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Abstract

Nowadays, fast growing number of users and business are motivated to outsource their private data to public cloud servers.
Taking into consideration security issues, private data should be encrypted before being outsourced to remote servers, though
this makes traditional plaintext keyword search rather difficult. For this reason, there exists an urgent need of an efficient and
secure searchable encryption technology. In this paper, an affinity propagation (AP) K -means clustering method (CAK-means,
a combination of AP and K-means clustering) is proposed to realize fast searchable encryption in Big Data environments.
CAK-means clustering utilizes affinity propagation to initialize K-means clustering, thereby making the clustering process
faster, stable and effectively improving the initial clustering center quality of the K -means. As the AP algorithm identifies the
clustering center with much lower errors than other methods, it significantly improves the search accuracy. Simultaneously,
the related files in one cluster are stored at the contiguous locality of disks which will substantially improve the file locality and
speedup the read and write disk //0. Additionally, the coordinated matching measure is utilized to support accurate ranking of
search results. Experimental results show that the proposed CAK-means-based multi-keyword ranked searchable encryption
scheme (MRSE-CAK) has higher search efficiency and accuracy while simultaneously ensuring equivalent security.

Keywords Searchable symmetric encryption - CAK-means clustering - File locality - Multi-keyword - Ranked search

1 Introduction

Outsourcing data to public cloud are a major trend that offers
great benefits to data owners, so rapid increasing number of
enterprises and individual users store and share their data in
cloud-based storage servers. Because outsourcing data raise
confidentiality and privacy concerns, private data need to be
encrypted before being outsourced to remote cloud servers.
However, this makes traditional plaintext keyword search
rather difficult. Recently, a number of searchable symmet-
ric encryption (SSE) schemes (Chen et al. 2016; Cao et al.
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2014; Wang et al. 2014; Chen et al. 2017; Xia et al. 2016;
Chen et al. 2018; Wang et al. 2017) with multi-functions
have been proposed by utilizing diverse cryptography mech-
anisms.

Considering to the fact that files belonging to the same
category have certain relevant characteristics representing
their properties, it is essential to maintain the relationships
between the related files and full description of each file that
may be category or attribute. As user searches the files, he
often searches certain contents in portions of data, such as
data about “affinity propagation,” or certain type files, such
as video files or text files. There must be some explicit or
implicitrelationship between these searched files. Due to data
encryption, these important properties may be concealed.
Nevertheless, it is vital to keep and utilize these properties to
speed up the search efficiency and accuracy in Big Data.

As Poh et al. (2017) pointed out, barely all existing SSE
schemes concern only about the search time, the overhead of
reading these identifiers of queried files in the disks of storage
servers is not analyzed, which is the issue of locality in SSE
schemes. In the inverted index-based scheme, a query based
on a keyword directly returns the » matching file identifiers.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-018-3145-6&domain=pdf

3112

L.Chenetal.

The asymptotic search performance is known to be optimal
(O(r)). However, as discussed by Cash and Tessaro (2014),
access latency of the r identifiers is not factored in. In prac-
tice, these identifiers are stored in pseudo-random locations
on storage hardware, implying that retrieval of each identifier
requires a read access. On the other hand, these identifiers are
stored in contiguous sectors that can be read simultaneously
in a plaintext search index.

It is believed that the issue of locality not only affects the
read access of files identifiers, but also concerns about the
overhead of reading files from the disks of storage servers.
The overhead of read access to files identifiers is closely
related to index structures. Yet, the overhead of reading the
files is closely related to the locality of the files. Maintaining
the relationship among related files can be used to solve the
problem of locality and speedup the read and write disk 7/0.
Since the files in one cluster are usually the files needed to
be accessed concurrently, they are stored at contiguous disk
locations, which will improve the file locality as well as the
latency of disk 1/0.

Based on the relationship between the files, which is
viewed as a classification processing, large amount of data
in the cloud can be searched by category, which can be used
to improve the search efficiency and accuracy. It can also be
used to greatly improve read and write disk //0. As Chen
et al. (2016) stated previously, it is easier to take into con-
sideration the semantic relationship between the files if one
utilizes clustering algorithm.

