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Abstract
Modern advanced large language model (LLM) applica-

tions often prepend long contexts before user queries to im-
prove model output quality. These contexts frequently re-
peat, either partially or fully, across multiple queries. Exist-
ing systems typically store and reuse the keys and values
of these contexts (referred to as prefix KVs) to reduce re-
dundant computation and time to first token (TTFT). When
prefix KVs need to be stored on disks due to insufficient CPU
memory, reusing them does not always reduce TTFT, as disk
I/O latency is high. In this paper, we propose IMPRESS, an
importance-informed multi-tier prefix KV storage system to
reduce I/O delay for LLM inference by only loading important
prefix KVs. IMPRESS first leverages the insight that there
is significant similarity in important token index sets across
attention heads and introduces an I/O-efficient important KV
identification algorithm. It then optimizes prefix KV storage
and caching through importance-informed KV management,
reducing TTFT during model inference. Our experimental
results show that IMPRESS can reduce TTFT by up to 2.8⇥
compared to state-of-the-art systems, while maintaining com-
parable inference accuracy.

1 Introduction

Generative large language models (LLMs), such as ChatGPT
and GPT-4, are increasingly utilized in applications like chat-
bots [16, 37], document summarization [3, 7], and transla-
tion [9, 31] due to their powerful understanding and genera-
tion capabilities. To generate more relevant and high-quality
responses, these applications often prepend context-rich pre-
fixes to user queries before sending the entire request to the
model for inference. These prefixes may include the latest
news retrieved from web searches relevant to the queries [18],
historical conversation with the user [5], and examples of
question-answer pairs [25] to guide the model’s output for-
mat.

⇤Shuibing He is the corresponding author (heshuibing@zju.edu.cn).

While longer requests enhance the quality of the model’s
output, they also significantly increase response-generation la-
tency, particularly the time to first token (TTFT). This occurs
because the computational complexity of processing a request
grows superlinearly with its length [35]. Such an increase can
negatively impact user experience, particularly in real-time
applications like chatbots where a quick TTFT is essential.

Existing systems have observed that many requests share
identical initial tokens, known as prefixes. Storing and reusing
keys (K) and values (V) of these common prefixes can de-
crease TTFT by eliminating redundant computations. How-
ever, conventional systems only cache these prefix KVs in
GPU or CPU memory [8,12,39,45], which can become insuf-
ficient for lengthy sequences or large batches, thus restricting
TTFT reduction. AttentionStore [5] expands KV storage to
local disks and pre-loads them into CPU memory based on
the scheduler’s predictions for future requests. Yet, disk I/O
bandwidth limitations can pose a bottleneck, especially under
high request volumes or in preemptive scheduling environ-
ments where anticipating future requests is difficult. Our study
shows that the I/O latency from SSD to GPU can be rarely
hidden by query computation and accounts for 51%-98% of
the total TTFT, as shown in §2.2.

Meanwhile, recent research indicates that some tokens’
KVs are more critical to the quality of model output than
others, and discarding less important KVs can still result in
comparable LLM output quality [17,22,32,44]. Based on this
insight, we propose an importance-aware, multi-tier prefix KV
storage system, IMPRESS, which leverages GPU memory,
CPU memory, and disks to reduce LLM inference latency
while maintaining comparable output quality. GPU and CPU
memory serve as caches for data stored on disks. The core
idea is to load only the important prefix tokens’ KVs, thereby
minimizing the I/O data accessed from slower disks. However,
building such an efficient KV storage system involves two
significant challenges.

First, the important tokens in a shared prefix can vary
among multiple queries, incurring substantial I/O overhead to
identify important prefix KV for each query. Existing systems

USENIX Association 23rd USENIX Conference on File and Storage Technologies    187



need to load all prefix keys into GPU memory to calculate
attention scores with the query, which determines the impor-
tance of each token’s KVs. Loading all keys from disk storage
significantly impacts I/O efficiency, impeding TTFT reduc-
tion. A smarter method to identify key tokens with minimal
I/O overhead is essential.

Second, existing systems often consolidate consecutive
KVs into large objects (e.g., chunks), to optimize disk I/O
and PCIe transfer bandwidths. However, our system’s selec-
tive retrieval of important KVs makes these methods less
efficient for two key reasons. (1) Accessing important KVs
also loads irrelevant KVs from the same chunk, diminishing
disk read performance and filling cache with unnecessary
data. (2) Cache management, typically based on chunk access
patterns [12, 38, 45], overlooks the significance of individual
prefix KVs within each chunk. This can result in crucial KV-
rich chunks being stored on slower storage, reducing cache
hit ratios.

To address the first challenge, we study the important token
distributions among multiple heads of each layer in the LLM.
We find that important token indices are highly similar across
heads within the same layer. Based on this insight, we propose
a similarity-guided important token identification method that
only loads the keys from a subset of heads to identify crucial
KVs within the entire prefix.

To tackle the second issue, we propose importance-
informed KV management methods. We employ a KV re-
ordering technique to reorder and repack the prefix KVs stored
on disk, thereby increasing the density of important KVs in
the chunks and improving the effective disk read bandwidth.
Additionally, we introduce a new score-based cache man-
agement policy considering token’s importance to further
enhance cache hit ratios.

