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Abstract—Training deep DNN models is time-consuming, espe-
cially when using large datasets. In the standard model training
process, data instances are sampled uniformly and fed into the
neural networks. However, not all instances contribute equally to
the resulting model, and even the same data instance may affect
the model differently in different training iterations. In addition
to computational costs, I/O overhead can significantly impact the
training speed, particularly for I/O-intensive processes. Given
these observations, we propose an I/O-aware sampling metric
in this paper. Building on this, we introduce an I/O-Aware
Adaptive Sampling Framework (IOWA), which includes data
profiling, adaptive data sampling, and redundant data instance
replacement to accelerate the training process. Extensive exper-
iments demonstrate that, compared to traditional DNN training
processes, our approach can achieve up to a 3× speedup without
compromising the resulting model.

Index Terms—Deep Learning, Importance Sampling

I. INTRODUCTION

Deep neural networks (DNNs) have achieved great success
in domains such as computer vision [12], [24], speech recog-
nition [11], and natural language processing [31]. In standard
DNN training process, each data instance is treated equally
during the training process. However, recent study reveals
that data instances contribute differently in the model training
process [4], [15], [19]. Some data are less informative, storing
and training these instances has negligible benefit to improve
the model accuracy.With these observations, the research
community has proposed several strategies to filter out less
informative data points to improve training efficiency. These
strategies are broadly referred to as importance sampling. The
general principle is to use a metric to quantify the importance
of each data instance and reduce the sampling probability of
those with lower importance values. Various metrics have been
explored in the literature, including loss [15], [23], uncertainty
[5], gradient approximation [1], [27], or self-defined boundary
[17], [19], [26].

In the aforementioned sampling methods, importance values
are quantified by a single criterion: their contribution to
improving model accuracy. While reducing the training dataset
via importance sampling can accelerate the training process by
eliminating the need to compute less-informative data, there
is still room for further improvement due to the following
factors:

Yanlong Yin is the corresponding author.

First, the existing metrics do not account for an instance’s
contribution to I/O cost. A training process includes a data
I/O phase and a data computing phase. While data instances
may require the same amount of computation time, they can
incur different I/O times. For example, training an instance
directly from host memory requires significantly less I/O
time compared to instances retrieved from remote storage,
as it avoids network transmission and slow storage access.
Therefore, although previous methods may be efficient for
computation-intensive models, they are less effective for I/O-
intensive models because I/O costs are not considered.

Second, existing methods do not correlate data reduction
with the model’s learning ability. The reduction in training
data size is influenced not only by the intrinsic attributes of the
data but also by the model’s learning capacity. Removing the
same amount of data instances affects the accuracy of a robust
model less than it does for a weaker one, as demonstrated
in Section II-B. Therefore, the degree of sampling selection
should be adjusted during the training process.

Third, data instances with high importance values may
contain redundancy. Storing redundant data instances incurs
extra storage overhead, and loading these instances from local
or remote storage for model training involves additional I/O
and transmission costs. These costs can be minimized by using
copies of data that are already loaded in memory or discarding
similar copies.

Based on the above observations, we propose IOWA
(an I/O-Aware Adaptive Sampling Framework) to accelerate
DNN model training without degrading model accuracy. More
specifically, our contributions are as follows:

1) We propose a multi-criteria metric to evaluate the im-
portance of training data instances, taking I/O-intensive
scenarios into consideration.

2) Based on this multi-criteria metric, we introduce a new
Bucket Sampling algorithm to select data instances for
faster model training.

3) We develop a novel Redundancy Removed Importance
Sampling (RRIS) algorithm to further reduce the training
data size without sacrificing model accuracy.

4) We implement IOWA in PyTorch and conduct extensive
experiments to evaluate the performance of our proposed
approaches. The results show that our sampling methods
can, at most, triple the training speed without affecting
model accuracy.
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TABLE I
EXPERIMENTAL SETUP FOR MOTIVATION 1 (THE BOLD TEXT SHOWS

CONTROL GROUP’S SETUP.)