In this paper, MRSE-CAK, a multi-keyword top-k search
over encrypted data based on CAK-means (Zhu et al. 2009)
is proposed. It focuses on the optimization of the cluster-
ing algorithm for higher search accuracy and efficiency, by
utilizing the file locality to improve the performance of the
read and write disk //0 at the same time. As for the valida-
tion of search results and dynamic update of data, existing
methods (Chen et al. 2016) are referenced. As overall, the
contributions of this work are summarized as:

— The proposed scheme is designed to achieve higher
search efficiency and search precision than the MRSE-
HCI scheme (Chen et al. 2016) through the usage of the
CAK-means algorithm, which not only makes the process
of clustering faster and more stable, but also effectively
improves the initial clustering center quality of K -means,

— In order to maintain the property relationships among
plaintext files, the clustering method is applied. On the
one hand, it can achieve semantic search and improve
the search accuracy. On the other hand, related files are
stored at contiguous locations of cloud servers, and this
can speed up the disk //0 and thereby improve the search
efficiency of cloud servers,

— Although related files are stored at contiguous locations
of cloud servers, security is not weakened in such a
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design. As user issues keyword queries, the server knows
exactly which encrypted files satisfy this query, and it
does not matter whether the files are stored dispersedly
or continuously on the server,

— To improve search accuracy, the keyword weights (term
frequency) are added to index vectors in the MRSE-CAK.
The search time of the proposed scheme achieves loga-
rithmic time complexity that is suitable for large data
application scenarios,

— The proposed scheme supports multi-keyword search and
provides similarity ranking of search results, showing
same level of security as the MRSE-HCI scheme. From
the design and construction of this scheme, we demon-
strate that such a scheme can maintain, or even improve,
data privacy, index privacy, keyword privacy, and rank
privacy.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related works, and Sect. 3 describes nota-
tions and preliminaries. Section 4 details the MRSE-CAK
construction. Section 5 gives the security and performance
analysis, and finally, Sect. 6 concludes the paper and dis-
cusses about future directions of this work.

2 Related work

To improve the accuracy of search results, a variety of
multi-keyword search methods have been proposed. Cao
et al. (2014) proposed a privacy-preserving multi-keyword
ranked searchable encryption (MRSE) scheme, where simi-
larity measure of “coordinate matching” and “inner product
similarity” was incorporated to quantitatively evaluate this
measure. This approach can return the ranked results of the
search based on the number of matching keywords. However,
MRSE does not take the access frequencies of keywords into
account. Wang et al. (2014) propose a privacy-preserving
multi-keyword fuzzy search scheme over encrypted data
in the cloud, in which the file index is built using the
locality-sensitive hashing (LSH) function in the Bloom fil-
ter, providing a well-organized solution to the secure fuzzy
keyword search.

Chen et al. (2017) propose a dynamic multi-keyword
ranked search (DMRS) scheme that makes use of the sparse
matrix to replace the dense large-scale matrix of MRSE Cao
etal. (2014) in index encryption and query vector encryption
to improve the efficiency. The proposed scheme incorpo-
rates "coordinate matching" and "inner product similarity"
to improve the relevance of search keywords to the rele-
vant cloud files. They also use a reverse data structure to
allow users to perform dynamic operations on document
collection. Xia et al. (2016) propose a “Greedy Depth-first
Search” algorithm based on a tree-based index structure to
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provide efficient multi-keyword ranked search. It combined
the TF x IDF model and the secure kNN algorithm to achieve
sub-linear search time for the deletion and insertion of doc-
uments.

Recently, Chen et al. (2016) propose a hierarchical clus-
tering method based on privacy-preserving ranked keyword
search method (MRSE-HCI) that clusters documents based
on minimum relevance threshold and partitions next to the
resulting clusters into sub-clusters, till the constraint on the
maximum size of the cluster is reached. Besides, it introduces
a minimum hash sub-tree structure to verify the integrity of
search results. They propose a quality hierarchical cluster-
ing (QHC) algorithm based on a novel dynamic K-means
which takes several rounds of calculations to obtain a stable
k and that makes it somewhat inefficient. Yet, CAK-means
clustering cannot overcome the instability and inefficiency
problem.

