
fragmentation over extended service periods. (ii) Large-scale
systems commonly experience defective cores.

Current mapping approaches, which typically assume ideal
and regular mesh structures, falter when faced with the reali-
ties of practical hardware. In large-scale, many-core systems,
challenges such as manufacturing flaws, operational wear, and
resource fragmentation make irregular hardware topologies an
inevitable reality. A primary source of this irregularity is the
presence of non-functional, or ’Not Available’ (N/A), cores.
These are often the macroscopic outcome of low-level physical
defects, with stuck-at faults being a prominent example—a
challenge especially acute in emerging memristive systems [16].
The inability of existing methods to adapt to these conditions
leads to suboptimal mapping solutions, causing increased com-
munication overhead, reduced system efficiency, and perfor-
mance bottlenecks. Developing a robust mapping strategy that

1045-9219 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-5687-2156
https://orcid.org/0000-0003-1953-4574
https://orcid.org/0009-0004-8038-4039
https://orcid.org/0000-0002-4556-9191
https://orcid.org/0000-0001-8700-938X
https://orcid.org/0000-0003-1503-8725
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0001-5015-6095
https://orcid.org/0000-0002-4049-6181
mailto:gpan@zju.edu.cn

2326

- e -
€3 '4"5 10 3
s icu §Ca Lz
7 input gi R
C‘ T - C C C:
SNN Application Mapping Output TTie
Algorithm e
" Input L
€13 iC1a
Occupied Placement

Neuromorphic Hardware

Irregular Mesh

Fig. 1. Mapping SNN onto neuromorphic hardware with irregular meshes.

maintains high performance across these diverse and imperfect
hardware configurations is therefore crucial, and it is precisely
the problem our work is designed to address.

Fig. 1 illustrates the fundamental challenge this paper ad-
dresses: mapping SNNs onto neuromorphic hardware with irreg-
ular mesh shapes. The figure depicts an SNN application await-
ing deployment on a neuromorphic hardware platform where
two tasks are already running, occupying multiple computing
cores. Additionally, one unoccupied core is unavailable due to a
hardware fault. In this scenario, the mapping algorithm must
strategically place neurons from the SNN onto the available
computing cores within this irregular mesh configuration to
achieve an optimal placement for deployment and execution.

To address this challenge, we propose an innovative two-
stage mapping approach that combines the Adaptive Locality-
Preserving (ALP) curve with the Force Directed (FD) algorithm.
Our method first employs the ALP curve to establish a high-
quality initial mapping, followed by the FD algorithm’s local
optimization to refine and finalize the mapping solution.

We propose the Adaptive Locality-Preserving (ALP) curve,
a novel space-filling curve designed to adapt to meshes of
any irregular shape, including those with internal gaps or non-
functional cores. Crucially, the ALP curve not only offers this
flexibility, but also retains and, in some cases, enhances the
locality-preserving properties of the Hilbert curve. The con-
struction algorithm is highly efficient, with a time complexity of
O(nlogn) for mapping n cores. This allows for mapping mil-
lions of cores in under one second, demonstrating the scalability
required for mapping very large-scale SNNs to neuromorphic
hardware.

The Force Directed (FD) algorithm [15] is an iterative op-
timization technique designed for large-scale SNN mapping
challenges. In our novel approach, we integrate the ALP curve
with the FD algorithm to complete the mapping process. The
ALP curve initially provides a high-quality mapping placement,
which is subsequently fine-tuned through the FD algorithm for
local improvements. Our experimental results indicate that this
method not only matches the performance of existing state-of-
the-art approaches but also significantly expands mapping flexi-
bility. This enhancement in adaptability holds profound practical
significance, demonstrating the potential of our approach in
diverse mapping tasks.

The main contribution of this paper are as follows:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025

Neuromorphbic Hardware

® We propose the Adaptive Locality-Preserving (ALP)
curve, a novel space-filling curve that uniquely adapts
to arbitrary irregular shapes while preserving locality
properties.

e We propose an SNN mapping approach that combines
the ALP curve with the Force Directed (FD) algorithm,
delivering exceptional adaptability across diverse mapping
scenarios while maintaining high efficiency for large-scale
implementations.

® We conduct thorough experiments to compare our method
with current state-of-the-art techniques. This includes a
comparison of our mapping algorithm with other leading
algorithms and a detailed evaluation of the ALP curve’s
performance against various space-filling curves. The re-
sults show that our approach matches the best existing
methods in regular mapping tasks and significantly reduces
communication overhead in irregular mapping tasks.

The remainder of this paper is organized as follows. Sec-
tion II provides the necessary background on neuromorphic
hardware and space-filling curves. Section III reviews related
works in SNN mapping and space-filling curve applications.
Section IV introduces our novel Adaptive Locality-Preserving
curve, followed by Section V which details our proposed map-
ping approach. Section VI presents comprehensive experiments
and evaluations. Section VII discusses broader applications and
implications of our work. Finally, Section VIII concludes the

paper.

II. BACKGROUND

Neuromorphic computing is receiving increasing attention for
its brain-mimicking and energy-efficiency characteristics. The
core technique of neuromorphic computing is Spiking Neural
Network (SNN) [17], which has shown great potential and pro-
vides competitive results comparing to traditional Artificial Neu-
ral Network in many machine learning tasks, including vision
classification, reinforcement learning, and robotic autonomous
control [18].

Several emerging pieces of dedicated hardware have been
designed for SNN implementation, such as TrueNorth [2], SpiN-
Naker [4], Loihi [5], Tianji [6], and Darwin [7]. These hardware
systems are typically composed of a large number of neurosy-
naptic computing cores responsible for simulating neuronal and

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.



JIN et al.: MAPPING LARGE-SCALE SPIKING NEURAL NETWORK ON ARBITRARY MESHED NEUROMORPHIC HARDWARE

Router

T

Core

Communication Path

Fig. 2. 2D-Mesh NOC hardware model.
Xo X3 - Xg
~:xs -:xu @ Neuron
s s @ Cluster
ESt 1 Xa A : Xg - - .
4 \ 4 \ I© ' Neuromorphic core
1 X7 X12 !
v \ - L ’ —— Synapse
*2 T Xs “*10 — Cluster connection
SNN Application Legend
Partition
X X3 Xg
X6 X11
*1 Xa X9
X7 *12
X2 Xs X10

Partitioned Cluster Network

; Mappmg i

:
: Core -

Neuromorphic Chip
Placement 2

Neuromorphic'Chip
Placement 1

Fig. 3. Comprehensive overview of the SNN mapping process.

synaptic dynamics in parallel. The neurosynaptic computing
cores are connected by a 2D-mesh structured Network-on-Chip
(NOC) [8] for easy scalability to achieve massively parallel
computing systems (as shown in Fig. 2).

To operationalize SNN applications on neuromorphic hard-
ware, the SNN model must be mapped onto the hardware.
Initially, the model is conceptualized as a graph: neurons are
nodes, and synapses are edges. The SNN is then partitioned
into clusters to match neurosynaptic core capabilities, forming
a Partitioned Cluster Network (PCN). In this PCN, nodes repre-
sent neuron clusters, and edges indicate data transmission links
between clusters. These clusters are then strategically placed
on the computing cores. The mapping of the PCN is critical
as it determines the pathways for spike information transfer on
the NoC, directly influencing key performance metrics such as
communication overhead, latency, and throughput.

Fig. 3 illustrates an example of mapping SNN applications
onto neuromorphic hardware. First, the SNN is partitioned into

2327

PCN. In our case, the core is limited to accommodate a maximum
of 3 neurons, and an SNN comprising 13 neurons xg_12 is par-
titioned into a PCN consisting of 5 clusters cy_4. Subsequently,
the nodes within the PCN are mapped onto the neurosynaptic
cores. Fig. 3 shows two potential mapping results of the PCN,
referred to as Placement 1 and Placement 2, onto a neuromorphic
hardware configuration comprising 6 cores structured as a mesh
with 2 rows and 3 columns. Placement 1 represents a superior
solution compared to placement 2, as it exhibits shorter or equal
path lengths for all connections in comparison to placement 2.

This paper addresses the problem described by the following
equation:

arg minp M(F(M,Gpen)). (1)

It seeks a mapping method F'() that inputs a mesh shape M and a
graphically represented network G pc v, outputting a mapping
placement. The goal of this placement is to optimize perfor-
mance metrics defined by M () such as total spiking distance or
system power consumption.

The task of mapping Spiking Neural Networks (SNNs) onto
hardware is a combinatorial optimization problem of NP-hard
complexity [19]. This is because the end-to-end process encap-
sulates two well-known NP-hard challenges. First, partitioning
the neuron graph into clusters is an instance of the Graph Parti-
tioning problem. Subsequently, the placement of these clusters
onto physical cores to minimize communication cost is a classic
formulation of the Quadratic Assignment Problem (QAP). The
computational intractability of finding optimal solutions for such
problems necessitates the use of effective heuristics, which is the
primary motivation for the approach presented in this paper.

III. RELATED WORKS
A. Related Works on SNN Mapping Problem

Prior researches have introduced diverse methodologies for
SNN mapping. These methods, distinguished by their under-
lying algorithms, fall into three primary categories: heuristic-
based, optimization-based, and SFC-based approaches.