We implement IMPRESS and evaluate its performance on
three LLM models with various sizes (from 6.7B to 30B)
across four datasets. Our experimental results show that IM-
PRESS achieves up to a 3.8⇥ reduction in I/O time and a 2.8⇥
reduction in TTFT, while maintaining an inference accuracy
drop of less than 0.2%.

The main contributions of this paper are as follows:

• We present IMPRESS, the first importance-informed
prefix KV storage system that integrates three storage
tiers: GPU memory, CPU memory, and disk.

• We propose a similarity-guided important token identifi-
cation method to identify important KVs, significantly
reducing I/O overhead.

• We devise importance-informed KV management meth-
ods including KV reordering and a new score-based
cache management policy to further minimize I/O data
volume from slower storage media.

• We implement IMPRESS and our evaluation demon-
strates that it reduces TTFT by up to 2.8⇥ compared
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Figure 1: The LLM model structure.

to the state-of-the-art prefix KV storage systems while
maintaining comparable inference accuracy.

2 Background

2.1 Large Language Model Basics
Model inference. A generative LLM typically consists of an
input layer, tens of consecutive transformer layers, and an
output layer, as shown in Figure 1. Assume an input sequence
with l tokens denoted as S = [t0, t1, . . . , tl�1] and an LLM with
n transformer layers. This sequence is first transformed into a
tensor Xin with shape l ⇥d by the input layer, where d is the
model’s hidden dimension. Xin then passes through the first
transformer layer, resulting in an intermediate output tensor
Xout_0 that maintains the shape l⇥d. This Xout_0 becomes the
input for the subsequent transformer layer. The final block’s
output, Xout_(n-1), is passed to the output layer, generating the
first new token tl . Then, the newly generated token is fed back
into the input layer to generate the next token. This process
repeats until either the maximum token limit is reached or a
special end-of-sequence (EOS) token is generated, signaling
the end of the LLM inference process. The generation of each
token is referred to as an iteration. The process of generating
the first token is called the prefill phase, while the subsequent
token generation is known as the decoding phase.
Transformer layer computation. Each transformer layer
consists of an attention layer and a feed-forward network
(FFN) (we omit the description of layer normalization and
residual connections for simplicity in Figure 1). During the
prefill phase, the input tensor Xin is passed through three
weight matrices, Wq, Wk, and Wv, to generate three 3D tran-
sient tensors: query (Q), key (K), and value (V). Each of these
tensors consists of multiple heads (e.g., 3 in Figure 1), with
each head containing a 2D tensor referred to as q, k, or v. The
Q and K tensors are then used to produce attention weights,
where each head has one corresponding 2D attention weight
matrix. Each value in the attention weights indicates the rele-
vance of one token to another. The attention weights are then
multiplied by the V tensor to form the attention output. This
output is passed through a feedforward network (FFN), which
consists of two linear layers, ultimately producing the output
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Figure 2: The TTFTs of various cases. Assume the LLM
model consists of three transformer layers, denoted as ‘Lx’.

tensor Xout, with the same shape as Xin. The transformer com-
putation in the decoding phase is generally similar to that in
the prefill phase, with a few differences [26]. Since it is not
the focus of this paper, we omit the details here.

2.2 Shared Prefixes and Storage System
Long TTFT due to the use of context-rich prefixes. Di-
rectly using large models for inference can lead to suboptimal
results. For instance, when queried about a recent event not
included in the model’s training data, the model might pro-
vide incorrect answers. Additionally, due to issues such as
hallucinations, the model’s responses might contain inaccu-
rate or misleading information [43]. To improve response
quality, applications often prepend user queries with addi-
tional context-rich prefixes to form complete requests, which
are then fed into the LLM as input sequences. For example,
Retrieval-Augmented Generation (RAG) [18] searches ex-
ternal knowledge bases for documents relevant to the user’s
query. Advanced GPT plugins, such as Chameleon [25], in-
clude tool definitions in the system prompt and use few-shot
examples to guide the LLM in performing complex reason-
ing tasks. Multi-turn dialogue applications [5] add previous
question-answer pairs to the user’s latest query for better in-
tent understanding, while the self-consistency technique [2]
generates multiple responses to the same query and uses vot-
ing to improve accuracy.

Figure 2(a) and Figure 2(b) show that while these context-
rich prefixes improve the quality of responses, they also signif-
icantly increase the time-to-first-token (TTFT), which is the
delay before the model generates the first token. For instance,
the Chameleon system adds over 2,600 tokens of context be-
fore the user’s query [24]. Given that the average real-world
user query is about 750 tokens [34], this increases the request
token count by more than 4⇥, extending the TTFT by 9⇥ for
the OPT-30B model due to the additional computation. This
can negatively impact user experience, especially in TTFT-
sensitive applications like real-time chatbots. Besides, it also
degrades the system’s overall throughput and increases the
enterprise costs. This paper focuses on reducing TTFT during
the prefill phase without altering the decoding phase. Note
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Figure 3: TTFT breakdown. ‘ReComp’ refers to not reusing
the prefix KV. ‘QueryComp’ denotes the remaining computa-
tion after loading the prefix KV.

that shortening TTFT also reduces decoding latency for other
requests, as modern systems use continuous batching, where
the decoding of existing and newly-arrived requests are pro-
cessed together after the completion of the prefill of the new
requests [40].
Prefix KV storage systems and I/O bottleneck. Re-
searchers have observed that these prefixes are often partially
or completely shared across different requests [5, 8, 12, 21, 39,
45]. For example, similar queries might retrieve partially or
entirely the same related documents using RAG; the same
GPT plugin can be used multiple times, resulting in identi-
cal system prompts across requests. Recomputing the K and
V tensors in Figure 1 for the same prefix leads to wasted
computational resources and increased TTFT. To optimize
TTFT, existing systems store and reuse the K and V tensors
of these shared prefixes (referred to as prefix KV cache or
simply prefix KV). Note that the Q tensor of the prefix is not
stored, as it is not needed for subsequent computations [5].
When a new request with a repeated prefix arrives, the system
asynchronously preloads its prefix KVs into GPU memory,
thereby reducing TTFT during the prefill phase of the new
request.