Kamara and Moataz (2017) propose non-interactive highly
efficient SSE schemes that handle arbitrary disjunctive and
Boolean queries with worst-case sub-linear search and opti-
mal communication complexity. The proposed construction,
IEX, makes black-box use of an underlying single key-
word SSE scheme that can be instantiated in various ways.
To evaluate the practicality of schemes, they designed and
implemented a new encrypted search framework called clu-
sion. To resist non-volatile memory leakage attack, Chen
etal. (2018) proposed a multi-keyword ranked search scheme
which resists memory leakage attack (MRSS-ML), by utiliz-
ing physically unclonable functions (PUFs) to randomize the
keywords and document identifiers. Owing to the noisy prop-
erties of PUFs, the fuzzy extractor (FE) is used to recover the
secret keys. To further enhance the security of the proposed
scheme, an order-preserving function is selected to encode
the similarity scores. Wang et al. (2017) proposed a verifiable
search scheme for outsourced database based on an invertible
Bloom filter that is able to support efficient data update and
multi-user scenarios. Fu et al. (2015) propose a tree-based
index structure that supports parallel search.

However, as Poh et al. (2017) pointed out, almost all of
the existing SSE schemes only concerned about the search
time, though did not analyze the overhead of reading these
identifiers of queried files from the disks of storage servers.
It is the issue of locality in SSE schemes. Further, we believe
that the issue of locality not only concerns about the read
access of the files identifiers, but also concerns about the
overhead of reading the files from the disks of storage servers.

Cash and Tessaro (2014) first discuss the issue of locality
in SSE schemes and they define locality as the number of
non-contiguous memory accesses made by the server. As
plaintext search can use one contiguous access for entire
postings list. They pointed out that the locality is the bot-
tleneck of the SSE schemes and the runtime bottleneck is
the disk latency but not the cryptographic processing. They

also defined read overlaps as the amount of touched mem-
ory common between searches. They proved a lower bound
on the trade-off between server storage size and the locality
of memory accesses in the SSE, and they also gave a the-
oretical construction that provided a trade-off between the
locality and the index size not previously achieved. Their
work appears to be the first one to study the effects of secu-
rity on the locality in detail.

Recently, Asharov et al. (2016) proposed three SSE
schemes that follow the formalization by Cash and Tessaro
(2014) and construct the first SSE schemes that simul-
taneously enjoy optimal locality, optimal space overhead,
and nearly optimal read efficiency. Their schemes construct
through a two-dimensional generalization of the classically
balanced allocations (“balls and bins”) problem. Demertzis
and Papamanthou (2017) proposed the first searchable
encryption scheme with tunable locality and linear space.
Their construction can be tuned to achieve trade-offs between
space, read efficiency, locality, parallelism, and commu-
nication overhead. They formally proved the security of
the proposed scheme, and they also presented a thorough
description of the implementation and evaluation of the
scheme in external and internal memory settings. Miers and
Mohassel (2017) proposed a provably secure dynamic SSE
(DSSE) scheme with a significant reduction in I/O cost
when used for emails or other highly dynamic materials.
DSSE combines obliviously updatable index (OUI) which
provides for ORAM-like properties for updates to the index
with the state-of-the-art //O-efficient SSE that indexes the
full blocks. The DSSE offers a 94% savings compared to a
naive implementation using ORAM.

However, the proposed MRSE-CAK scheme makes use
of the inner product similarity to measure the related files
which will be classified to one cluster. This is different from
the SSE-1 and the SSE-2 proposed by Curtmola et al. (2006)
which read one by one the related file identifiers from an
array stored randomly. Thus, the locality proposed by Cash
and Tessaro (2014) is different from the proposed MRSE-
CAK scheme, where the operations of reading the identifiers
of queried files are completed when computing the rank rele-
vance score. Substantial importance is due to the disk latency
when reading the files from the disks of storage servers. In
Big Data environments, cloud servers consist of tens of thou-
sands of machines; and load balancing and parallel read/write
can improve the speed of disk 7/0. At the same time, if the
files that often need to be accessed in parallel are stored at
the adjacent locations, equivalent to the file cache and will
enormously improve the speed of file disk 1/0.