Mapping SNNs to neuromorphic hardware, an NP-hard prob-
lem [19], commonly employs heuristic algorithms such as
Particle Swarm Optimization (PSO). In PSO implementations,
the search space has N dimensions, where N = C x V (C:
number of neurons/clusters, V: number of cores), with each
point representing a specific placement. Various approaches—
PSOPART [20], Song et al. [21], SpiNeMap [11], and Py-
CARL [10], eSpine [13]—each offer distinct problem formu-
lations and objective functions. PSOPART, for instance, applies
PSO without partitioning, which increases computational com-
plexity. SpiNeMap takes a different approach by binarizing the
search space, while Song et al. leverage SDF? for throughput
optimization. Similarly, eSpine employs PSO to optimize the
placement of synapses on memristors based on their activa-
tion patterns, aiming to maximize the lifetime of memristive
crossbar arrays by considering endurance variations. However,
these methods share a critical limitation: their high algorithmic
complexity results in poor efficiency. Designed primarily for
small-scale scenarios (typically fewer than 100 cores), they

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.



2328

prove impractical for modern large-scale hardware with thou-
sands of parallel cores, where generating a single mapping
solution could require over a hundred hours.

Methods based on mathematical optimization, such as Mixed-
Integer Linear Programming (MILP), can find provably optimal
solutions but are computationally intractable for large-scale
SNN mapping due to exponential time complexity. This scal-
ability limitation is severe: finding an optimal mapping for even
amere 16-core system can exceed an hour of computation [22],
[23]. This prohibitive cost is a widely recognized challenge,
confirmed by comprehensive surveys of the field [24].

Many toolchains instead leverage faster, though sub-optimal,
greedy algorithms. For example, PACMAN [9] uses a first-
come-first-serve approach for core assignments, while the
Corelet toolchain [25] adopts a layer-by-layer mapping strat-
egy to reduce communication overhead. LCompiler [26], built
specifically for Loihi [5], focuses on partitioning to manage
Loihi’s high computing energy costs. However, these greedy
methods still have key limitations. Their iterative optimization
processes can pose scalability challenges for large-scale appli-
cations, and they often cannot handle irregular resource avail-
ability, resulting in significant performance losses on irregular
meshes or defective hardware.

In our previous work [15], we proposed an approach for
large-scale neuromorphic hardware mapping that combined the
Hilbert Space-Filling curve (HSFC) for initial element place-
ment with a Force-Directed (FD) algorithm for refinement. This
strategy demonstrated computational efficiency for mapping
large-scale SNNs onto neuromorphic hardware, primarily due
to the Hilbert curve’s locality-preserving property. By placing
connected neurons close together, the curve effectively reduced
inter-core communication overhead. However, despite these
achievements, we identified a critical limitation in the method’s
reliance on HSFC: its inability to construct curves on irreg-
ular shapes. This inflexibility presents challenges in handling
complex real-world scenarios, which constrains its practical
applications.

The challenge of mapping to non-ideal hardware is not unique
to SNNs and has also been addressed in the context of non-
spiking neural networks, with a primary focus on fault tolerance
to maintain computational accuracy. For example, some studies
propose redundancy-based mapping schemes, such as the greedy
search approach presented by Yousuf et al. [16] that utilizes
layer ensemble averaging to mitigate faults. Other works focus
on encoding-based approaches, where workloads are allocated
and tuned to counteract hardware defects, as discussed by Xia et
al. [27]. While these methods effectively address device-level
computational errors, our work targets a different challenge.
We focus on the system-level problem of minimizing inter-core
communication overhead for SNNs on geometrically irregular
hardware, which is a distinct objective from preserving compu-
tational accuracy within individual cores.

B. Related Works on Space-Filling Curves

The Hilbert space-filling curve, due to its unique properties,
has found widespread applications in many fields. However,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025

TABLE I
PROPERTIES OF SPACE-FILLING CURVES

Non-Square Regions Arbitrary Specify Locality

Rectangle with Holes Meshes Start/Endpoint | Property
Hilbert [28] X X X X Good
Rong’s [29] v X X X Good
Evasion Curve [30] X v X X Good
Context-based [31] v v v X Bad
General SFC [32] v X X v Fair
Dense Curve [33] v v v v Bad
ALPJ[ours] v v v v Good

its limitation of being constructible only on squares with side
lengths that are powers of two has always been a challenge.

Consequently, many studies have sought to enhance its flexi-
bility by extending the Hilbert curve or designing its variants.

Table I summarizes several attempts to extend the Hilbert
Curve. Rong et al. [29] introduced a Modified Hilbert Curve that
expands the curve’s application from squares to rectangles. Nair
et al. [30] designed a strategy based on “avoidance”, enabling
the Hilbert curve to circumvent holes within shapes. Dafner
and others proposed a Context-based space-filling curve [31],
designed to construct filling curves within arbitrary contour
shapes. However, this curve, based on a Hamiltonian cycle
approach, completely abandons the important characteristic of
locality inherent in the Hilbert curve.

Sasidharan et al. [32] introduce a method of partitioning the
plane using a KD-TREE and then determining the order of leaf
visitation to create a space-filling curve. However, we found
that it cannot genuinely construct in any shaped region, as there
are scenarios that a KD-TREE cannot divide, e.g., a complex
shape with an internal unavailable area will lead to no legal
partitioning. Furthermore, our experimental findings, reported
in Section VI-C, show that its locality features are weaker than
those of the Hilbert curve and ALP.

Ban et al. [33] present a method for generating a curve
that densely covers any geometric domain. However, this curve
does not prioritize locality, making it less effective for mapping
problems.

In summary, there is still a need for a space-filling curve that
can be flexibly constructed on various shapes while preserving
the crucial characteristic of locality.

IV. THE PROPOSED ALP CURVE
A. Overview

Some space-filling curves, owing to their inherent local-
ity properties, are effective in mapping SNNs onto 2D mesh
architectures. However, existing space-filling curves lack the
necessary flexibility for practical applications.

We introduce the Adaptive Locality-Preserving(ALP) curve,
a novel space-filling curve designed to address this challenge.
Specifically, the ALP curve is a mapping relationship generated
by the ALP construction algorithm, transforming a 1D sequence
into 2D mesh coordinates. This curve exhibits two critical
features:

e Flexibility: The ALP curve can be constructed on two-

dimensional meshes of any shape, even those with internal
gaps or irregular boundaries.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from |IEEE Xplore. Restrictions apply.



JIN et al.: MAPPING LARGE-SCALE SPIKING NEURAL NETWORK ON ARBITRARY MESHED NEUROMORPHIC HARDWARE

2329

Not Available Cores

(a) (b) % ()

(d)] (e)

 RUANING e v
e

RuUANing ..
o Task2: ™

Fig. 4.

Examples of the ALP curve. (a-¢) The ALP curve on a standard 4x4 mesh with different start and end points. (d-e) The curve’s adaptability to

non-power-of-two rectangular meshes (8x10 and 6x4). (f) The curve navigating a mesh with internal non-functional cores, essential for fault tolerance. (g) The
curve mapped onto a fragmented, irregularly shaped mesh, typical in multi-tasking environments.

e [Locality Preservation: It maintains spatial closeness in the

2D space for points that are close in the 1D sequence.

Fig. 4 displays seven instances of the ALP curve applied
to meshes of various configurations, each demonstrating the
curve’s adaptability. Fig. 4(a), (b) and (c), and (c)) depict the
ALP curve on a standard 4 x 4 mesh, highlighting the curve’s
flexibility through different shapes achieved by varying start
and end points. This ability to specify these points is particularly
beneficial for neuromorphic hardware with specific input/output
(I/0) requirements. By aligning the SNN’s input and output
layers with designated I/O ports, the ALP curve effectively
minimizes communication overhead with external systems.

InFig.4(d) and (e), the ALP curveisappliedto 8 x 10and 6 x
4 meshes, respectively, demonstrating its adaptability to non-
power-of-two rectangular meshes. This showcases the curve’s
versatility in accommodating various hardware layouts.

In Fig. 4(f) illustrates the curve’s capability to navigate
around internal gaps, a crucial feature for practical applications
in large-scale parallel computing systems like neuromorphic
hardware. Here, the ALP curve’s flexibility ensures effective
utilization of computational resources, even when some cores
are non-functional due to malfunctions or other issues.

Fig. 4(g) shows the ALP curve mapped onto an irregularly
shaped mesh, emphasizing its efficiency in multi-tasking envi-
ronments where fragmented mesh regions are common. This
example underscores the ALP curve’s proficiency in manag-
ing and utilizing available computing resources in complex
scenarios.

B. Main Idea

The ALP curve construction algorithm uses a divide-and-
conquer recursive strategy. Ateach recursion level, the algorithm
begins by identifying the central point of the mesh, which serves
as the midpoint of the curve. The mesh is then split into two
equal sub-shapes. In the sub-shape containing the start point, the
midpoint is set as the new end point for recursion. Conversely, in
the sub-shape with the end point, the midpoint becomes the new
start point. This recursive division continues until the mesh is

Input:
Mesh shape
-D |
Q8- PO
& P
N f:\*l'
Dividing > o

»-
Merging| | T Zs | [
Phase
il A~y Sy e R
)
! 177
)
Output: i
ALPcurve = | _ N N
———  Legend
[> startPoint --- DividingLine
(O MidPoint ==) Recursive Arrow
[ End Point Merging Arrow
Atomic Unit ALP Curve

Fig. 5. Detailed construction of the ALP curve on a 2 x 3 mesh.

reduced to a 1 x 1 unit. Finally, the algorithm merges the curve
segments from both sub-shapes.