An effective prefix KV storage system must meet two re-
quirements. First, it needs sufficient storage capacity to hold
enough prefix KVs. A 2,600-token prefix KV alone requires
3.4 GB of storage space for a medium-sized OPT-30B model.
Second, the latency for prefetching the prefix KV must be
low. Otherwise, it will become a bottleneck of the LLM in-
ference, limiting the reduction of TTFT. Currently, no system
can simultaneously meet these two requirements across vari-
ous scenarios. Most existing systems store prefix KVs only
in GPU and/or CPU memory [8, 12, 39, 45], as shown in Fig-
ure 2(c), to reduce TTFT. However, the limited space in GPU
and CPU memory quickly becomes exhausted. Although the
latest prefix KV storage system, AttentionStore [5], stores the
prefix KV on both CPU memory and disk to provide suffi-
cient storage space, it doesn’t fundamentally reduce the load
time, as the latency from disk cannot be fully hidden by com-
putation in some cases as shown in Figure 2(d). Thus, this
approach may fail under heavy request loads or in preemp-
tive scheduling scenarios, due to the bottleneck of disk I/O.
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Figure 3 shows the TTFT breakdown for recalculating shared
prefixes versus loading and reusing prefix KVs from different
storage media (i.e., GPU memory, CPU memory, and SSD).
We vary the number of input prefix tokens from 128 to 8k.
The “load” time represents the I/O latency that cannot be
hidden by query computation. It shows that loading prefix
KVs from GPU or CPU results in shorter TTFT compared to
recomputation, but loading from SSD leads to longer TTFT.
This is due to the I/O latency from SSD to GPU, which is
rarely hidden by query computation and accounts for 51%-
98% of the total TTFT. Consequently, prefix KV loading has
become a new bottleneck in model inference, particularly for
longer prefixes.

3 Motivation and Challenges

3.1 Not All KVs Are Equally Important
Recent research [17, 22, 32, 44] indicates that not all tokens’
KVs are equally important for maintaining LLM inference
accuracy. These methods generate and store the full set of
KVs during the prefill phase, then identify and discard the
less important tokens’ KVs during decoding by analyzing the
attention weights. This approach reduces the computational
load during the decoding phase while maintaining comparable
LLM inference accuracy.

Inspired by this, we propose an importance-informed three-
tiered prefix KV storage system that encompasses GPU mem-
ory, CPU memory, and disk storage. When reusing prefix KVs,
we aim to load only important KVs for prefill and decoding
computations, while unimportant tokens’ KVs are discarded.
Selectively loading the important KVs can fundamentally
alleviate the disk bottleneck, thereby reducing TTFT.

3.2 Challenges
Challenge 1: Directly applying existing important token
identification methods on prefix KV loading still has sig-
nificant I/O overhead. Existing methods must load all prefix
keys into GPU memory to compute attention weights and
then identify important KVs [17, 22, 32, 44]. Reducing only
the loading time of prefix values limits TTFT reduction.

(a) (b)
Figure 5: (a) The ratio of important KVs within each chunk.
(b) Average ratio of important tokens in all chunks for a given
chunk access frequency.

A straightforward approach to avoid loading all prefix
keys is to statically record the identified important tokens
for queries. Then, when another query with the same prefix
arrives, only the KVs of pre-identified important tokens would
be loaded, reducing the I/O time. However, this approach has
a significant flaw. We observed that the importance of tokens
within the same prefix can vary depending on the specific
query. We intuitively explain the observation here. For ex-
ample, in a RAG scenario, different queries might use the
same document as the prefix, but the relevant answers could
be found in different text segments of the prefix. Thus, the
method that pre-identifies important tokens could miss critical
ones, substantially degrading the accuracy of LLM inference.

To confirm this limitation, we assess the recall ratio of
important tokens and its effect on model generation quality
across two models and datasets: OPT-6.7B on RTE [6] and
OPT-30B on SQuAD [30]. We evaluate generation quality
using accuracy and F1 score [21] for the two datasets respec-
tively. As depicted in Figure 4, even with recall ratios above
80%, the omission of vital KVs results in accuracy and F1
score declines of up to 5% for RTE and 3.3% for SQuAD.
Consequently, there is a need for a dynamic method that can
discern important tokens within prefixes for various queries,
while minimizing I/O overhead.
Challenge 2: The existing prefix KV storage and caching
systems are suboptimal considering token’s importance.
Existing systems typically store and manage cache by group-
ing KV pairs from several consecutive or all prefix tokens
into chunks [5, 14, 39, 45], which enhances the efficiency of
disk reads and PCIe transfers. Each chunk contains a mix
of important and unimportant KVs. When retrieving KVs
for important tokens, entire chunks are loaded into memory,
including the unimportant ones. This practice causes read am-
plification, diminishing effective bandwidth and filling cache
with unnecessary data, which lowers cache hit ratios.