Inspired by idea presented in Chen et al. (2016), we pro-
pose to utilize CAK-means clustering (Zhu et al. 2009) to
improve search efficiency and accuracy. Further, since the
files in one cluster are usually those files needed to be
accessed at the same time, these files are stored at contigu-
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ous disk locations, which will improve the file locality and
will thereby greatly improve the latency of disk 1/0. It is
well known that the K-means algorithm is widely used in
text clustering, though the K value of K-means clustering is
fixed and sensitive to its initial conditions. In order to over-
come the defects of AP and K-means, the CAK-means (a
combination of AP and K-means clustering) method (Zhu
et al. 2009) is proposed, which makes use of affinity prop-
agation (AP) to initialize K-means clustering. As affinity
propagation (AP) algorithm identifies clusters with much
lower error than other methods, the search accuracy are sig-
nificantly improved. In the CAK-means based scheme, the
cluster center generated by the AP algorithm is the initial
clustering center of K-means; and the clustering of AP algo-
rithm is fast and stable, which effectively improves the initial
clustering center quality of K-means, overcoming the insta-
bility problem of K-means. On the one hand, the clustering
method can achieve semantic search and improve the search
accuracy. On the other hand, related files are stored at con-
tiguous locations of cloud servers, and this can speed up the
disk I/0 and thereby improve the search efficiency of cloud
servers.

3 Notations and preliminaries
3.1 Symbol definition
The symbols and notations used in this paper are as follows.

F—The plaintext file collection, denoted as a set of m
files F = {Fl, F2, ey Fm}

C—The encrypted file collection for F, denoted as C =
{C1,Ca, ..., Cp}.

F,—The collection of file vectors, denoted as F, =
{f1. for oo fnd-

fi—The i-th file vector, denoted as f; = {fi1, fi2,-- -,
fin}, where f;; represents the weights of each keyword
in file F;.

W—The dictionary, denoted as W = {wy, wa, ..., w,}.
C,—The collection of cluster center vectors, denoted as
Cy = {cv1, 2, ..., Cok }-

[—The clustering index which contains the relations
between cluster center and the unencrypted file vectors
(Fv).

Ic—The clustering index which contains the relations
between cluster center and the encrypted file vectors
which is attached with the identifier of the file.
Fc—The information of files classification, it includes
file id list of a certain cluster.

O—The query vector generated from search request.
To—The encrypted form of Q, which is always called
the trapdoor for the search request.
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Ro—The ranked id list of all files according to their
relevance to query Q.

E g—Top-k search results.

m—The number of files in the data collection.

n—The size of dictionary W.

K—The number of clusters.

id—Unique identifier for every document.

3.2 Coordinate matching

In the proposed scheme, we utilize coordinate matching to
measure the relevance between file—query, file—file, and the
query and cluster centers are also considered. The relevance
score between query Q and file f; is defined by Eq. (1), the
relevance score between query Q and cluster center c,; is
defined by Eq. (2), and the relevance score between file f;
and f; is defined by Eq. (3).

n+u+1

Sgi= Y. (Qix fir) (1
=1
n+u+1
Sch,- = Z (9 X cuiyr) 2)
=1
n+u+1
Sqr= Y (fie X fin) 3)

t=1

3.3 Clustering based on affinity propagation
K-means algorithm

A number of clustering methods have been proposed, as K -
means (MacQueen 1967) and K-medoids (Huang 1998).
The affinity propagation (AP) is a clustering algorithm
based on the concept of “message passing” between data
points (Frey and Dueck 2007), which takes as input mea-
sures of similarity between pairs of data points. Real-valued
messages are exchanged between the data points until a high-
quality set of exemplars and corresponding clusters gradually
emerges. Unlike clustering algorithms such as K-means or
K -medoids, the AP does not require the number of clusters
to be determined or estimated before execution of the algo-
rithm. Yet, similar to the K-medoids, the AP searches for
“exemplars”, which are the members of the input set that are
representative of clusters. Such “exemplars” can be found
by randomly choosing an initial subset of data points and
then iteratively refining them, but this works well only if that
initial choice is close to a good solution.

The K-means algorithm is widely used in text clustering.
Nevertheless, the K value of K-means clustering is fixed
and sensitive to its initial conditions. In order to overcome the
defects of the AP and the K -means that utilize affinity propa-
gation (AP) toinitialize K -means clustering, the CAK-means
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CAK-means Algorithm
Input: F\, = {fi, /o, ... . fu}-
Output: The clustering index 1.