Fig. 5 illustrates the ALP curve’s construction process on a
2 x 3 mesh. In this figure, each recursion level’s start, midpoint,
and end points are marked with green triangles, blue circles, and
red squares, respectively. The dividing lines for each mesh level

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.



2330

are shown as blue dashed lines. During the recursion, each level
is segmented into two sub-problems (indicated by grey arrows),
continuing until the mesh is reduced to its smallest unit. In the
backtracking phase, these sub-problems are recombined at their
original problem level, as illustrated by green arrows.

The remainder of this section will formalize the complete de-
tails of the ALP construction algorithm, analyze its complexity,
and discuss the underlying logic of some of the special design
decisions of the algorithm.

C. Formulation

We first define the smallest unit of a mesh, referred to as a
cell, denoted by a lowercase letter ¢ and represented by a pair of
integer coordinates (z,y). Without loss of generality, we define
the coordinates of the top-left cell as (0,0), with x increasing
downwards and y increasing to the right.

¢; = (zi,y;), where x;,y; € N. 2)

A mesh is a shape composed of a series of available cells,
meaning a mesh M is a set of distinct cells. A mesh composed
of n cells can be expressed as:

M:{CO,Cl,...,Cnfl}. (3)

Furthermore, we define the four vertices of each cell and their
coordinates in the mesh as v, as well as the set of all vertices
in the mesh M as V). Similarly, the coordinates of the top-left
vertex of the top-left cell are defined as (0,0), with x increasing
downwards and y increasing to the right.

Vi = ($L7yz)7 where Ti,Yi € N. 4
Vs = {v|v is one of the vertices of ¢ € M }. Q)

A space-filling curve is a mapping from a 1D sequence to
2D coordinates, i.e., a one-to-one correspondence between a
continuous sequence of natural numbers and the coordinates
of cells in a mesh. This mapping is represented by a bijective
function:

Fspe : {z|x € N,o < n} — M,wheren = |M|. (6)

D. The ALP Curve Construction Algorithm

Algorithm 1 outlines the construction of the ALP curve with
the pseudocode for constructALP (), arecursive procedure.
This function takes four inputs: the target mesh shape M, the
starting vertex vUsiqrt, the ending vertex venq, and the initial
curve label base base € N, set to 0 initially. Additionally, the
global variable F's1 p, representing the ALP curve’s mapping
function, is defined externally. The constructALP () method
constructs F4 1 p throughout the recursion rather than returning
it upon completion.

The pseudocode in lines 2 to 4 illustrates the recursion’s base
case when the mesh M reduces to a single 1x1 cell. At this
point, the single viable cell ¢ corresponds to the label base. The
mapping is established by setting F'a1, p(base) to ¢, aligning the
base-th node in the 1D sequence with the 2D mesh position ¢ in
the ALP curve.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025

Algorithm 1: construct ALP(M, vstart, Vend, base).

1 Global: Farp;
Input: M, vstgrt, Vend, base
Output:
/* Recursive Base Case */
2 if size_of(M) == 1 then
3 F4rp(base) < the unique cell in M;
L Return;

/* Find the vnid */
5 VUeenter < The vertex at the center of the mesh;
6 Vs < Set of all vertices in the mesh M;
7 if Veenter € Var then
8 ‘ Umid £~ Ucenters
9 else
10 Umid < v; in Vi that is equidistant from vgyq,
L and v.,g and nearest t0 Veepter;

/* Divide the mesh */
11 if its possible to cut M by a dividing line passing
through v,,;q then
12 Cut M by the dividing line;

13 Mstart < {c|c € M, c in the same part as vgtqpt }3
14 Meng < M — Mgigre;
15 else

16 Mstartv Mend — {}9

17 dissta'rt — gethSDiS<vstart; V]\/[);
18 diSend < getBfsDis(vVend, Var);
19 foreach ¢; in M do

20 if cellDis(disstart, ¢i) < cellDis(diSend, ¢;)
then
21 | Msta'rt — Mstart + Cis
22 else
23 L Meng <= Mena + ci;
/* Recursive processing */

24 base_end < base + size_of(Msiart)s
25 construct ALP(Mgiart, Vstart, Umid, base);
26 construct ALP(Mepnd, Vimids Vend, base_end);

The pseudocode in lines 5 to 10 focuses on identifying the
midpoint vpig of the curve. This step involves finding the geo-
metric center veeneer Of the target mesh shape M. Due to M’s
irregularity, vUeeneer 1S not simply the average of the mesh di-
mensions. The algorithm employs specific formulas to calculate
Vcenter = (l'center’a ycenter):

ZCi:(Iuyi)GM Ti

I )

Tcenter =

A similar formula is used to calculate ycenter, Substituting
y; for z;. This represents the calculation of the “centroid” of all
cells in the mesh, rounded to the nearest vertex. Once veenter, the
center point coordinates, are obtained, it’s crucial to verify if it
lies within the mesh’s shape, as shown in Fig. 6(a), where veenter
may be outside the mesh. If vep e, 15 inside the mesh, it directly
becomes v,,,;4. Otherwise, the distances from the start and end

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from |IEEE Xplore. Restrictions apply.



JIN et al.: MAPPING LARGE-SCALE SPIKING NEURAL NETWORK ON ARBITRARY MESHED NEUROMORPHIC HARDWARE

(a) >

Start Point
Mid Point
End Point
Center Point

oov

- - - Dividing Line
Bad Dividing Line
Unavailable regions

(1) — Legend

SECIS

a

Fig. 6. Key design considerations for the ALP algorithm. (a) Handling an
off-mesh geometric centroid. (b) BFS partitioning for meshes unsplittable by
straight-line cuts. (c¢) Prioritizing straight-line division over BES to maintain
regular shapes and better locality.

vertices to all other vertices are computed. This is achieved using
a standard Breadth-First Search (BFS), a well-known graph
traversal algorithm that systematically finds the shortest path
from a source on an unweighted grid. The BFS calculates the
minimum number of four-directional movements required to
reach every vertex from vy, and vey, g, populating the distance
arrays diSstart|...] and disendl. . .], respectively. Finally, the
algorithm identifies and selects the vertex equidistant from the
start and end points and closest to Vcenter as the new midpoint.

Lines 11 to 23 of the pseudocode describe the algorithm’s
strategy to divide the mesh into two subregions using the mid-
point v,,,;4. The division is attempted through either horizontal
or vertical lines, but it must satisfy two criteria: 1) the line must
split the mesh into two distinct parts, and 2) the line must place
the start and end points of the curve in different subregions. The
preferred division direction is the one with fewer vertices directly
on the dividing line, optimizing cross-region point pair distance,
thereby improving the curve’s locality performance. In regular
meshes, the algorithm favors more equal subregion dimensions.
However, as seen in Fig. 6(b), when neither horizontal nor
vertical cuts are feasible, the algorithm resorts to a BFS-based
division. This method, using the distances disg;qrt and disenq
generated via the aforementioned BFS process, divides cells
based on their proximity to the start or end point. The BFS
distance for a cell to a point is the average of the BFS distances
of its four vertices to that point, as given by the formula:

disy, [vi]

cellDis(disvo, C) _ Zvi is a vertex oicell c ) (8)

where vy is either vgzq.t OF Veng.
Lines 24 to 26 in the pseudocode address the recursive as-
pect of completing the ALP curve construction. After splitting

2331

the current mesh into two sub-meshes, the algorithm assigns
the curve labels from base to base + |Mgiqrt| — 1 to the first
sub-mesh and the remaining labels to the second. The label
base base_end for the latter is set to base + | Mgyqrt|. con-
structALP () is then recursively applied to both sub-meshes.
Once this recursive mapping is complete, further merging is
unnecessary as all assignments to the mapping function Fi41,p
are finalized during the recursion’s base cases.

E. Complexity Analysis

As modern neuromorphic hardware systems may dynamically
face the demands of mapping SNNs comprising billions of
neurons, the efficiency of the mapping algorithm is of paramount
importance. This section focuses on a detailed analysis of the
time and space complexity of the Adaptive Locality-Preserving
(ALP) curve construction algorithm, particularly in the context
of large-scale mapping problem.

1) Time Complexity Analysis: The time complexity of the
ALP curve construction algorithm is determined by the re-
cursive process and the complexity of operations within each
recursion:

® Recursive depth analysis: The depth of the recursive pro-
cess is a crucial factor in determining the algorithm’s time
complexity. Given that the mesh is divided approximately
evenly at each step, the depth of recursion would be
O(logn), where n is the number of cells in the mesh.

o Complexity within each recursive layer: At each recursive
level, the complexity of operations varies. For simple and
regular meshes, calculating the midpoint and dividing the
mesh is a constant-time operation, O(1). However, in more
complex cases that necessitate the BFS mechanism for
midpoint calculation, the complexity at that level increases
to O(n), where n is the number of cells in the mesh
at that recursive level. Despite the potential increase in
complexity due to the BFS mechanism, the total complex-
ity for all recursive calls at the same depth collectively
remains O(n).