Device Storage Model Worker
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Fig. 1. The training time breakdown on forward, backward, and I/O with
different storage devices, models, and number of workers.

II. BACKGROUND AND MOTIVATION

A. Existing Sampling Approaches in SGD

Uniform Sampling, which assigns equal importance to all
the training data instances, is commonly used in stochastic
gradient descent (SGD) optimization. For completeness, we
briefly explain how uniform sampling is applied in SGD for
DNN model training.

Given a neural network f(w) parameterized by a set of
weights w, and the loss function L, SGD is used to find the
parameters w∗ that minimize the overall loss L on dataset D,
i.e.,

w∗ = argmin
w

1

B

B∑
i=1

b∑
j=1

Lij(fw(xj), yj) (1)

where B represents the total number of batches, b is the
batch size, and (xj , yj) is the training data pair. To find
the optimal w∗, SGD performs the following update until
convergence:

wt+1 = wt − η

b∑
i=1

∇wL(fw(xi), yi) (2)

where η is the learning rate.
In both vanilla SGD (where b = 1) and mini-batch SGD

(where b > 1), each training data instance is assumed to
contribute equally and, therefore, has an equal chance of being
sampled for model training. However, as mentioned earlier,
different data instances may contributed differently during the
training process [4], [15], [19]. Based on this observation,
several sampling algorithms have been developed and pub-
lished to filter out less informative data instances, aiming to
reduce computation time and accelerate model training without
significant or any accuracy loss.

(a) Six models on CIFAR10 (b) Different sampling rates

Fig. 2. Training accuracy flucturations. (a) The accuracy fluctuations when
training six different models on CIFAR10 with fixed sampling rate 0.1, 0.3,
and 0.5. (b) The accuracy fluctuations when training ResNet18 on Food101
with sampling rate 0.1, 0.3, and 0.5 at different stages in the course of training.

B. Motivation

Despite the advances in importance sampling approaches,
the following three findings from this study suggest that these
existing methods can be further improved.

First, computation does not always dominate the training
time cost. To better understand the breakdown of DNN model
training time, we conducted experiments comparing the time
distribution when training ResNet and AlexNet on ImageNet
under different hardware and software settings. The exper-
imental setup is described in Table I, and the results are
shown in Figure 1. We observe that, aside from computation
(including forward and backward propagation), I/O access
costs are also significant. In particular, when a lightweight
model is trained on a fast computing device, or when datasets
are stored on a slower storage device, data fetching can
consume the majority of the time.

Second, adaptive sampling rates should be applied when a
model has higher discriminative ability. As shown in Figure 2,
reducing the training dataset size impacts models differently.
More robust models, such as GoogleNet and ResNet, are less
sensitive to dataset reduction, suggesting that they are less
likely to forget encoded information. In contrast, models like
LeNet and VGG are more vulnerable to reductions in training
data size. Different phases of a single model training process
also exhibit varying vulnerabilities to dataset reduction. Exist-
ing algorithms typically use a fixed sampling rate, i.e., filtering
out the same proportion of the dataset in each epoch. However,
the number of data instances to be sampled should depend
on both the model and the data, and should be dynamically
adjusted during training.

Third, redundant data instances can lead to unnecessary I/O
access costs. To investigate redundancy in training datasets,
we used perceptual hash algorithms (pHash) [32] to compute
similarity scores among training instances in popular datasets:
MNIST, CIFAR10, and CIFAR100. As shown in Figure 3,
multiple redundant copies with high similarity scores exist,
which can be removed from the training process without
affecting model accuracy.

In this work, to address the first issue, we adopt a new multi-
criteria metric to sample data instances, taking I/O access costs
into consideration. Based on the new metric, we develop the



Fig. 3. The redundant images in MNIST, CIFAR10, and CIFAR100.