1. Calculate similarity matrix SM as follows.

1.1 For each file, input the i-#h file vector f; ={fi;, fi2,.. ., fin}
(1<i<m), where f; represents the weights of each keyword in
file ..

1.2 Calculate the similarity score between document j (1</<m) and
document / (1</<m, j#[) as Eq. (3).

1.3 Calculate the similarity scores between every two document
vectors and get an m Xm similarity matrix SM.

2. Take SM as input and run AP clustering algorithm.

3. Get the number of clusters K and the initial centers for the K-
means clustering C, = {C,, C1, +..» Cui} -

4. Take C, as input and run K-means clustering algorithm.

5. Output the clustering index /.

Fig.1 CAK-means algorithm

(combination of AP and K-means clustering) method (Zhu
et al. 2009) is proposed to achieve fast searchable encryp-
tion in Big Data environments. As the AP found clusters
with much lower errors than other methods, it will signifi-
cantly improve the search accuracy. In the CAK-means based
scheme, the cluster center generated by the AP algorithm is
the initial clustering center of K-means, and the clustering of
the AP algorithm is fast and stable which effectively improves
the initial clustering center quality of the K-means, over-
coming its instability problem. The CAK-means algorithm
is illustrated in Fig. 1.

4 MRSE-CAK construction

The formal definition and concrete construction of the
MRSE-CAK scheme are detailed in this section.

4.1 Definition

Definition 4.1 (CAK-means-based multi-keyword ranked
search scheme, MRSE-CAK) A MRSE-CAK scheme con-
sists of six polynomial-time algorithms MRSE — CAK =
(Keygen, Index, Enc, Trapdoor, Search, Dec), such that:

Keygen(1*) — (sk, k) it is a probabilistic key generation
algorithm that is used to generate the secret key. It takes
a security parameter A as the input and returns the secret
keys (sk, k).

Index(F, sk) — I it is executed by the owner to generate
indexes. It takes a secret key sk and a file collection F as
inputs, and returns the index /. The process of clustering
is performed in this stage.

Enc(k, F) — Citis executed by the owner to encrypt the
file collection using a symmetric encryption algorithm.
Trapdoor(Q, sk) — Ty it is executed by a user to gen-
erate encrypted query vector T with queried keywords
and secret key.

Search(Tg, I¢, kop) — Eq it is executed by cloud server
to compute the similarity of trapdoor with an index to
generate the kyop search results.

Dec(Eg, k) — Ry it is executed by user to decrypt the
returned encrypted files.

4.2 Scheme construction

In the MRSE-CAK, the data owner firstly analyzes every
file to fetch the keyword dictionary W. Next, all files are
transformed into a collection of file vectors F,. At the same
time, file characteristics and statistic keyword frequency are
extracted and a feature vector similarity matrix is constructed.
After these steps, the data owner calculates the F¢ and C,
using the AP K-means clustering method as presented in
Sect. 3. As users request to search some keywords, the cloud
server needs to query the most relevant cluster first and then
use it as a benchmark to get kp results. The process of
file encryption, index construction, clustering, and search
is illustrated in Fig. 2. Noting that the encrypted clustering
index Ic contains the relations between cluster center and the
encrypted file vectors which is attached with the identifier of
the corresponding file.

The cloud server computes the relevance score with T
and index 1., as follows.

TQ . Ic — {Ml_lQ/, M2—1Q//} . {Mlel-/, M2Tfi//}
— Q/'fi/"'Q//'fi//
= Sori 4

After receiving the query T from a user, the server com-
putes the relevance scores using T with each cluster center
to get the ranked results and identify the encryption vector
of cluster center ¢, that is closest to Tp. The candidate set
consists of ¢,; together with its followers. According to the
file similarity matrix, the cloud server can retrieve all rele-
vant files. At this point, a threshold that is higher than the
value evaluated to be relevant is set. If the results of candi-
date set are less than k., the cloud server continues to search
for neighboring related cluster and sorts results; if the results
continue to be less than kiop, it returns all results to the users.
The complete MRSE-CAK scheme is described in Fig. 3.