® QOverall time complexity: Combining the depth of recursion
and the per-layer operations, the overall time complexity
of the ALP curve construction algorithm is bounded by
O(nlogn). This upper bound holds even for the most com-
plex, irregular shapes that necessitate the frequent use of
the BFS-based partitioning mechanism. In ideal scenarios
where the mesh can be consistently divided using simple
geometric splits, the complexity can be as efficient as O(n).

2) Space Complexity Analysis:

® Recursive calls: The depth of the recursive call stack con-
tributes logarithmically to the space complexity, O(logn).

® BFS process: The BFS process for more complex mid-
point calculations and mesh divisions adds to the space
requirement. However, since different recursive levels are
independent, this space can be efficiently reused across the
recursion, maintaining O(n) space.

® Overall space complexity: Therefore, the space complex-
ity, including the BFS process, remains O(n + logn),
which simplifies to O(n).

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from |IEEE Xplore. Restrictions apply.



2332

E Special Design Considerations in the ALP Curve
Construction Algorithm

In this section, we analyze and highlight several key design
aspects of the ALP curve construction algorithm, which signif-
icantly contribute to its performance and the locality properties
of the resulting curve.

o Utilizing the geometric centroid as the midpoint: The pri-
mary purpose of using the geometric center of the shape
as the midpoint is to ensure an even division of the mesh,
which is crucial for the efficiency of the algorithm. Second,
the midpoint acts as a junction for the curve segments be-
fore and after it, meaning that in the mapped SNN network,
all cross-domain spike communications pass through this
area, forming a communication hotspot. The center of the
mesh is often an open and accessible area, making it an
ideal location for such a hotspot. In fact, we believe this
is the most important reason for the ALP curve’s inherent
locality properties.

o Introduction of BFS: The BFS mechanism addresses the
challenges of finding midpoints and dividing irregular
shapes. It ensures the uniformity of the division, thereby
maintaining the algorithm’s efficiency. Additionally, the
BFS algorithm has excellent time and space complexity,
adding minimal extra overhead to the overall algorithm.

® Why BFS is not always used: Despite the advantages of
BFS, it is employed only as an alternative when normal
midpoint finding and mesh division are not feasible, rather
than as the default approach. The reason for this is that
simple horizontal or vertical divisions contribute to reg-
ularizing the mesh shape. Utilizing BFS divisions might
lead to irregular, jagged edges on the mesh, which can
be detrimental to the curve’s locality properties. Complex
and irregular shapes increase the surface area of the divi-
sion line, enlarging the average distance between points
in the subdivided subgraphs and raising the likelihood of
the curve navigating into dead ends. Fig. 6(c) illustrates
the difference between divisions using BFS and those not
using it. Thus, the algorithm prefers straight-line divisions
wherever possible, gradually regularizing even highly ir-
regular initial mesh shapes into more uniform rectangles.

® Guaranteed Convergence for Arbitrary Shapes: A key
strength of our algorithm is its guaranteed convergence
for any arbitrarily shaped mesh, including extreme cases
with disconnected “islands™ of cores. This robustness is
achieved through a comprehensive, two-tiered distance-
based partitioning strategy. For any given core, the algo-
rithm first attempts to partition it based on its BFS graph
distance to the vg;4¢ and v, 4 points. However, in the case
of a core being on a completely isolated island and thus
unreachable via BFS from either endpoint, we employ a
fallback mechanism: the core is assigned to a sub-problem
based on whichever (start or end) point is closer in terms
of Manbhattan distance. This two-tiered approach ensures
that every core, regardless of its location or connectivity,
can be decisively assigned during each recursive step,
guaranteeing that the algorithm will always converge and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025

successfully construct a valid mapping for any hardware
topology.

In summary, the construction method of the ALP curve is
specifically designed to ensure the algorithm’s adaptability to
arbitrary mesh shapes while preserving essential locality prop-
erties. These strategic designs significantly enhance the algo-
rithm’s efficiency, particularly in addressing the complexities
arising from various hardware configurations in mapping very-
large-scale SNNs.

V. THE PROPOSED MAPPING APPROACH

The ALP curve, leveraging its inherent locality properties,
efficiently maps the data flow of an SNN from the input to
the output layers within neuromorphic hardware. This mapping
is achieved without requiring the structural details of the net-
work. Consequently, after employing the ALP curve for initial
mapping, significant opportunities arise for local adjustments
and optimizations, particularly focusing on the communication
intensity relationships between cores. Building upon our previ-
ous work [15], which introduced the Force Directed (FD) algo-
rithm for iterative refinement in SNN mapping, we incorporate
this proven optimization technique into our current approach.
The distinctive aspect of our present work lies in replacing
the conventional Hilbert curve with our newly proposed ALP
curve. This advancement aims to offer enhanced adaptability
and efficiency in accommodating the diverse configurations of
neuromorphic hardware.

Fig. 7 presents a diagram of our complete mapping approach.
The full mapping process primarily consists of three steps: 1)
Using topological sorting to arrange the original PCN into a 1D
sequence; 2) Constructing the ALP curve on the target mesh,
thereby mapping the 1D sequence onto the 2D cores to achieve
an initial mapping placement; 3) Iteratively refining this initial
mapping using the FD algorithm, continuing until the algorithm
converges.

A. Topological Sorting

First, we employ a classic topological sorting algorithm to
obtain a 1D topological sequence for the input Partitioned
Cluster Network (PCN). The primary goal of this step is to
prepare the input required for the ALP space-filling curve: a 1D
sequence that preserves the logical order from input to output of
the network as much as possible. Formally, for a graph structure
Gpen = {Vpen, Epcn } represented by the vertex set Vpoy
and edge set Epcy, its topological sequence is a mapping
Fropo : Veen — N

FTopo(Ci) = ] (9)

indicates that the neuron cluster C; in the vertex set is positioned
at the j-th place in the topological order.

B. Initial Mapping Placement Using ALP Curve

Upon obtaining the PCN’s topological sequence from the
first step, and after constructing the ALP curve F rp on
the target mesh M, we establish a mapping relationship from the

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from |IEEE Xplore. Restrictions apply.



JIN et al.: MAPPING LARGE-SCALE SPIKING NEURAL NETWORK ON ARBITRARY MESHED NEUROMORPHIC HARDWARE

L 4
L 4
@
PartitJiOQ'd Cluster Network

Topological sorting

Force Directed
algorithm

Final Placement
Output

Initial Placement

Fig. 7. Diagram of the proposed approach.

network’s clusters C); to the cells ¢; (i.e., available neuromorphic
computing cores) on the mesh. This forms an initial Placement
Pipiy : Vpen — M

Pinit(Ci) = Farp(Fropo(Ci)) = ¢;. (10)

C. Force Directed Algorithm

The FD algorithm is an iterative optimization algorithm,
where the core idea is to view communication intensities be-
tween computing cores as tension relationships. Cores with more
intensive communications exert greater tension on each other.
Based on this physical model, clusters in the Placement adjust
their positions relative to neighboring cores to release tension,
thereby minimizing the system’s total energy (the optimization
cost) and optimizing the Placement.

We chose the FD algorithm for further optimization due to
its status as the best existing algorithm for large-scale SNN
mapping in terms of solution quality and solving speed. Addi-
tionally, its basic iterative operations, based on swapping posi-
tions between adjacent cores, are inherently suitable for complex
mesh shapes, aligning with our objective of mapping SNNs to
meshes of arbitrary shapes. Overall, the FD algorithm can be
seen as an optimization process. Given an initial Placement
P;,it, the PCN structure Gpopn, and the target mesh shape
M, the algorithm iteratively refines the existing Placement until
convergence, yielding the final Placement:

Pfinal = FD_algorithm(Pmit,GPCN,M). (11)

2333

Algorithm 2: Proposed Approach.

Input: M,Gpcen = (Vp, Ep,wp)
Output: Pfipa
/+ Get initial placement */
1 Topo « topological_sorting(Gpon);
2 Fapp < constructALP(M, ...);
3 Prnie < apply Topo sequence to Farp ;
/* Optimize using the FD algorithm =/
4 L < empty List;
s foreach pair = (py,py) in 2D mesh that p, and p, is
adjacent do
6 Tension|pair] +
tension between clusters at p,, and p,, ;
7 if Tension|pair| > 0 then
8 | L« L+ pair

9 while L is not empty do
10 foreach pair; = (py,py) in L and i < \|L| do

11 if Tension[pair;] > 0 then
12 Prpit < update Pr,;; by swapping pair;;
13 Tension < maintain T ension;

14 Lyt < empty List;

15 foreach pair; do

16 if Tension[pair;] > 0 then
17 | Lneat < L+ pair;

18 L <+ Leut;

19 Pfinal <~ PInit;

Algorithm 2 presents the complete workflow of our mapping
approach. The algorithm takes two inputs: the shape of the mesh
M and a PCN G pcy. Lines 1 to 3 describe how to obtain an
initial placement by performing topological sorting on the PCN
and constructing the ALP curve using Algorithm 1 based on the
mesh shape. Lines 4 to 19 outline the general process of the FD
algorithm’s iterative optimization of the mapping scheme.