Furthermore, managing chunks in CPU and GPU caches
based solely on traditional metrics like recency or frequency
can further reduce GPU cache hit ratios and increase PCIe
data transfers. This is because these metrics ignore the impor-
tance of KVs and the proportion of important KVs in each
chunk. As a result, less critical chunks may occupy valuable
GPU memory, while more critical ones are relegated to the
CPU memory. This misallocation decreases the GPU hit ra-
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tio for important KVs and necessitates more data transfers
between CPU and GPU memory.

We experimentally illustrate this challenge using OPT-6.7B
on RTE. We designate half of the prefix tokens as important
and the remaining half as unimportant. Figure 5(a) shows
that only 46% of the KVs in the loaded chunks are important
on average, leading to 2.2⇥ read amplification. Figure 5(b)
shows the ratio of important KVs for chunks with different
access frequency. The hotness or coldness of a chunk is not
related to the ratio of important KVs it contains. These obser-
vations underscore the need for new KV storage and cache
management methods to reduce the loading of unimportant
KVs from disk and improve cache hit ratios.

4 IMPRESS Design

In this section, we present IMPRESS, an importance-informed
three-tier prefix KV storage system. First, we describe the
overall architecture of IMPRESS (§4.1). Then, we discuss our
observations regarding important tokens (§4.2) and introduce
an I/O-efficient technique to identify important tokens based
on the insights (§4.3). Finally, we explain how prefix KVs
are managed across three storage tiers to further reduce the
latency when loading them into GPU memory (§4.4).

4.1 Overview
We propose IMPRESS to provide large storage capacity for
prefix KVs while ensuring efficient I/O accesses to reduce
TTFT. The system is designed based on two principles: (1)
Using a minimal number of I/Os to identify the important KVs
within a prefix, allowing only the essential KVs to be loaded
during the prefill phase; (2) Since loading only important KVs
could degrade the efficiency of existing storage and caching
systems, we optimize the three-tier prefix KV management to
improve cache hit ratios and I/O efficiency.

Figure 6 presents the overall architecture of IMPRESS. In
the data plane, all prefix KVs are stored on disks in chunks,
with some prefix KVs cached in either CPU memory or GPU
memory. The data in the two cache spaces are exclusive
to avoid space wastage. The metadata in the CPU memory
is organized using a radix tree [45], which facilitates quick
searches for the reusable prefix KVs. The runtime space stores
model parameters and intermediate data needed for GPU in-
ference. IMPRESS has two control components including
important token identification (ITF) (§4.3) and prefix KV
management (PKM) (§4.4). ITF identifies important tokens
within a chunk by loading only partial keys rather than all of
them, reducing the amount of data loaded from disks. PKM
manages the storage and data movement of prefix KVs across
disks and the two cache spaces in CPU and GPU memory.
Dataflow of IMPRESS. Assume that a request S =
[t p
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p
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Figure 6: Overview of the IMPRESS system.

and tq denote the prefix and non-prefix tokens respectively.
First, given the request, IMPRESS searches the radix tree to
find the longest common prefix subsequence from all previous
requests [39, 45]. Let’s assume the result is R = [t p

0 , t
p
1 , ..., t

p
j ],

whose KVs are stored in GPU memory, CPU memory, or disk.
There may also be some prefix tokens NR = [t p

j+1, ..., t
p
m�1]

that are not in the radix tree, and therefore their KVs do not
exist in the system. Next, IMPRESS employs the I/O-efficient
ITF method to identify the important tokens within R , as-
suming Rimportant = [t p

t , t
p
t+1, ..., t

p
s ] (0  t  s  j) is identi-

fied. If KVs in Rimportant are not in GPU memory, they are
loaded from disk or CPU memory. The KVs of unimportant
tokens in R are not reused and do not participate in further
inference. Then, the loaded Rimportant , the tokens NR, and the
tokens [tq

0 , t
q
1 , ..., t

q
n�1] are sent into LLM model, completing

the remaining computations in the prefill phase. Essentially,
Rimportant plus NR becomes the defacto prefix used in the
LLM inference, replacing the set of {t p} in S. Finally, the
newly generated KVs for the prefix token in NR are stored on
disk, and the prefix tokens in NR are inserted into the radix
tree for future reuse by other requests. The decoding phase
remains unchanged, following existing systems [35].
Importance metric. In this paper, we use the sum of val-
ues in each column of the attention weight matrix as the
token’s importance, following the same method in H2O [44].
A higher sum indicates greater token importance. Our system
is also compatible with other metrics for measuring token
importance [17, 22, 32].

4.2 Insights of Important Tokens
Observation I: There is a high similarity in the set of impor-
tant token indices across different heads within the same layer
of an LLM.

As described in §2.1, each token has K and V tensors for
every head. We found that the set of important token indices
is highly similar across different heads within the same layer.
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This is intuitive because the k or v tensors in different heads
are derived from the same large K or V tensors [35,42]. There-
fore, if a token is significantly more important than another in
one head, it is highly likely that this importance relationship
holds in other heads as well. Note that although we cannot
strictly prove these observations mathematically for all LLMs
and scenarios, we will demonstrate the generality and prac-
ticality of these observations through accuracy evaluations
(§6.2) after applying the corresponding techniques on four
datasets across three models.