In the MRSE-CAK, the secure kNN algorithm (Witten
etal. 1999)is also used to encrypt file index vectors and query
vectors. In order to improve the privacy of the original secure
kNN algorithm, u bits of corresponding dummy keywords
are added to data vectors and utilize the vector extending
technique (Feingold and Varga 1962) to extend all vectors
(data vector and query vector) from n dimension to n +u + 1
dimension.

As it can be utilized to compute the inner product simi-
larity of an index vector I and a query vector Q, it is used

@ Springer



3116

L.Chenetal.

< Encryption QAN
(e.g. AES) @

6 F={F, Py..... Fy}

\

Data owner Extract Keywords
and file vectors
Fo={f1; fare o5 S}

C:{CI, CZ,---, Cm}

W= {w; wa,..., wp}

Generate binary index vectors

Wp Wy ... Wy

S f fooe f

index vectors

NS fa e S generate weighted binary|

+ Calculate similarity matrix

Si S

i Su S ... Sim
£ Su Sy ... Sy, |[Run AP algorithp

and get

fm Sml SmZ Smm

kNN algorithm to encrypt /
and insert file identifier to get

Run K-means

Clustering index /
algorithm and get

Fig.2 Process of file encryption, index construction, clustering, and search

to measure the relevance between the query and the file as
Eq. (4). After completion of the transforming processes illus-
trated in Fig. 3, the data vector and the query vector cannot
be recovered by analyzing their corresponding ciphertexts
without any knowledge of the private key.

Note that after clustering the files collections, the data
owner will encrypt the files of the same cluster and store
them at the contiguous locality of disks of cloud servers. It
can be achieved by issuing a continuous write operation to
the disks of cloud servers.

For other issues such as data updating, existing methods
such as those proposed in Xia et al. (2016) can be utilized.
Due to software or hardware failure and attacks, the search
results returned to users may be tampered, so the existing
verifiable methods (Wang et al. 2017) can be utilized.

5 Security and performance analysis
5.1 Security analysis

The MRSE-CAK scheme is improved over the MRSE-HCI
scheme, and the security analysis is presented as follows.

Theorem 5.1 The MRSE-CAK is secure in the known cipher-
text model if the MRSE-HCI scheme is secure in the known
ciphertext model.

Proof The MRSE-CAK scheme is improved based on
MRSE-HCI scheme; the first difference is that the affinity
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propagation (AP) is considered to initialize K-means clus-
tering which improves the initial clustering center quality
of K-means effectively. As affinity propagation found clus-
ters with lower error than other methods, it will significantly
improve the search accuracy. The second difference is that
the related files are stored at contiguous locations of cloud
servers, in which does not weaken the security. When a user
queries some keywords, the server knows which encrypted
files do satisfy this query, no matter whether the files are dis-
persely stored on the server or continuously stored on the
server.

To protect the data privacy, secured symmetric encryption
techniques are utilized to encrypt all plaintext files. Never-
theless, discussions on the security of these techniques are
not the scope of this paper. We assume that the secret key
sk is randomly generated, and if the secret key sk is kept
confidential, the index privacy can be well protected. The
vector encryption method has been proved to be secure in the
known ciphertext model (Chen et al. 2016). The MRSE-CAK
scheme utilizes the same vector encryption as MRSE-HCI.
Since only the cluster methods are improved, no more infor-
mation will be leaked to the curious-but-honest cloud server
than MRSE-HCI.

As MRSE-CAK is a top-k ranked search scheme, the rank
order of the search results is revealed. To protect this privacy,
some effective methods, such as private information retrieval
(PIR) technique (Ishai et al. 2006) can be adopted. Moreover,
as cloud servers are in charge of most computations, secure
hardware can be utilized to protect the privacy. O
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Keygen(lﬂ'):

Index(F, sk):
1. Input the secret key sk and data set F.
2. Extract a dictionary W from F.

if the j-th of Sis 0,
ST =411 =10

else

Trapdoor(Q, sk):

if the j-thof Sis 1,
oU1=0U1=20ll

else

Search(Ty, 1, k;p):

with Ty and index /. as Eq. 4.

plaintext files using the secret key £.

1. The data owner randomly generates an (nt+u+1) bit vector S and two invertible (ntu+1) x
(ntu+1) dimension matrices {M;, M}, sk={S, M;, M>}.
2. Randomly generates the n-bit secret key k.