Lines 4 to 8 construct queue L, which contains all adjacent
pairs of points with tension greater than 0. Swapping the clusters
mapped to these pairs can reduce the system’s total energy,
thereby optimizing the current solution. Lines 9-18 describe the
main iterative process of the FD algorithm: examining selected
pairs from queue L, performing swap operations on clusters of
qualifying pairs, and simultaneously updating and maintaining
the force conditions of other clusters.

During lines 9 to 18, the FD algorithm iteratively processes
the queue L: examining pairs from L, swapping clusters if their
tension is greater than 0, and updating tension values for affected
pairs. After each iteration, pairs whose tension remains above 0
are collected into a new queue L, for the next round. This
cycle continues until L becomes empty, indicating no more high-
tension pairs exist for swapping, thus confirming the system
has reached its minimum energy state and the algorithm has
converged.

It should be noted that the above process is a general outline
of the FD algorithm. A strict time complexity analysis for this

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.



2334

iterative refinement stage is impractical, as the runtime depends
heavily on the number of iterations required for convergence.
However, a key advantage of our approach is that the high-
quality initial placement provided by the ALP curve significantly
accelerates this convergence process. Due to space limitations
and because it is not the main contribution of this paper, many
other details and optimization techniques are not reflected in this
pseudocode. For a detailed implementation of the FD algorithm,
refer to [15].

VI. EXPERIMENTS AND EVALUATIONS
A. Overview

Our experimental setup simulates a neuromorphic computing
hardware model using software tools. These experiments aim to
evaluate our proposed SNN mapping approach against existing
methods and compare various space-filling curves in terms of
performance indicators and algorithmic efficiency.

We structure our experiments into two parts. First, we conduct
a comprehensive evaluation of our complete SNN mapping
approach by benchmarking it against existing methods. This
involves mapping multiple real-world machine learning SNN
applications, providing a thorough assessment of our method’s
performance in practical scenarios. Second, to further validate
our approach, we carry out a comparative analysis of the ALP
curve against several classic space-filling curves, offering addi-
tional insights into the ALP curve’s effectiveness.

The experiments are conducted on an Ubuntu 20.04.2 LTS
(GNU/Linux 5.8.0-59-generic x86_64) workstation with 40
CPU cores (Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz),
256 GB of memory, and 4 GPU cards (GeForce RTX 3080). We
utilize GPUs for training and transforming SNN applications.
All mapping algorithms are implemented in C++ without the
use of GPU computing power or multicore parallel computing
features.

B. Comparative Analysis of SNN Mapping Approaches

1) Experimental Setup: In the first part of our experiments,
we compare our complete SNN mapping approach with other
existing methods. We evaluate the following four approaches:

1) The Baseline: Random mapping, where clusters are ran-
domly mapped into the neuromorphic hardware.

2) DFSynthesizer: A greedy mapping algorithm proposed
in [12].

3) PSO: Particle Swarm Optimization, a classic optimization
algorithm used in various mapping approaches [11], [12],
[21], with configurations taken from [21].

4) Hilbert_FD: The key reference SFC-based method [15],
which employs a mapping strategy based on the Hilbert
curve and the FD algorithm. Due to the Hilbert curve’s
inherent limitation in handling irregular shapes, we were
only able to include Hilbert_FD algorithm in the compar-
isons for regular mesh scenarios. The algorithm’s inability
to generate valid traversal sequences for irregular shapes
made it unsuitable for irregular mesh evaluations.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025

TABLE II
BENCHMARKS

Gsnn Gpcn
Applications Neurons  Synapses  Clusters  Connections
LeNet 1.0M 188M 251 2151
AlexNet 0.9M 1.0B 229 4289
MobileNet 6.9M 0.5B 1764 37418
InceptionV3 14.6M 5.4B 3570 117597
ResNet-50 28.5M 11.6B 6956 478602
SpikingBERT | 24.6M 50.0B 6005 2.50M
STBP-tdBN 28.0M 25.56M 6930 109471
STDP 10000 2.0M 16 256

5) Proposed Approach: Our approach, using the ALP curve
for initial solution generation followed by FD algorithm
optimization.

Our benchmark comprises a diverse suite of neural networks
to ensure a comprehensive evaluation. This suite includes mod-
els created via ANN-to-SNN conversion using the SNNTool-
Box [34], such as LeNet [35], AlexNet [36], MobileNet [37],
InceptionV3 [38] and ResNet-50 [39], originally trained on the
ImageNet [40] dataset with TensorFlow [41]. To address greater
model diversity, we also incorporate the SpikingBERT language
model [42], which s trained through knowledge distillation from
a pre-trained BERT. Furthermore, the benchmark contains a
deep vision SNN directly trained on the ImageNet [40] dataset
with the STBP-tdBN method [43]. Finally, to evaluate biological
plausibility, we include a neuroscience model from Vogels et
al. [44] based on the STDP (Spike-Timing-Dependent Plasticity)
mechanism. Table II details the parameters of the application
suite.

We refer to Reference [15] and use two estimation metrics to
quantitatively assess placement quality:

e FEnergy Consumption: The total energy consumed by all

spikes on interconnect given Gpcon = (Vp, Ep, wp) and
Placement P is computed as follow

Mee= Y (wpleiy) (IP(e:) = Plej)| +1) B,

ei,jGEp
+wp(eig) [P(ei) = Ples)l| Buw), (12)
where || - || is the L1 norm, which gives the Manhattan

distance between two cores, E,. is the energy consumption
for a router route one spike message, and F,, is the energy
consumption for one spike message transmitted through a
wire between routers. wp is the weight function, presents
the communication traffic volume between clusters, and it
is proportional to the total number of spikes pass through
this connection.

® [Latency: The maximum time spike messages spent on
transmission in interconnect network among all connection
routes, given Gpony = (Vp, Ep, wp) and Placement P, is
computed as follow

My = max (([|[P(ci) = P(ej)[| + 1)Ly

ei,j€Ep

+ |1P(ei) = P(ej)|| Luy)- (13)

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from |IEEE Xplore. Restrictions apply.



JIN et al.: MAPPING LARGE-SCALE SPIKING NEURAL NETWORK ON ARBITRARY MESHED NEUROMORPHIC HARDWARE 2335
TABLE IIT TABLE IV
CONSTANTS CONFIGURATION IRREGULAR SHAPE BENCHMARK COUNTS
Er Evw Lr Ly Allocation Algorithms
L0l L 001 Applications DRB [45] PAUL’ [46] Random | Total
STDP 99 97 100 296
; 3 i LeNet 93 97 100 290
_Task0 T ‘kz i AlexNet 90 85 100 285
' MobileNet 80 92 100 272
| Task3 InceptionV3 96 97 100 293
Task1 Task? ResNet 99 94 100 293
SpikingBERT | 90 89 100 279
7 STBP-tdBN 85 91 100 276
ask1
DRB Paul’s Random
*Data are shown as mean * propagated SD
Fig. 8. Examples of generated irregular meshes. EEm DFSyn SEm PSO WM Hilbert FD WEE Proposed Approach

where L, is the delay for a router route one spike message,
and L,, is the delay for one spike message transmitted
through a wire between routers.

Consistent with Reference [15], we configure the constants in
(12) and (13) as specified in Table III.

To evaluate the performance of the algorithm in irregular mesh
shapes, we focus on the most common and crucial practical
scenario: mesh configurations that result from parallel task
execution (as shown in sub-fig g) of Fig. 5). To simulate this
scenario, we generate dynamic task arrivals and use state-of-
the-art task allocation algorithms to assign computing resources
on the mesh. As tasks arrive and depart randomly, they create
irregular patterns of available resources, which we capture as
benchmarks.

We employed three task allocation algorithms:

1) DRB (Dynamic Resource Balance) [45]: An algorithm that
maximizes system throughput by balancing on-chip com-
puting and communication resources, primarily through a
multi-rectangle selection (MRS) algorithm for application
area allocation.

2) Paul’s algorithm [46]: A hybrid allocation and scheduling
strategy that uses design-time results during runtime to
reduce communication overhead and optimize deadline
satisfaction.

3) Random: A naive method that creates irregular shapes by
randomly marking regions as occupied.

Fig. 8 illustrates examples of irregular mesh shapes generated
by these three different algorithms. Since our focus is on SNN
mapping, we use these algorithms solely to simulate irregular
mesh shapes produced during run-time task transitions, exclud-
ing temporal information such as task scheduling details.

We conducted multiple simulation rounds for each target SNN
using different algorithms to generate various samples of irreg-
ular shape. We then filtered these samples to ensure that each
shape’s largest connected available region could accommodate
the target SNN. Table IV shows the number of irregular shape
benchmarks produced by each algorithm.

2) Execution Time Comparison: Fig. 9 illustrates a com-
parison of the normalized average execution time required by
each method, presented on a logarithmic y-axis. All execution

Normalized Time (Ratio to PSO)

. L Net 3 1 x
LN e e gion Sﬁpxd:;‘_\mgaﬂ Resn®

5ToP

Fig. 9. Results on execution time.

times are normalized to that of the PSO method. The data
points represent the mean values from multiple experiments,
with the error bars indicating the propagated standard deviation.
The results clearly demonstrate that SFC-based approaches hold
a significant advantage in computational efficiency, particu-
larly in large-scale mapping tasks. In contrast to the compared
methods, whose time requirements increase geometrically with
their algorithmic complexity, our proposed method maintains
an extremely low normalized time, even for complex tasks like
mapping the ResNet network. Its computational cost is several
orders of magnitude lower than the baseline PSO method and
the DFSynthesizer method.