Bucket Sampling (BS) algorithm to filter out less informative
data instances. To minimize the impact of filtering out data
on model training, we integrate the Recall strategy into BS,
allowing us to re-select and re-train these instances as the
model approaches convergence. Finally, we use a Redundancy
Removed Importance Sampling (RRIS) algorithm to eliminate
redundant data copies, further speeding up the training process.
It is worth noting that while diversity-based sampling has been
widely studied in active learning, focusing on selecting both
informative and diverse examples [1], [25], [35], to the best
of our knowledge, none of these approaches has been applied
to accelerating DNN model training through data instance
sampling.

III. DESIGN

A. Architecture Overview

IOWA operates at three levels: the Storage System, repre-
senting where the training data resides (local, remote, or cloud
storage); the I/O Aware Adaptive Sampling, which is the core
component of our framework and will be elaborated upon; and
the DL Training, representing the deep learning process on the
sampled data.

Before applying importance sampling, we begin with uni-
form sampling for several epochs to gather basic informa-
tion, such as data loading and computation time, through
the Time Profiler module. Based on this information, we
adaptively select the appropriate importance criteria for I/O-
and computation-intensive tasks through the Decision Maker.
We then proceed with importance sampling, which consists of
five primary steps, as outlined in Figure 4: 1 Data Selection:
We sort the importance values and select informative samples
based on the importance criteria and sampling strategy. 2
Data Fetch: After determining the training instances for one
epoch in advance, we fetch them from the storage system. 3
Data Preprocessing: The fetched data is decoded, transformed,
and packed into batches. 4 Data Training: Each batch of
data is fed into the target model in one iteration, and all
selected informative samples are trained within one epoch.
5 Information Feedback: During training, we continue to

collect information, such as data loading times and model
outputs, and feed this information back into our I/O-aware
adaptive sampling layer to refine importance determination in
subsequent stages.

B. I/O-Aware Multi-Criteria Importance Metric

Unlike existing sampling approaches, we propose an adap-
tive importance metric to handle different types of workloads,

I/O Aware Adaptive Sampling

Storage System

GPU

GPU

GPU
CPU

CPU
Time
Profiler

Information
Collector

Decision
Maker

Forward
Propagation
Backward
Propagation
Gradient

Synchronization

Decode Augment ToTensor Batch

DL Training

Index Array

LifeCycle-aware Sampling

Adaptive Criteria

Redundancy Replacement

Selected Instances

① Data Selection

③ Data Preprocess

② Data Fetch

④ Data Training

⑤ Information Feedback

Fig. 4. System overview of IOWA.

which consists of the following three criteria: CrossEntropy
Score, Margin Score, and I/O Score:

CrossEntropyScore = −Pθ(ytarget|x)log2Pθ(ytarget|x)
(3)

Where the x represents the input data, ytarget is the target label
for the input, and Pθ(ytarget|x) is the prediction probability of
the target label from the model with parameters θ. By multiply-
ing the probability by its own log, we obtain the entropy loss
for each instance, which reveals the probability distribution
of the prediction. This is a commonly used criterion in many
other studies [15], [18], [23], [33].

Margin Score = 1− (Pθ(ytarget|x)− Pθ(ymax|x)) (4)

The margin represents the difference between the target la-
bel prediction Pθ(ytarget|x) and the most confident prediction
Pθ(ymax|x)), excluding the target label ytarget. A narrower
margin indicates that it is more difficult to distinguish between
the target label ytarget and another label ymax, so we treat
data instances with narrower margins as more informative.
Our Margin Score is equal to 1 minus the margin, assigning
higher scores to data with narrower margins.

I/O Score = 1/(α× Timeload + (1− α)× Size) (5)

Timeload and Size denote the normalized data loading time
and data size for each instance, respectively. α is the weight
assigned to Timeload, with a default value of 0.5. The I/O
Score quantifies the I/O cost of training instances. Taking I/O
overhead into account, we prioritize data with shorter access
times and lower memory usage when the contributions to
model convergence are similar.