3. For each file F; in F, it constructs a file vector f;.
4. Invoking CAK-means algorithm to get a plaintext clustering index /.
5. Extend the dimension of f; from n to (n+u+1) by splitting it into two vectors as follows:

1:"[/11s set to a random number and set £;'[j] =fi[/] - /" /1.
6. Encrypt index as {M, ", My"f"}, and insert corresponding file identifier and get I,.

Enc(k, F): 1t is executed by data owner to encrypt the file collection using any secure symmetric
encryption mechanism (the AES is used in this scheme) to encrypt the plaintext files to get
ciphertexts. Note that the data owner will encrypt the files of the same cluster and store them at
the contiguous locality of disks of cloud servers.

1. Data user sends the searched keywords to the data owner. After analyzing the query, the data
owner will build the query vector Q with the dictionary .
2. Extend the dimension of Q from n to (n+u+1) by splitting it into two vectors as follows:

OTj] is set to a random number and set Q"[j] = O[/] - O/l
3. Finally, the trapdoor is generated as T = {M'Q", My'Q"} and it is sent back to the data user.

1. After receiving the query T, from data user, the cloud server computes the relevance score

2. The server chooses the most matched cluster which has the highest relevance score.

3. For each file contained in the matched cluster, the cloud server extract the corresponding
encrypted file vector from index /.. Then it returns the &, files according to the file similarity.
Dec(E,, k): After receiving the k,,, encrypted files, the data user decrypt the ciphertexts £ to get

Fig.3 The MRSE-CAK scheme

5.2 Performance analysis

In this section, experiments to evaluate the proposed MRSE-
CAK scheme are designed and performance results com-
pared next to MRSE-HCI (Chen et al. 2016).

5.2.1 Comparison between sequential and random //0

As the MRSE-CAK scheme utilizes CAK-means to cluster
all related files to one cluster, these files are stored at contigu-
ous locations of cloud servers to improve the file locality. We
will compare the /0 performance of sequential and random
disk read/write operations.

IOR is used to issue sequential and random requests on a
100GB SSD (OCZ-REVODRIVE X2) and a 250 GB HDD
(SEAGATE ST32502NSSUN250G). To make the evaluation
in this research fair and conservative, the operating system
buffer caches are flushed before each execution to ensure that
all data will be read from the storage devices. Moreover, the
“dirty” data in the memory are flushed to the storage devices

300
250
200
150
100

Bandwith (MB/sec)

50

0 50 100 150 200 250 300
Request Size (KB)
—@—SSD-seq —@— SSD-ran HDD-seq —@— HDD-ran

Fig.4 Comparison between sequential and random //0

to ensure that write throughput on the storage devices are
correctly measured. Figure 4 shows the results under differ-
ent request sizes from 1 to 256 KB. As depicted in Fig. 4,
the sequential //0 performance is much better than that of
random request for both read and write operations for both
HDD and SSD.

The following experiments are implemented in MATLAB
on a computer server configured with Intel core i5-7200U

@ Springer
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size of dictionary, m = 1000

2.5 GHz processor, 8 GB memory, AMD Radeon R7 M445
graphics card, and Win10 (64 bit) operation system. Gauss
matrix, invertible matrix, and matrix multiplication are
achieved by using MATLAB libraries. As defined in Sect. 3,
n denotes the dictionary size, m denotes the number of docu-
ments in the data set, and g denotes the number of keywords
users requested. Since the AP algorithm and the K-means
algorithm have been integrated in MATLAB libraries, the
proposed implementation needs to invoke them as well to
modify parameters.

5.2.2 Overhead of index construction

The process of index construction is achieved in three main
steps, as step (1): mapping the keyword dictionary extracted
from each file to a binary vector, step (2): invoking CAK-
means algorithm to build index, and step (3): encrypting
the index by splitting and multiplying of two matrices. The
dimension of vectors depends on the size of the dictionary
and it directly determines the time of mapping encryp-
tion. The time of generating complete index is related to
the number of files in data set F' and the number of key-
words in dictionary W. Figure 5a shows that given the same
dictionary (n = 4000), the time overhead of index con-
struction increases linearly with the increase in dataset, and
Fig. 5b demonstrates that given the same number of files
(m = 1000), the time overhead is determined by the size
of keyword dictionary for index construction. Thus, as the
process of index construction of MRSE-CAK is similar to
MRSE-HCI, the time overhead is similar.