To quantitatively measure the similarity between these in-
dex sets, we use the Jaccard index [4]. Assume the sets of
the most important token indices selected from two heads
are A and B. The jaccard index is defined as the size of the
intersection divided by the size of the union of the two sets:
J(A,B) = |A\B|

|A[B| . The Jaccard value is 0 when the two impor-
tant token index sets are completely different and 1 when they
are identical. Figure 7(a) shows an example where an input
sequence contains four tokens, of which 50% are considered
as important tokens. The index set of important tokens for the
keys of head 0 is h0 = {0,2}, and for head 1 it is h1 = {0,1}.
The similarity between the important token indices in these
two heads is J(h0,h1) =

|h0\h1|
|h0[h1| =

1
3 . Figure 7(b) shows a real

similarity heatmap of the important token sets in the keys
produced by the middle transformer layer of the OPT-6.7B
model. It demonstrates that these similarities are quite high,
with average values exceeding 0.95.
Observation II: The similarity of important tokens (repre-
sented as important token index sets) exists across different
sampling ratios and LLM scales.

To gain further insights, we study the average similarity
of token index sets across different heads for the OPT-6.7B,
OPT-13B, and OPT-30B models, when selecting the top 10%
and 40% most important tokens (Figure 8). Each bar in the
figure represents the average value for a single transformer
layer. These three models contain a total of 32, 40, and 48
transformer layers, respectively. We have two findings. (1)
The higher ratio of important tokens selected, the greater the
similarity. For instance, when selecting 40% and 10% of the
tokens, the average similarity across all layers of OPT-30B is

(a) select the top 10% most important tokens

(b) select the top 40% most important tokens

Figure 8: Similarities of important token index sets across all
transformer layers.

0.68 and 0.48, respectively. This aligns with intuition, as the
similarity reaches 1 when all the tokens (100%) are selected.
(2) Although smaller models and deeper transformer layers
tend to exhibit lower similarities, they are still significantly
higher than the expected value from random selection in most
cases.

4.3 Similarity-Guided Important Token Iden-
tification

Based on the above observations, we propose the similarity-
guided important token identification technique. The core
idea is that because of the similarity we can leverage the im-
portant token index set generated from a few selected heads
to approximate the important token index sets for the remain-
ing heads. For simplicity, we refer to these selected heads as
probe heads. Since this process involves loading only keys
from a subset of the heads instead of all heads, it reduces both
I/O data volume and TTFT.

As some layers exhibit less pronounced similarity between
important token sets across different heads, applying this tech-
nique to these layers may misidentify important tokens in
some heads, reducing the model’s inference accuracy. To
tackle this issue, we introduce a similarity threshold that dy-
namically determines whether to apply the technique for each
transformer layer. The similarity-guided important token iden-
tification is enabled only when the measured similarity value
from the probe heads is higher than the similarity threshold.

Figure 9 illustrates the process of completing a transformer
layer with and without this technique. Assume the prefix
contains 4 tokens, with only one being important. Each trans-
former layer has 32 heads and all the prefix KVs of each head
are stored on disk. The number of probe heads is set to three.
Without the similarity-guided important token identification
technique, it involves three steps: (1) loading the keys of all
32 heads (total 32 ⇥ 4 = 128 vectors) from disk into the
GPU memory; (2) GPU calculates attention weights using
the query and all the keys, identifies the most important token
index in each head i: {xi}, 0  i  31, and returns them to the
CPU memory; The detailed identification algorithm is based
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Figure 9: The process of transformer layer computation with
prefix kv. Each k and v tensor has four row vectors because
of four tokens in the prefix.

on H2O [44]. (3) The CPU then loads the k and v vectors of
{xi} from each head (total 32 ⇥ 1 = 32 vectors) into the GPU
memory to complete the remaining prefill computations. The
entire process loads a total of 128 + 32 = 160 vectors.

In contrast, with the similarity-guided important token iden-
tification technique, the steps are as follows: (1) only the keys
from the three probe heads (total 3 ⇥ 4 = 12 vectors) are
loaded from disk into the GPU memory; (2) GPU calculates
attention weights using the query and the keys from the probe
heads, identifies the important token index sets of the three
heads, and computes the average Jaccard similarity. If this
similarity exceeds the similarity threshold, only one token
index deemed most important by all probe heads, {x}, are re-
turned to the CPU; Then, proceed to step (3). If the threshold
is not met, the computation mode of the current layer falls
back to the version without enabling the similarity-guided im-
portant token identification method. (3) The CPU then loads
the k and v vectors of {x} from each head (total 32 ⇥ 1 ⇥ 2 =
64 vectors) into the GPU memory for the remaining computa-
tions. The entire process loads a total of 12 + 64 = 76 vectors.
While the I/O data volume cannot be reduced when the probe
heads’ similarity does not exceed the threshold, this situation
only occurs in less than 20% transformer layers in the IM-
PRESS system on average (see §6.3). Moreover, in practical
LLM models, each transformer layer typically has dozens of
heads (e.g., 32-96 in various sizes of the OPT model) and
the prefix contains thousands of tokens [21, 39], making this
technique effective in reducing I/O data volume across the
entire model.