TABLE II
THE SAMPLE PARTITION RESULTS FOR DIFFERENT CRITERIA

Category 1 Category 2
Entropy Score 3, 10, 11, 0, 5, 6 9, 7, 1, 4, 2, 8
Margin Score 11, 2, 7, 6, 1, 9 4, 5, 0, 3, 10, 8
I/O Score 5, 3, 4, 6, 8, 11 10, 7, 9, 0, 2, 1

To calculate these criteria, we profile the time costs for
data transmission, I/O (data loading and preparation), and
computation during the first few epochs.

With the defined criteria, IOWA dynamically selects the
appropriate metric for different workloads. For computation-
intensive workload, we use only the CrossEntropy Score
to evaluate the informativeness of data instances. For I/O-
intensive workloads, the importance criterion is determined by
majority voting across the three calculated scores: CrossEn-
tropy Score, Margin Score, and I/O Score. First, the score
lists for the training instances are partitioned into different
categories based on the sampling strategies. Then, majority
voting determines which category each instance belongs to.
The following example illustrates the majority voting process:

Example 1: Suppose we have 12 instances in total and
obtain the following scores from the information feedback
stage:

IndexList = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
EntropyScoreList = [1.05, 3.2, 4.5, 0.12, 4.40, 1.20, 1.30,

2.20, 5.02, 1.98, 0.88, 0.96],
MarginScoreList = [1.33, 1.02, 0.30, 1.77, 1.20, 1.30, 0.90,

0.55, 1.99, 1.09, 1.80, 0.12],
IOScoreList = [12.00, 45.12, 20.01, 3.22, 4.55, 2.99, 5.88,

9.07, 6.04, 10.70, 8.90, 7.66].
First, we sort the score lists in descending order.
Next, using a pre-computed threshold (as described in

Section III-C), we classify the samples into two categories:
important and unimportant. Samples with scores higher than
the threshold are classified as important, while those with
lower scores are categorized as unimportant. The classification
results are shown in Table II.

Finally, we apply a majority voting strategy to obtain the
final results. For example, the data with index 3 receives two
votes for the important category and one for the unimportant
category, so it is classified as an important instance. In contrast,
the data with index 10 receives one vote for the important
category and two for the unimportant category, resulting in
its classification as unimportant. The remaining samples are
categorized in the same manner. As a result, the important
category includes {3, 6, 11, 5}, while the unimportant category
consists of {0, 7, 1, 2, 4, 8, 10, 9}.

C. Learning-Ability-Conscious Sampling Strategies

In this section, we present our proposed I/O-aware adaptive
sampling strategies. The general idea is to reduce the I/O and
computation costs of less informative data instances to the
utmost extent while minimizing the impact on model accuracy.
The key steps are as follows:

1) Model profiling: Train the model for a few epochs to
collect data information, including computation and I/O
time.

2) Importance metric selection: Analyze the time break-
down and select the appropriate importance metric for
the profiled training workload.

3) Continuous data sampling: Use the optimized sampling
algorithm to determine which data samples to train at
each epoch. To reduce memory access overhead, we rely
on historical values rather than current ones to evaluate
the importance of instances. This approach is reasonable
because the importance of data fluctuates only slightly
across neighboring epochs.

The process follows these steps:
Step 1 - Regular Training: In the Bucket Sampling algo-

rithm, all training data instances are initially placed in the
in-process bucket.

Step 2 - Sampling Out: During training, an empirical im-
portance value threshold is used to gradually move some data
instances from the in-process bucket to the waiting bucket.
To accommodate the dynamically changing importance values
across different epochs, the threshold metric is defined as
follows:

thrt = β × thrt−1 + (1− β)× part (6)

where thrt denotes the threshold value at epoch t, thrt−1

represents the threshold at epoch t− 1, and part is computed
by multiplying the value of equal points scoree in importance
list by the relax factor γ at epoch t, as listed in Equation 7.
At the start of Bucket Sampling, since thrt−1 is unavailable,
we will only get the par0 as initial thresholds thr0.

part = scoree × γ (7)

Step 3 - re-Sampling: The re-sampling stage is introduced
to reduce I/O and computation costs at each epoch while
minimizing data loss during training. We begin re-sampling
data instances from the waiting bucket randomly when model
training accuracy stops improving for k consecutive epochs
(we use k = 3 in our experiments). This indicates that the
selected samples are no longer sufficient for model conver-
gence. At the same time, the temporarily removed samples in
the waiting bucket gradually become more important, so we
randomly re-sample training instances rather than selecting a
specific portion.