5.2.3 Trapdoor generation

Similar to index construction, the generation of each trapdoor
comprises the process of vector splitting and the multiplica-
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tion of two matrices. These operations can be implemented
by MATLAB. In comparison to index construction, trapdoor
generation consumes relatively less time. Figure 6a shows
that the time of generating a trapdoor is greatly affected by the
number of keywords in the dictionary. Moreover, the number
of query keywords has minimum influence on the overhead
of trapdoor generation when the dictionary size is fixed, as
shown in Fig. 6b.

5.2.4 Search efficiency and accuracy

The search efficiency and accuracy of the proposed MRSE-
CAK scheme with MRSE-HCI are compared and evaluated
with different conditions, as depicted in Fig. 7. Figure 7a
shows that the search time of MRSE-CAK with respect to
the size of data set is comparable with MRSE-HCI. It is
noteworthy that the proposed MRSE-CAK scheme has a
higher efficiency than MRSE-HCI. In addition, it is shown in
Fig. 7b that the search time of the MRSE-HCI scheme keeps
stable with the increasing query keywords. Meanwhile, the
search time of the proposed MRSE-CAK scheme is lower
than MRSE-HCI.

Same evaluation method is considered to evaluate the
search accuracy as MRSE-HCI, in which the search results
are based on a relevance threshold set in advance. Only the
files whose relevance score is higher than that threshold is
added to the set of search results. The search process is illus-
trated as Fig. 3 and return kop search results. The relevance
of different retrieved files is evaluated using Eq. (5). At this
point, r denotes the number of files retrieved by plaintext
search, Score() is a function to compute the relevance score.

klop k(op

Pd = ZZScore(fj, fi)/

j=1i=1

> " Score(f). fi) | ()

j=1i=1
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The relevance of retrieved files and the query is evaluated
using Eq. (6).

klop r
Pg = Score(TQ, fi)/ Y _ Score(Q, fi) (6)
i=1 i=1

The search accuracy is depicted in Fig. 8, where the rele-
vance of retrieved files with the size of the file set increasing
from 2000 to 10,000 is also illustrated in Fig. 8a. We can
observe that the relevance between files in MRSE-CAK is
slightly higher than that of MRSE-HCI, signifying that the
retrieved files generated by MRSE-CAK are much closer
to each other. Similarly, Fig. 8b shows that the relevance
between the query and retrieved files of MRSE-CAK is bet-
ter than that of MRSE-HCI.

Likewise in MRSE-HCI with a sharp increase in files in
the data set, the search time of MRSE-CAK scheme increases
linearly, whereas the traditional method increases exponen-
tially. Moreover, it also has the advantage over the traditional
method in the rank privacy and relevance of retrieved files.
As overall, the results of the experiments show that the pro-
posed MRSE-CAK scheme improves the search efficiency
and accuracy while ensuring equivalent security.

6 Conclusions and future work

In this paper, we propose to utilize fast clustering of the
AP algorithm to improve file locality and realize an effi-
cient multi-keyword ranked searchable symmetric encryp-
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tion scheme MRSE-CAK that can take advantages of the
relationship among files to speed up the search process. The
CAK-means cluster method is introduced to enhance the per-
formance of semantic search and overcome the instability
problem of K-means. In MRSE-CAK, datasets are divided
into several clusters, and the related files in one cluster are
stored at the contiguous locality of disks that will largely
improve the file locality and concurrently speed up the read
and write of disk //0. Coordinate matching is utilized to
evaluate the similarity between outsourced files to achieve
accurate ranked search. Considering privacy preserving, the
MRSE-CAK scheme is secure in the known ciphertext threat
model. From experiment results, we show that the proposed
MRSE-CAK scheme improves the search efficiency and
accuracy while ensuring the equivalent security.

Future relevant studies of this research include detection of
bottleneck, which could be the latency on reading the index
or the latency on reading files from the disk. In addition,
improvements on the efficiency of the search algorithm and
the design of a secure scheme in enhanced threat model will
also be aimed.
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