Figure 10 compares the timeline for completing three
transformer layers with and without this technique. With-
out similarity-guided important token identification, in Fig-
ure 10(a), the loading of a large number of keys leads to GPU
idle time, prolonging inference process. In contrast, when the
technique is enabled in Figure 10(b), and the probe heads’
similarity exceeds the threshold, the time required to load
only the keys from the probe heads (in red color) is signifi-
cantly shorter, thereby reducing GPU wait time. Additionally,
loading only a subset of keys for attention weight calculations
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Figure 10: The TTFTs with and without similarity-guided im-
portant token identification. Assume the LLM model consists
of three transformer layers. The numbers inside the rectangles
represent the layer index.
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Figure 11: The proportion of keys loaded and the model in-
ference accuracy under different similarity thresholds.

reduces the time spent generating important token index sets
(in green color), leading to a shorter overall TTFT.
Hyperparameter decisions. To make this algorithm practi-
cal, we need to determine the number of probe heads and
the similarity threshold. Selecting only one probe head to
determine the most important token index may introduce bias,
affecting model accuracy. Using two probe heads might fail
to identify the most important index through voting when
disagreements arise. Therefore, we choose to use three probe
heads. Increasing the number of probe heads offers minimal
improvements in accuracy but increases the keys loading time,
thereby extending the TTFT. Additionally, we found that the
choice of which three heads to use has no impact on accuracy
due to the similarity. Therefore, we simply select the first three
heads in each transformer layer as the probe heads to keep
the selection process quick. We first compute the similarity of
important token sets between each pair of probe heads, and
then take the average to measure the overall similarity among
the three probe heads. Thus, the similarity is independent of
the order of probe heads.

Setting the similarity threshold is complex. A threshold set
too high might fail to reduce the number of keys and values
across many transformer layers, as the average similarity of
the probe heads often falls short of the threshold. On the
other hand, a threshold set too low can introduce bias in the
identified important token index set, compromising model
accuracy. Figure 11 illustrates this on the PIQA [6] dataset,
where each transformer layer selects the top 25% of the most
critical prefix KVs. Although decreasing the threshold from 1
to 0 cuts the number of keys loaded by 4⇥, it also results in
a 1.6% decrease in accuracy, from 79.1% to 77.5%. Similar
patterns are observed across other datasets.
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rectangles represent important (unimportant) keys.

To address this issue, we first calculate the expected value
based on the proportion of selected important tokens, then
slightly increase this value and use it as the similarity thresh-
old. Specifically, suppose we have a prefix containing n to-
kens and need to select k important tokens (k  n). If we
randomly execute this selection twice, we obtain sets A and
B. The probability of each token appearing in both sets is
k2

n2 . Given N tokens in total, E(A\ B) = n · k2

n2 = k2

n , and

E(A[B) = E(A)+E(B)�E(A\B) = k+ k� k2

n = 2k� k2

n .
Therefore, E(Jaccard(A,B)) = E(A\B)

E(A[B) =
k/n

2�(k/n) . Denote this
expected value as j. We set the threshold t = ja, where we
empirically choose a = 0.6 in our experiments to achieve
a good balance between model inference accuracy and the
amount of keys loaded.

4.4 Importance-Informed KV Management
4.4.1 KV Reordering

We present the KV reordering method to address the unnec-
essary loading of unimportant KVs during important KV re-
trieval. By periodically reorganizing and repacking important
KVs into denser chunks, this approach optimizes read effi-
ciency and reduces bandwidth waste. Scheduled at regular
intervals (e.g., every 10 minutes), this process is based on
the average token importance and operates asynchronously to
avoid disrupting the main I/O flow.

To illustrate, consider a prefix [t0, t1, t2, t3] where the
existing system stores keys for two adjacent tokens in one
chunk, each containing one important and one unimportant
key. Without KV reordering (Figure 12(a)), both chunks must
be loaded to retrieve the important keys {t0, t3}, wasting read
bandwidth and cache space on unimportant keys. With KV
reordering (Figure 12(b)), tokens are reordered by importance,
and keys of adjacent reordered tokens ([t0, t3] and [t1, t2]) are
packed into one chunk. This enables loading just one chunk
to access all important keys, reducing disk read data.
Metadata adjustment. In LLMs, prefix KVs can only be
reused if two prefixes share a common subsequence starting
from the first token (i.e., the token order must be the same).
Therefore, existing systems typically use a radix tree [39, 45]
or its variants [12] to record stored prefix tokens, enabling
quick search for reusable stored prefix KVs when a new re-

s0 = [t0, t1, t2, t3]
k_ptr:[ , ]
v_ptr:[ , ]

s1 = [t4, t5,
t6, t7]

s2 = [t8, t9,
t10, t11]

s0’ = [t0, t3, t1, t2]
m0 = [0, 2, 3, 1]
k_ptr:[ , ]
v_ptr:[ , ]

s1 = [t4, t5,
t6, t7]

s2 = [t9, t8, t10, t11]

…
… m2 = [1, 0, 2, 3]

m1 = [0, 1, 2, 3]
…

…
(a) before recordering (b) after recordering

Figure 13: Comparison of meta structure before and after KV
reordering. The orange (blue) rectangles represent important
(unimportant) keys.

quest arrives. However, KV reordering may destroy the radix
tree structure by altering the token order, causing new requests
to fail in locating the correct shared prefix KVs. To overcome
this, we limit the scope of KV reordering to the tokens within
each node of the radix tree. Additionally, we introduce a map-
ping list within each node to assist the checking operations of
new requests. We use an example to explain the details.