D. Redundancy Removed Importance Sampling

The above strategies are designed to accelerate the model
training by gradually filtering out unimportant data instances
and keep important ones in the training loop. Inspired by
research on data redundancy [3], [10], [20], [28], we also
remove redundant important data instances in the training
process to further reduce I/O and computation costs. To
quantify the similarity between data instances, we adopt the
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Fig. 5. The redundancy replacement process for importance sampling.
Instances {2, 4, 7} and {5, 6} are two groups with higher similar scores.
For instance, when we need to read data instances #4 and #7, we can replace
them with instance #2 which is cached in memory rather than loading them
from remote storage system.

perceptual hashing algorithm (pHash) [32]. pHash is a widely-
used algorithm in search engines (e.g., Google) to identify
similar or duplicate images based on pixels. We chose it be-
cause it can be easily applied to large-scale image processing
and is model-independent.

Using similarity scores, we identify redundant important
data instances. To reduce computation and I/O costs while
maintaining high model accuracy, we propose two approaches
to leverage this feature: (1) removing redundant images from
the important instances directly for computation-intensive
tasks, and (2) replacing instances with another from the similar
group for I/O-intensive tasks. To minimize small random
accesses to the same image, we cache the frequently selected
image in memory and process it with different augmentations
during training, as demonstrated in Figure 5.

IV. EVALUATION

In this section, we evaluate the effectiveness of our proposed
sampling framework with the following configurations:

1) BS-norecall: In this configuration, once instances are
filtered out during training, they are never re-sampled.

2) BS: This sampling algorithm uses a waiting bucket
to store less informative instances that fall below an
empirical threshold. We explore several variations: a)
BS-random: When a plateau in accuracy is observed,
instances from the waiting bucket are re-sampled ran-
domly. b) BS-random-RRemove: An extension of BS-
random, where redundant images are removed if a
similar instance has already been trained. c) BS-random-
RRepeat: Another extension of BS-random, where simi-
lar samples in the cache are re-trained if a new instance
is unavailable but a similar one exists in the cache.

A. Experimental Setup

1) Experimental Platform: We conduct experiments on a
server equipped with 8-core Intel Xeon CPUs, 128GB of
RAM, and an NVIDIA Tesla V100 GPU with 32GB of GPU
memory to perform single-machine tests. Additionally, we
evaluate on a platform with 64-core AMD CPUs, 256GB of
RAM, and 4 A100-SXM GPUs, each with 40GB of GPU
memory, to perform data-parallel distributed training. The
storage system used is a 2TB SSD. Our sampling framework
is implemented in PyTorch 1.6.0.

2) Workloads and Datasets: For the image classification
task, we use four datasets: MNIST, CIFAR10, CIFAR100,
and ImageNet, representing small, medium, medium, and
large datasets, respectively. For MNIST, we train three DNN
models: MLPNet, ConvNet, and AlexNet. For CIFAR10 and
CIFAR100, we train three other DNN models: ResNet18,
MobileNetV2, and VGG16. Additionally, we train ResNet18
on ImageNet.

3) Baseline Algorithms: To evaluate the effectiveness of
our proposed approach, we select the following well-known
sampling algorithms as baselines:

0. The Origin: This represents the uniform sampling pro-
cess, where every data instance is fed into the model once per
training epoch.

1. Online [23]: A rank-based importance sampling algo-
rithm that samples data instances according to a loss-rank-
based probability.