3) Energy Consumption Evaluation: Fig. 10 illustrates the
Energy Consumption results, measured using the metric de-
fined in (12). The bar chart presents the energy consumption
of different methods relative to the baseline across various
benchmarks generated by DRB, Paul’s, and Random algorithms.
The results clearly demonstrate that our Proposed Approach
consistently outperforms all other methods across all bench-
mark scenarios. Moreover, the performance advantage of our
approach becomes increasingly pronounced as the SNN scale
increases, highlighting its superior scalability for large-scale
applications.

Quantitatively, when averaging across all experimental
samples, our algorithm achieves remarkable energy efficiency,
requiring only 24.1%, 42.9%, and 33.5% of the energy
consumed by Baseline, DFSynthesizer, and PSO methods,
respectively. This represents a 57.1% reduction in energy

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.



2336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025
Baseline ~ W= DFSyn Bmm PSO  mmm Proposed Approach *Data are shown as mean * propagated SD
Mesh Generated by PRB Algorithm Mesh Generated by Paul's Algorithm Random Irregular Mesh
1.2 1.2
HHHH HHHH”'

1.0 1.0
3 1 o
£ £ £ 1.0 ] I
9 0.8 1 3 0.8 2 ] [ l
a a 308
206 206 2
° ° 2061
o 4 o 4 L
= 0.4 s 0.4 5 0.4
-4 -4 o

0.2 1 0.2 0.2

0.0+ 0.0 0.0

c,«) o e “\\e\« “0@1 B oo e S o o u\\e oo o et S o o\\eﬁ o2 O e
5 WO e? A o\ S e e P we
e“e 5ot et oM e \)
Fig. 10.  Results on energy consumption.
Baseline ~mmm DFSyn mmm PSO mmm Proposed Approach *Data are shown as mean + SD

Mesh Generated by PRB Algorithm

Mesh Generated by Paul's Algorithm

Random Irregular Mesh

e

o
\‘e\‘ex/

(0B e e &

o
S @‘“e‘/

e

\\e“ Qx\f’“ PRt

R Wwo® s“a"

Wo

Fig. 11.  Results on latency.

consumption compared to the best competing method (DFSyn-
thesizer). The advantage is even more substantial in large-scale
scenarios, particularly with ResNet, where our algorithm
reduces energy consumption by an average of 76.9%, 66.4%, and
75.4% compared to Baseline, DFSynthesizer, and PSO methods,
respectively.

4) Latency Evaluation: Fig. 11 presents the Latency com-
parison results, a metric defined by (13), across different bench-
mark scenarios generated by DRB, Paul’s, and Random algo-
rithms. The results demonstrate that our method significantly
outperforms all competing approaches across all scenarios,
with the performance advantage widening as the SNN scale
increases.

Quantitatively, our algorithm achieves remarkably lower max-
imum Latency, averaging only 45.5%, 62.9%, and 50.4% of that
observed in Baseline, DFSynthesizer, and PSO methods, respec-
tively. This considerable improvement is especially prominent
in large-scale models. For instance, in the ResNet benchmark,
our approach demonstrates a pronounced reduction in latency,
requiring only 38.4%, 51.8%, and 43.7% of the latency of
the Baseline, DFSynthesizer, and PSO methods, respectively,
underscoring its effectiveness in complex, large-scale SNN ap-
plications.

5) Impact of Mesh Irregularity: We quantify the irregularity
of benchmark mesh shapes using an Irregularity parameter,
as defined in (14). For meshes generated by DRB or Paul’s
algorithm, Irregularity represents the number of tasks oc-
cupying regions in the shape, while for meshes generated by
the Random algorithm, it represents the number of randomly

ANE e“ o“
e n\ c"“

@%::“&g% e‘»“e‘
B

@%“ e o

gev\ Ne*“ ‘0\\ 9‘\0‘\

5o ¥ W 5«\’

\’e\‘a’(./

removed rectangles.

for DRB/Paul’s alg.
for Random alg.

Nezisting7

Nremo’ueda (14)

Irregularity = {
where Negisting 15 the number of existing tasks and Ny cimoved
is the number of removed rectangles.

Fig. 12 presents the average performance of different al-
gorithms in varying levels of irregularity when mapping the
ResNet SNN. The results demonstrate that compared to other
methods, our approach experiences significantly slower perfor-
mance degradation as the irregularity of the mesh increases,
both in terms of energy consumption and latency metrics. This
highlights the robustness and adaptability of our algorithm in
handling irregular topologies. While competing methods show
steep performance declines with increasing irregularity, our
approach maintains relatively consistent performance, demon-
strating its effectiveness in real-world scenarios where perfect
regularity is rarely achievable.

C. Performance and Efficiency Comparison of Space-Filling
Curves

To complement our main experiments, we conducted an ad-
ditional set of tests to evaluate the performance and efficiency
of the ALP curve against other established space-filling curves
(SECs). The compared SFCs included:

® Random mapping: as a baseline.

e (ircle: sequential outward-in mapping.

® Zigzag: serpentine row-by-row mapping.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.



JIN et al.: MAPPING LARGE-SCALE SPIKING NEURAL NETWORK ON ARBITRARY MESHED NEUROMORPHIC HARDWARE

—@— Baseline
Results on Energy Consumption

—8— DFSyn

—e— PSO

2337

—8— Proposed_Approach
Results on Latency

- — S —o o

——

0.6 y ~— °

/

Ratio to the Baseline at Irregularity 0

e

*— *

0 1 2 3 4 5 6 7 8 9
Irregularity (Number of Existing Tasks / Removed Rectangles)

Fig. 12.  Results on different mesh irregularity for ResNet.

e Z-order: a classic fractal space-filling curve.

® Hilbert: a classic fractal space-filling curve known for its

good locality properties.

e Context-based: an adaptive space-filling curve introduced

in [31], designed for non-regular regions.

® General SFC: amethod to create a space-filling curve using

a KD-TREE [32].
® Dense Curve: a curve that densely covers any geometric
domain [33].

Since most space-filling curves, except for our proposed ALP
curve, cannot be constructed on irregular shapes, this part of
the experiment compares the performance of different curves
on regular meshes of varying sizes.

To quantify the locality property of a space-filling curve
represented by the mapping function Figpo (refer to (6)) for a
target mesh M, we define the locality score £ with the following
formula:

L(Fsrc, M) =
Fsrc(j) — Fsrcl(i
1,JeEN,i<j<|M]| J
where || - || denotes the Manhattan distance. The formula calcu-

lates the sum of the distances between all pairs of points on a
2D plane, weighted by the reciprocal of their separation in 1D
sequence. Essentially, pairs of points close in the 1D sequence
contribute more significantly to the metric after mapping. Con-
sequently, a smaller sum of these weighted distances suggests
that the curve more effectively maps points that are close in 1D
sequence to nearby locations in 2D space, indicating superior
locality. The division of this weighted sum by the 1.5th power
of the mesh size mitigates scaling effects, yielding a quantified
locality metric for comparative analysis.

Fig. 13 presents the metrics as defined by (15). The results
show that the ALP and Hilbert curves display nearly identical
quantified locality metrics, outperforming other curves signifi-
cantly. This advantage is more pronounced at larger scales. At
the largest scale, the metrics for the Z-order, ZigZag, and Circle
curves are 1.13, 1.81, and 2.69 times those of the ALP curve,
respectively. Context-based curve, whose generation algorithm
does not focus on locality properties, matches only the metric
of the ZigZag curve.

0 1 2 3 4 5 6 7 8 9
Irregularity (Number of Existing Tasks / Removed Rectangles)

Random
84 B Zigzag
o B Circle
£ mmm Zorder
S 6 Context
S == GeneralSFC
g DenseCurve
2 4] == Hilbert
£77] mm aLp
5
8 2 4
o 8x8 32x32 256x256 1024x1024
Mesh Size
Fig. 13.  Quantitative locality for various SFCs across different mesh sizes.
TABLE V
TOTAL SPIKE TRAVEL DISTANCES FOR VARIOUS SFCS ACROSS DIFFERENT
MESH SIZES
Mesh_Size 8% 8 32 x 32 256 x 256 1024 x 1024
Random 2,297.2  3.43eb5 1.79e8 1.15e10
Circle 2,699.3  2.42e5 1.68e7 2.68e8
Zigzag 1,589.6  1.82e5 1.62e7 2.66e8
Zorder 1,985.7  1.25e5 8.92e6 1.44e8
Context 1,592.1 1.83eb 1.62e7 2.66e8
GeneralSFC  1,579.9  1.80e5 1.61e7 2.65e8
DenseCurve  2,134.5  2.59¢5 1.70e7 2.77e8
Hilbert 1,563.4 84,905.6 5.51e6 8.81e7
ALP 1,552.4 84,925.6 5.51e6 8.82e7

Table V presents the quality of SNN mapping placements
generated by various SFCs, quantified using the Total Spike
Travel Distance (TSTD) metric. The Mpgrp for a mapping
placement P and network G pony = {Vpeon, Epcn } is calcu-
lated as follows:

>

Morsrp(P) = [P (c;) — P(e;)l| (16)
ei,j€EpPCcN

where e; ; represents spike communication between neuron
clusters ¢ and j, and || - || is the Manhattan distance. The re-
sults show that the ALP curve achieves performance equal to
the Hilbert curve across different mesh sizes, highlighting its
locality properties.