Consider two requests that retrieve related document seg-
ments as prefixes through RAG. Each prefix contains eight
tokens: p0=[t0, t1, t2, t3, t4, t5, t6, t7] for one request and
p1=[t0, t1, t2, t3, t8, t9, t10, t11] for the other. t0, t3, t4, and t9
are important data, while the remaining tokens are unimpor-
tant. Before applying the KV reordering technique, the radix
tree is organized as shown in Figure 13(a), where the com-
mon prefix subsequence s0=[t0, t1, t2, t3] is grouped within
the same node, enabling the reuse of as many prefix KVs as
possible. Assume the chunk size is set to 2, with each chunk
containing the keys or values of two consecutive tokens. Each
node contains a list of pointers k_ptr (v_ptr) to these key
(value) chunks.

After enabling KV reordering, as shown in Figure 13(b),
the token sequence within each node is reordered in a de-
scending order of importance, and the keys and values are
repacked. In Node 0, for example, the token sequence be-
comes s0’ = [t0, t3, t1, t2], with t0 and t3 now grouped within
the same chunk. Consequently, reordering disrupts the token
sequence in the radix tree. We add a new mapping list to
Node 0 to address this issue. It is denoted as m0 = [0, 2, 3, 1],
allowing the original s0 sequence to be recovered using the
torch index operation s0’[m0] when search reusable shared
prefixes for new requests. This vectorized indexing operation
is highly efficient, consuming less than 2% of the TTFT in
our experiments.

We explicitly avoid cross-node reordering, such as placing
t4 and t9 into s0’, for two key reasons. First, it would destroy
the radix tree structure since t4 and t9 are not common tokens
shared by both prefixes (i.e., p0 and p1), potentially leading
to errors in retrieving reusable prefix segments for new re-
quests. Second, it would result in unnecessary read bandwidth
consumption by loading t9 when reusing the KVs of p0. The
constraint against cross-node reordering prevents packing un-
shared tokens’ KVs from different prefixes together, thereby
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reducing bandwidth wastage.

4.4.2 Score-Based Cache Management

To cut down on PCIe transfers, after loading a chunk from
disk into CPU memory, only the important key and value
vectors from that chunk are sent to the GPU memory via
PCIe. However, as depicted in Figure 5(b), the presence of
important key or value vectors in a chunk does not align with
the chunk’s access frequency. Consequently, existing systems
that base their caching decisions for GPU or CPU memory
solely on recency or frequency of chunk access may lower
the GPU cache hit ratio for important key-value pairs, thus
increasing PCIe traffic.
Score-based cache admission. To enhance cache efficiency,
we introduce the importance-aware cache admission policy.
This policy assigns a score to each chunk based on its access
frequency and the proportion of important keys or values it
holds. Chunks with higher scores are preferentially cached
in GPU memory, whereas those with lower scores are stored
in CPU memory. This approach boosts the GPU cache hit
ratio and minimizes data transfers between CPU and GPU.
The importance ratio is dynamically calculated as a moving
average, updating online after each chunk access.

For instance, suppose key chunk 1 from application A and
key chunk 2 from application B are contenders for the limited
GPU memory, with application A’s request frequency being
1.5 times that of B, making chunk 1 more frequently accessed.
However, chunk 1 contains only one important key (50%),
while chunk 2 contains two important keys (100%). As de-
picted in Figure 14(a), traditional systems would cache chunk
1 in the GPU memory due to its higher access frequency, rele-
gating chunk 2 to the CPU. With 15 new requests from A and
10 from B, this approach would necessitate transferring 20
important keys from CPU to GPU. By contrast, factoring in
the importance ratio, chunk 1 scores 0.75 (1.5 ⇥ 50%), and
chunk 2 scores 1 (1 ⇥ 100%). Thus, our method caches chunk
2 in the GPU memory, as shown in Figure 14(b), cutting the
transfer of important keys to just 15.
Dual-cache replacement algorithm. We employ score-

based cache replacement policy to oversee GPU and CPU
caches, utilizing two min-heaps in CPU memory to man-
age chunks in both caches and facilitate eviction. The heaps’
tops indicate the lowest-scored chunks in the GPU and CPU
caches, respectively. To optimize data caching, we ensure non-
redundancy between the GPU and CPU caches. Additionally,
we maintain all chunk replicas on disk, thus eliminating I/O
latency when chunks are evicted from CPU to disk.

Upon receiving a new request, IMPRESS first identifies
reusable important tokens and locates their associated chunks.
If the chunk is already in the GPU cache, IMPRESS utilizes
the key or value vectors for inference and updates the chunk’s
score, retaining it in the GPU cache. If the chunk is in the CPU
cache, after transferring the vectors to the GPU, IMPRESS
updates and compares the chunk’s score with the GPU cache’s
lowest. If superior, it replaces the lowest-scored chunk in the
GPU cache; otherwise, it stays in the CPU cache. Should
the chunk reside on disk, IMPRESS loads it into CPU cache,
transfers the necessary vectors to the GPU, and updates the
chunk’s score. This new score is then assessed against the
lowest scores in both caches to decide whether the chunk
should be promoted to the GPU cache, remain in the CPU
cache, or stay on disk.