2. Active Bias [5]: This algorithm re-weights data instances
during model training to improve accuracy. The prediction
variance is used to measure the uncertainty of each data
instance, with those having high variance values sampled for
training.

3. Biggest Loser [15]: This algorithm uses the latest and
previous loss to measure the importance of samples. All
samples are forwarded at least once per epoch, and those with
high loss values are selected for backpropagation.

4. Select via Proxy [9]: This algorithm pre-trains a
lightweight model first, and then trains the target model using
the coreset selected by the pre-trained light model. Unlike our
proposed adaptive sampling approach, this algorithm does not
incorporate a re-sampling phase during training.

In our experiments, we adopt the same parameter settings as
in the aforementioned literature when implementing the base-
line algorithms for comparison. All experiments are run three
times independently, and the averaged results are reported.

B. Speedup with a Single GPU

In our comparisons, we run different DNNs, including
MLPNet, ConvNet, and AlexNet on the MNIST dataset. The
results are illustrated in Table III. Additionally, the experi-
mental results of using ResNet18, MobileNetV2, and VGG16
on CIFAR10 and CIFAR100 are shown in Table IV, V,
respectively.

From the above results, we can see that model training with
Bucket Sampling can achieve up to a 3.2× speedup for the
ResNet model on the CIFAR10 dataset compared to the origin,
with less than a 1% impact on performance. It is worth noting
that while BS without re-sampling achieves better acceleration,
it also has a more significant impact on accuracy.

Among the baseline approaches, Biggest Loser and Online,
which focus on reducing backward time or the frequency
of loss recomputation, achieve inferior speedup performance
compared to our proposed algorithms. For Active Bias, it can
achieve a slighter model accuracy improvement but with no
time speedup. SelectViaProxy can gain a 2× speedup but with
significant model accuracy loss (up to 3%), as shown in Figure



TABLE III
THE ACCURACY AND SPEEDUP COMPARISON OF DIFFERENT

FRAMEWORKS ON MNIST

Model Sample Method Accuracy DAcc Speedup

AlexNet

Origin 0.9922±0.0004 1.00

BS-norecall 0.992±0.0003 -0.0002 2.51
BS-random 0.9918±0.0003 -0.0004 2.01
BS-random-RRemove 0.992±0.0004 -0.0002 2.37
BS-random-RRepeat 0.9918±0.0011 -0.0004 1.97

ConvNet

Origin 0.9915±0.0007 1.00

BS-norecall 0.9917±0.0005 0.0002 1.98
BS-random 0.9912±0.0003 -0.0003 1.83
BS-random-RRemove 0.9915±0.0003 0 1.81
BS-random-RRepeat 0.9914±0.0003 -0.0001 1.77

MLPNet

Origin 0.9788±0.0 1.00

BS-norecall 0.9783±0.0004 -0.0005 1.67
BS-random 0.9786±0.0011 -0.0002 1.51
BS-random-RRemove 0.9784±0.0004 -0.0004 1.61
BS-random-RRepeat 0.9781±0.0 -0.0007 1.52

TABLE IV
THE ACCURACY AND SPEEDUP COMPARISON OF DIFFERENT

FRAMEWORKS ON CIFAR10

Model Sample Method Accuracy DAcc Speedup

MobileNetV2

Origin 0.923±0.002 1.00

BS-norecall 0.9115±0.0014 -0.0115 2.71
BS-random 0.9159±0.0021 -0.0071 2.10
BS-random-RRemove 0.9169±0.0008 -0.0061 2.11
BS-random-RRepeat 0.9146±0.0034 -0.0084 2.09

ResNet18

Origin 0.9327±0.0014 1.00

BS-norecall 0.9175±0.0015 -0.0152 3.25
BS-random 0.9243±0.002 -0.0084 2.43
BS-random-RRemove 0.9222±0.0013 -0.0105 2.49
BS-random-RRepeat 0.9224±0.0022 -0.0103 2.51