Table VI presents the construction times for each curve on
a large-scale mesh of size 1024 x 1024. The ALP curve’s con-
struction time, while higher than other directly defined curves

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.



2338
TABLE VI
CONSTRUCTION TIMES (MS) FOR SPACE-FILLING CURVES ON A 1024 x 1024
MESH
Random Zigzag Circle Zorder  Hilbert
42 11 13 13 49
Context  General SFC  Dense Curve ALP
132 471 759 233

due to additional recursive computations, is sufficiently fast at
only 233 milliseconds for a million-scale curve, demonstrating
its efficiency.

VII. DISCUSSION

While the initial motivation for this paper was to address the
challenge of mapping large-scale SNNs onto complex neuro-
morphic hardware environments, our method can be general-
ized to a broader range of communication-intensive multicore
computational task mapping problems, particularly on target
hardware platforms organized in a 2D mesh structure.

Space-filling curves have been recognized for their versatile
applications in various research fields, extending well beyond
network mapping problems. Works [47] and [48] apply SFC for
robotic exploration tasks. Works [49][50] and [51] use SFC for
image compression. Work [52] employs SFC for image smooth-
ing. Work [53] apply SFC in the field of computer graphics to
assist in rendering. Works [54][55] utilize SFC for 2D and 3D
data visualization. Work [56] uses SFC to solve FPGA placement
problems.

Our proposed ALP curve, being one of the most flexible and
locality-preserving space-filling curves to date, has the potential
to facilitate breakthroughs in some of these diverse application
areas. Expanding on these applications, however, falls beyond
the scope of this paper and will be a subject for our future work.

VIII. CONCLUSION

This paper introduces the Adaptive Locality-Preserving
(ALP) curve, a novel space-filling curve designed to map Spik-
ing Neural Networks efficiently onto neuromorphic hardware.
The ALP curve overcomes limitations of traditional curves
by balancing flexibility, locality preservation, and manageable
complexity—making it ideal for large-scale applications with
complex mesh configurations. Our experimental results demon-
strate that the ALP curve matches the Hilbert curve’s locality per-
formance in regular scenarios while significantly outperforming
existing algorithms in irregular scenarios. Notably, our method
reduces communication overhead by 57.1% compared to current
best algorithms when handling irregular mesh shapes. This
substantial improvement highlights the ALP curve’s exceptional
adaptability and efficiency, particularly in complex, real-world
neuromorphic hardware environments.

Importantly, our method efficiently handles irregular mesh
shapes and defective cores. This is essential for running multiple
applications and enhancing resource utilization in ultra-large-
scale neuromorphic systems, which often serve as server-like
infrastructures with potentially millions of computing cores.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025

These capabilities highlight the critical role of our method in
delivering dynamic, high-performance mapping solutions that
meet the evolving demands of neuromorphic computing.

REFERENCES

[1] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neu-
romorphic asynchronous processors (DYNAPs),” IEEE Trans. Biomed.
Circuits Syst., vol. 12, no. 1, pp. 106-122, Feb. 2018.

[2] M. V. DeBole et al., “Truenorth: Accelerating from zero to 64 million
neurons in 10 years,” Computer, vol. 52, no. 5, pp. 20-29, 2019.

[3] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102, no. 5,
pp. 699-716, May 2014.

[4] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proc. IEEE, vol. 102, no. 5, pp. 652-665, May 2014.

[5] M.Daviesetal., “Loihi: A neuromorphic manycore processor with on-chip

learning,” IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan./Feb. 2018.

L. Shi et al., “Development of a neuromorphic computing system,” in Proc.

IEEE Int. Electron Devices Meeting, 2015, pp. 4-3.

[7] D.Ma et al., “Darwin: A neuromorphic hardware co-processor based on
spiking neural networks,” J. Syst. Archit., vol. 77, pp. 43-51, 2017.

[8] X.Liu, W. Wen, X. Qian, H. Li, and Y. Chen, “Neu-NoC: A high-efficient

interconnection network for accelerated neuromorphic systems,” in Proc.

23rd Asia South Pacific Des. Automat. Conf., 2018, pp. 141-146.

F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber, “A

hierachical configuration system for a massively parallel neural hardware

platform,” in Proc. 9th Conf. Comput. Front., 2012, pp. 183-192.

[10] A. Balaji et al., “PyCARL: A PyNN interface for hardware-software co-
simulation of spiking neural network,” 2020, arXiv:2003.09696.

[11] A. Balaji et al., “Mapping spiking neural networks to neuromorphic

hardware,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 28,

no. 1, pp. 76-86, Jan. 2020.

S. Song, H. Chong, A. Balaji, A. Das, J. Shackleford, and N. Kandasamy,

“DFSynthesizer: Dataflow-based synthesis of spiking neural networks to

neuromorphic hardware,” ACM Trans. Embedded Comput. Syst., vol. 21,

no. 3, pp. 1-35, 2022.

[13] T. Titirsha et al., “Endurance-aware mapping of spiking neural networks

to neuromorphic hardware,” IEEE Trans. Parallel Distrib. Syst., vol. 33,

no. 2, pp. 288-301, Feb. 2022.

S. Deng et al., “Darwin-s: A reference software architecture for brain-

inspired computers,” Computer, vol. 55, no. 5, pp. 51-63, 2022.

0. Jin, Q. Xing, Y. Li, S. Deng, S. He, and G. Pan, “Mapping very large

scale spiking neuron network to neuromorphic hardware,” in Proc. 28th

ACM Int. Conf. Architectural Support Program. Lang. Operating Syst.,

2023, pp. 419-432.

O. Yousuf et al., “Layer ensemble averaging for fault tolerance in memris-

tive neural networks,” Nature Commun., vol. 16, no. 1, 2025, Art. no. 1250.

K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine in-

telligence with neuromorphic computing,” Nature, vol. 575, no. 7784,

pp. 607-617, 2019.

[18] Y. Hu, Q. Zheng, X. Jiang, and G. Pan, “Fast-SNN: Fast spiking neural
network by converting quantized ANN,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 12, pp. 14546-14562, Dec. 2023.

[19] M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA, USA: Freeman,
1979.

[20] A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, and S. Schaaf-

sma, “Mapping of local and global synapses on spiking neuromorphic

hardware,” in Proc. Des., Automat. Test Europe Conf. Exhib., 2018,

pp. 1217-1222.

S. Song, M. L. Varshika, A. Das, and N. Kandasamy, “A design flow for

mapping spiking neural networks to many-core neuromorphic hardware,”

in Proc. IEEE/ACM Int. Conf. On Comput. Aided Des., 2021, pp. 1-9.

S. Tosun, O. Ozturk, and M. Ozen, “An ILP formulation for application

mapping onto network-on-chips,” in Proc. Int. Conf. Appl. Inf. Commun.

Technol., 2009, pp. 1-5.

[23] C.-L. Chou and R. Marculescu, “Contention-aware application mapping
for network-on-chip communication architectures,” in Proc. IEEE Int.
Conf. Comput. Des., 2008, pp. 164—169.

[24] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for network-on-chip design,” J. Syst. Archit., vol. 59, no. 1,
pp. 60-76, 2013.

[6

=

[9

—

[12]

[14]

[15]

[16]

[17]

[21]

[22]

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from |IEEE Xplore. Restrictions apply.



JIN et al.: MAPPING LARGE-SCALE SPIKING NEURAL NETWORK ON ARBITRARY MESHED NEUROMORPHIC HARDWARE

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A. Amir et al., “Cognitive computing programming paradigm: A corelet
language for composing networks of neurosynaptic cores,” in Proc. Int.
Joint Conf. Neural Netw., 2013, pp. 1-10.

C.-K. Lin, A. Wild, G. N. Chinya, T.-H. Lin, M. Davies, and H. Wang,
“Mapping spiking neural networks onto a manycore neuromorphic ar-
chitecture,” ACM SIGPLAN Notices, vol. 53, no. 4, pp. 78-89, 2018,
doi: 10.1145/3296979.3192371.

L. Xia et al., “Stuck-at fault tolerance in RRAM computing systems,”
IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 102-115,
Mar. 2018.

D. Hilbert, Dritter Band: Analysis Grundlagen der Mathematik Physik
Verschiedenes, Nebst Einer Lebensgeschichte. Berlin, Germany: Springer,
1935, pp. 1-2.

Y. Rong, X. Zhang, and J. Lin, “Modified Hilbert curve for rectangles
and cuboids and its application in entropy coding for image and video
compression,” Entropy, vol. 23, no. 7, 2021, Art. no. 836.

S. H. Nair, A. Sinha, and L. Vachhani, “Hilbert’s space-filling curve for
regions with holes,” in Proc. IEEE 56th Annu. Conf. Decis. Control, 2017,
pp. 313-319.