VGG16

Origin 0.916±0.0023 1.00

BS-norecall 0.9033±0.0006 -0.0127 2.13
BS-random 0.9059±0.0029 -0.0101 1.50
BS-random-RRemove 0.9057±0.0023 -0.0103 1.55
BS-random-RRepeat 0.9089±0.0034 -0.0071 1.61

TABLE V
THE ACCURACY AND SPEEDUP COMPARISON OF DIFFERENT

FRAMEWORKS ON CIFAR100

Model Sample Method Accuracy DAcc Speedup

MobileNetV2

Origin 0.685±0.0032 1.00

BS-norecall 0.679±0.001 -0.006 1.15
BS-random 0.689±0.0012 0.004 1.04
BS-random-RRemove 0.6845±0.0025 -0.0005 1.04
BS-random-RRepeat 0.6864±0.0036 0.0014 1.04

ResNet18

Origin 0.762±0.0022 1.00

BS-norecall 0.7125±0.0036 -0.0495 2.15
BS-random 0.7518±0.0006 -0.0102 1.27
BS-random-RRemove 0.754±0.002 -0.008 1.29
BS-random-RRepeat 0.7539±0.0021 -0.0081 1.29

VGG16

Origin 0.7262±0.0029 1.00

BS-norecall 0.6586±0.0033 -0.0676 1.59
BS-random 0.718±0.0029 -0.0082 1.14
BS-random-RRemove 0.72±0.0019 -0.0062 1.15
BS-random-RRepeat 0.7194±0.0017 -0.0068 1.15
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Fig. 6. The time speedup of different algorithms.

TABLE VI
THE ACCURACY AND SPEEDUP COMPARISON OF DIFFERENT NUMBERS

OF GPUS

Model (GPU number) Methods Accuracy Speedup

ResNet18 (with 8 GPUs)
Origin 69.90% -
BS-random 69.51% 1.21 ×
BS-norecall 69.56% 1.23 ×

ResNet18 (with 4 GPUs)
Origin 69.78% -
BS-random 69.53% 1.21 ×
BS-norecall 69.35% 1.23 ×

ResNet18 (with 2 GPUs)
Origin 69.79% -
BS-random 69.37% 1.18 ×
BS-norecall 69.21% 1.22 ×

6. This is because SelectViaProxy trains the target model only
on the coreset and without re-sampling from the removed data
instances.

C. Speedup with Distributed GPUs

We conducted further experiments on distributed GPUs to
explore the impact of I/O overhead, including network data
transmission, on our algorithms. On each GPU, we start one
worker for training. We train ResNet18 on the ImageNet
dataset, and the results are summarized in Table VI.

From Table VI, we can observe that our introduced al-
gorithms still achieve up to a 1.2× speedup compared to
the original uniform sampling. However, the speedup is less
significant when training on ImageNet compared to MNIST,
CIFAR10, and CIFAR100. This is because ImageNet presents
a higher learning difficulty and lower redundancy, leaving less
room for sampling optimization.

D. Time Breakdown

To further explore the contributions of our algorithms during
different phases of model training, we plot the time break-
down of training ResNet18 on ImageNet, which includes I/O,
forward, backward (gradient communication and backpropa-
gation), metric computation, and metric communication. The
results are shown in Figure 7. We can see that BS slightly
increases the metric computation and data transmission time
needed to synchronize the metric score values, but significantly
reduces the I/O, forward, and backward time.

E. Overhead Analysis

For Bucket Sampling, the only overhead is computing the
threshold and partitioning the training instances, which costs
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Fig. 7. The time breakdown of training ResNet on ImageNet.

O(1) time. Additionally, the time cost of redundancy removal
can be ignored, as it is performed offline. In a distributed
training environment, the extra broadcasting time for the
importance metric is O(N), where N represents the total data
volume.

V. RELATED WORK

A. Learning Strategy

Curriculum Learning (CL) [2] is a strategy inspired by the
human learning process, where easier examples are trained
first, and harder samples are gradually introduced in the later
stages of training. CL labels samples as easy or hard based
on prior knowledge, without considering feedback from the
learner. Unlike CL, Self-paced learning (SPL) [21] dynam-
ically adjusts the learner’s learning space according to the
loss value, which may result in overfitting as prior knowledge
is not taken into account. To address the shortcomings of
CL and SPL, [16] proposes Self-paced Curriculum Learning
(SPCL), which combines CL and SPL. SPCL leverages static
information before training and dynamic knowledge during
training, showing improved performance.

All three of these algorithms focus on improving model
accuracy. During the training process, CL or SPL involve
more and more samples until all samples have been considered
according to the learning curriculum. In contrast, our proposed
adaptive sampling algorithm involves fewer and fewer samples
to accelerate the training process.

B. Importance Sampling

The optimal sampling distribution is proven to sample
proportionally to the gradient norm of the sample. For an unbi-
ased estimation of the stochastic gradient, classic importance
sampling techniques weight the items inversely proportional
to the probability that they are selected. However, computing
the sampling distribution via gradient norms introduces sig-
nificant computational overhead. To reduce this cost, Biggest
Loser [15], Biased Importance Sampling [18], Online [23],
AutoAssist [33] use loss to calculate the sampling distribution.
Among them, Online [23] and Biggest Loser [15] maintain
a history of losses for previously seen samples, and sample
either proportionally to the loss or based on the loss ranking.
The method proposed by Online [23] samples instances with a
probability exponential to their last known loss value. Biased
Importance Sampling [18] and AutoAssist [33] train a separate
model to predict the loss, avoiding the need to forward-
compute the loss for every sample. In addition to loss, [19]
introduces a novel upper bound to the gradient norm, which
provides a better approximation than loss-based methods,

though it is more challenging to compute. Recently, Select via
Proxy [9] uses a proxy model to select a core set of training
data to speed up the training process. Dataset Condensation
[34] compresses the dataset into synthetic samples; however,
this method currently only works on a small subset of images.

The sampling method in IOWA falls under the category
of historical value rank-based sampling strategies, which use
loss as an approximation of sample importance. However, our
scheme differs from other rank-based approaches in terms of
the importance criterion and pacing strategy. Our method uses
adaptive criteria targeted at different performance bottlenecks,
achieving a better trade-off between model accuracy and
speedup compared to a single criterion. The comparisons with
our proposed approach are also summarized in Table VII.

C. Training Acceleration

To accelerate the training process, Wavelet-like Auto-
Encoder (WAE) [6] reduces computational complexity by
decomposing images into low-resolution channels and then
using these decomposed channels as inputs to the CNN.
Budgeted Training [22] proposes a linear learning rate sched-
ule to accelerate training under a resource budget constraint.
Data echoing, proposed by [8], accelerates model training
through data reuse. The idea is to train with the data on hand
multiple times rather than waiting for new data to become
available. Besides optimizing training from an algorithmic
perspective, there are also relevant studies focused on memory
management [7], [14] and the use of new hardware, such as
processing-in-memory (PIM) [29], [30], to further enhance
training efficiency. Orthogonal to these works, our proposed
approach minimizes the number of training data instances in
each iteration, which can be combined with these existing
strategies to achieve better performance.

VI. CONCLUSION

In this paper, we propose IOWA, an I/O-aware adaptive
sampling framework designed to accelerate the model training
process without sacrificing the resulting model accuracy. Rec-
ognizing that I/O overhead can be significant in I/O-intensive
training processes, we first introduce an I/O-aware sampling
metric. Based on this metric, we develop the Bucket Sampling
algorithm, which gradually samples out training data instances
in each iteration to achieve speedup. To further reduce I/O and
computation costs, we also incorporate a redundant sample
removal strategy into our proposed framework. To evaluate
the effectiveness of our approach, we conduct extensive ex-
periments across various DNN architectures and datasets. The
experimental results show that our approach achieves up to a
3× speedup with negligible model accuracy loss.
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