R. Dafner, D. Cohen-Or, and Y. Matias, “Context-based space filling
curves,” Comput. Graph. Forum, vol. 19, no. 3, pp. 209-218, 2000.

A. Sasidharan, J. M. Dennis, and M. Snir, “A general space-filling curve
algorithm for partitioning 2D meshes,” in Proc. IEEE 17th Int. Conf. High
Perform. Comput. Commun., IEEE 7th Int. Symp. Cyberspace Saf. Secur.,
IEEE 12th Int. Conf. Embedded Softw. Syst., 2015, pp. 875-879.

X. Ban, M. Goswami, W. Zeng, X. Gu, and J. Gao, “Topology dependent
space filling curves for sensor networks and applications,” in Proc. IEEE
Conf. Comput. Commun., 2013, pp. 2166-2174.

B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion
of continuous-valued deep networks to efficient event-driven networks for
image classification,” Front. Neurosci., vol. 11,2017, Art. no. 682.

Y. LeCun et al., “LeNet-5, convolutional neural networks,” 2015. [Online].
Available: http://yann.lecun.com/exdb/lenet

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1106-1114.

A. G.Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” 2015, arXiv:1512.00567.
[Online]. Available: http://arxiv.org/abs/1512.00567

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248-255.

M. Abadi et al., “Tensorflow: A system for large-scale machine learning,”
in Proc. 12th USENIX Symp. Operating Syst. Des. Implementation, 2016,
pp. 265-283.

M. Bal and A. Sengupta, “SpikingBERT: Distilling BERT to train spiking
language models using implicit differentiation,” in Proc. AAAI Conf. Artif.
Intell., 2024, pp. 10998-1100 6.

H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with directly-
trained larger spiking neural networks,” in Proc. AAAI Conf. Artif. Intell.,
2021, pp. 11062-110 70.

T. P. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner, “In-
hibitory plasticity balances excitation and inhibition in sensory pathways
and memory networks,” Science, vol. 334, no. 6062, pp. 1569-1573,2011.
C. Wang, Y. Zhu, J. Jiang, M. Qiu, and X. Wang, “Dynamic application
allocation with resource balancing on noc based many-core embedded
systems,” J. Syst. Archit., vol. 79, pp. 59-72, 2017.

S. Paul, N. Chatterjee, P. Ghosal, and J.-P. Diguet, “Adaptive task alloca-
tion and scheduling on NoC-based multicore platforms with multitasking
processors,” ACM Trans. Embedded Comput. Syst., vol. 20, no. 1, pp. 1-26,
2020.

A. Tiwari, H. Chandra, J. Yadegar, and J. Wang, “Constructing optimal
cyclic tours for planar exploration and obstacle avoidance: A graph theory
approach,” in Proc. Adv. Cooperative Control Optim.: Proc. 7th Int. Conf.
Cooperative Control Optim., Springer, 2007, pp. 145-165.

A. Wakode and A. Sinha, “Online obstacle evasion with space-filling
curves,” 2023, arXiv:2308.02200.

W. Chen, X. Yao, X. Zhang, and B. Yu, “Efficient deep space filling curve,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2023, pp. 17525-17534.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

2339

H. Wang, K. Gupta, L. Davis, and A. Shrivastava, “Neural space-filling
curves,” in Proc. Eur. Conf. Comput. Vis., Springer, 2022, pp. 418-434.
T. Ouni, A. Lassoued, and M. Abid, “Gradient-based space filling curves:
Application to lossless image compression,” in Proc. IEEE Int. Conf.
Comput. Appl. Ind. Electron., 2011, pp. 437-442.

Y. Zang, H. Huang, and L. Zhang, “Efficient structure-aware image
smoothingby local extrema on space-filling curve,” IEEE Trans. Vis.
Comput. Graph., vol. 20, no. 9, pp. 1253-1265, Sep. 2014.

0. Mischenko, “Optimizing cache behavior of ray-driven volume render-
ing using space-filling curves,” Ph.D. dissertation, Dept. Comput. Sci.,
Stony Brook Univ., Stony Brook, NY, USA, 2006.

H. T. Vo, C. T. Silva, L. F. Scheidegger, and V. Pascucci, “Simple and
efficient mesh layout with space-filling curves,” J. Graph. Tools, vol. 16,
no. 1, pp. 25-39, 2012.

C. Muelder and K.-L. Ma, “Rapid graph layout using space filling
curves,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 6, pp. 1301-1308,
Nov./Dec. 2008.

P. Banerjee, S. Sur-Kolay, A. Bishnu, S. Das, S. C. Nandy, and S.
Bhattacharjee, “FPGA placement using space-filling curves: Theory meets
practice,” ACM Trans. Embedded Comput. Syst., vol. 9, no. 2, pp. 1-23,
2009.

Ouwen Jin is currently working toward the doc-
toral degree with the College of Computer Science
and Technology, Zhejiang University. His research
interests include brain-inspired computing and neuro-
morphic computing hardware architectures. His work
focuses on optimizing the compilation, deployment,
and execution efficiency of spiking neural networks
on neuromorphic hardware. He has published as the
first author at ASPLOS.

Zhuo Chen is currently working toward the PhD
degree with the School of Computer Science, Zhe-
jiang University. His research include neuromorphic
computing systems, with particular emphasis on the
design, implementation, and application of neuro-
morphic chips. His work aims to bridge the gap
between biological neural processing and artificial
intelligence hardware through brain-inspired comput-
ing architectures.

Qinghui Xing is currently working toward the PhD
degree with the School of Computer Science and
Technology, Zhejiang University. His research inter-
ests include neuromorphic computing and computer
architecture.

Ming Zhang received the PhD degree in computer
science from Zhejiang University, in 2019. He is a
software engineer with College of Computer Science
and Technology, Zhejiang University, China. His re-
search interests include building basic software tools
for neuromorphic computers.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1145/3296979.3192371
http://yann.lecun.com/exdb/lenet
http://arxiv.org/abs/1512.00567

2340

De Ma received the PhD degree in electronic science
and technology from the Institute of VLSI, Zhe-
jiang University, Hangzhou, China, in 2013. He is
currently an associate professor with the College of
Computer Science and Technology, Zhejiang Univer-
sity. In 2013, he joined the Information Engineering
School, Hangzhou Dianzi University, Hangzhou, as a
faculty member. In February 2018, he joined Zhejiang
University. He was an intern with the VERIMAG
Laboratory, Grenoble, France, in 2010, and a visit-
ing scholar with IMEC, Leuven, Belgium, in 2013.
His research interests include neuromorphic hardware, VLSI design, and SoC
architecture.

Ying Li received the BS, MS, and PhD degrees in
computer science from Zhejiang University, China,
in 1994, 1997, and 2000, respectively. He is currently
an associate professor with the College of Computer
Science, Zhejiang University. He is leading several
research projects supported by the National Natural
Science Foundation of China. His research interests
include service computing, process mining, and com-
piler technology.

Xin Du received the PhD degree in computer science
from Fudan University, in 2024. He is an assistant
professor with the School of Software Technology,
Zhejiang University, China. His research interests
include service computing, distributed system and
brain-inspired computing. He has published several
papers in flagship conferences and journals including
IEEE ICWS, the IEEE Transactions on Parallel and
Distributed Systems, etc. He has received the Best
Student Paper Award of IEEE ICWS 2020 and IEEE
ICWS 2023.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 11, NOVEMBER 2025

Shuibing He is a professor with the College of Com-
puter Science and Technology, Zhejiang University
(ZJU), China, where he leads the Intelligent Storage
and Computing Systems (ISCS) Laboratory. He also
serves as the vice president of Zhejiang Lab and the
deputy director of the Zhejiang Key Laboratory of
Big Data Intelligent Computing. His research inter-
ests include storage systems, intelligent computing,
computer architecture, and high-performance com-
puting. He serves as an associate editor for the /[EEE
Transactions on Computers (TC) and previously held
the same role for the IEEE Transactions on Parallel and Distributed Systems
(TPDS) from 2018 to 2022. Additionally, he has served as the program chair of
NAS 2024, general chair of ChinaSys 2024, and a program committee member
for conferences such as ICDCS, SRDS, ICPP, IPDPS, and CLUSTER.

Shuiguang Deng (Senior Member, IEEE) received
the BS and PhD degrees in computer science from
Zhejiang University, China, in 2002 and 2007, respec-
tively. He is currently a full professor with the College
of Computer Science and Technology, Zhejiang Uni-
versity. He previously worked as a visiting scholar
with the Massachusetts Institute of Technology and
Stanford University, in 2014 and 2015, respectively.
His research interests include edge computing, ser-
vice computing, cloud computing, and business pro-
cess management. He serves as an associate editor
for the journal /EEE Transactions on Services Computing, Knowledge and
Information Systems, Computing, and IET Cyber-Physical Systems: Theory &
Applications.

Gang Pan (Senior Member, IEEE) received the BSc
and PhD degrees in computer science from Zhejiang
University, Hangzhou, China, in 1998 and 2004, re-
spectively. He is currently a professor with the Col-
lege of Computer Science and Technology, Zhejiang
University. He has published more than 100 refereed
papers and was a visiting scholar with the University
of California, Los Angeles, from 2007 to 2008. His
research interests include pervasive computing, com-
puter vision, and pattern recognition.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:28 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