5 Implementation

We chose to implement IMPRESS on top of FlexGen [32]
because its white-box model implementation facilitates the
development of our I/O-efficient KV identification method.
Specifically, we modified the mha function for prefix reuse
and used values in attn_weight to assess KV importance. For
KV reordering, we implemented the PrefixKVLayer class to
store reordered KVs and mapping lists per layer. For cache
management, we developed the TokenCache class with our
score-based policy.

6 Evaluation

6.1 Experimental Setup
Models and system configuration. We conduct tests using
three open-source OPT models of different scales (i.e., OPT-
6.7B, OPT-13B, and OPT-30B). Our experiments are per-
formed on a server with 2 ⇥ AMD EPYC 7763 CPUs (64
cores), 128 GB DRAM, one NVIDIA A100 GPU with 80GB
HBM, and one 2TB Intel SSD whose measured read through-
put is around 5GB/s. The GPU and CPU are connected via
PCIe 4.0 ⇥ 16.
Datasets and metrics. We select four representative datasets
from the standard LM-Evaluation-Harness benchmark [6]:
PIQA, RTE, COPA, and OpenBookQA. These datasets are
designed for few-shot tasks and structured as multiple-choice
questions to evaluate the capabilities of large models in com-
monsense reasoning, logical inference, causal reasoning, and
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Figure 15: Model generation quality of various systems across four datasets and three models.

science question answering, respectively. Due to the lack of
open-source, real-world datasets for prefix reuse, we adopt a
similar approach to previous work [17] by prepending two to
ten few-shot examples as system prompts before each query.
These system prompts are shared across different queries,
with reuse frequency following a normal distribution.

We measure model generation quality using accuracy, as in
prior works [17, 44], and vary the prefix KV retention ratios
from 50% to 5% to observe accuracy changes. Additionally,
to test TTFT with long prefixes as in [21] and to prevent
runtime out-of-memory errors, we extend the prefixes to a
maximum length of 4K for OPT-30B and 10K for the other
OPT models. The average number of tokens in the request
prefixes across the four datasets ranges from 4.8k to 5.7k.
Baseline systems. We compare IMPRESS with four base-
lines. (1) ReComp [35]: It recomputes all prefix KVs for each
request without storing or reusing them. (2) AS-like [5]: Atten-
tionStore (AS) asynchronously stores and loads all shared pre-
fix KVs. Since it is not open-source, we reimplement it to the
best of our ability based on the paper. To ensure a fair compar-
ison, we additionally add the GPU cache with LRU for prefix
KV storage. Besides, we disable its scheduler-aware optimiza-
tions to make it more suitable for general scenarios, such as
preemptive scheduling environments. (3) AS+H2O+LRU: We
combine AS-like with one of the state-of-the-art important
KV selection systems, H2O [44]. Different from the AS-like,
it asynchronously loads only important values rather than the
full values of shared prefixes. (4) AS+H2O+LFU: It is simi-
lar to (3), but it uses LFU to manage the cache. In contrast,
IMPRESS selectively loads partial keys and values, reorders
KVs, and uses a score-based cache management strategy.

To prevent runtime out-of-memory errors and ensure only
a portion of the prefix KVs are cached (the other KVs reside
on SSD), we allocate 10GB of GPU cache and 32GB of CPU

cache for prefix KVs, leaving the remaining GPU and CPU
memory for storing model weights, the KV cache used during
the decoding phase, and the input data. On average, PIQA,
RTE, COPA, and OpenBookQA require 55GB, 57GB, 64GB,
and 65GB of storage for prefix KVs across three models,
respectively. Uniformly, each chunk holds keys or values from
64 tokens [39].

6.2 Overall Performance

Model generation quality. Figure 15 illustrates the impact
of different systems on model generation quality at various
prefix KV retention ratios. As ReComp and AS-like share
the same accuracy, and AS+H2O+LRU and AS+H2O+LFU
also show identical accuracy, we present only the accuracy
of ReComp, AS+H2O+LRU, and IMPRESS for simplicity.
It shows that IMPRESS has a negligible impact on accuracy
across these datasets and models, achieving accuracy drop
less than 1% compared to ReComp or AS+H2O+LRU. In
some cases, IMPRESS even slightly improves accuracy over
ReComp, suggesting that focusing on more important tokens
can sometimes enhance generation quality.
The average TTFT. We pre-warm both CPU and GPU
caches for all systems, except ReComp (which doesn’t re-
quire prefix KV reuse), before evaluating TTFT. We set the
KV retention ratio to 50% for COPA and 25% for the other
three datasets across all systems. With this setup, IMPRESS
shows an average accuracy reduction of 0.2% compared to
ReComp. Figure 16 shows the average TTFT per request for
different systems. IMPRESS outperforms alternatives, with
a 1.2⇥ to 2.8⇥ improvement over leading solutions, due to
a 1.5⇥ to 3.8⇥ reduction in I/O time for loading prefix KVs
into GPU memory (Figure 17). Other systems have longer I/O
times, sometimes exceeding ReComp’s TTFT. Besides, IM-
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Figure 16: The average TTFT with various systems across four dataset and three models.
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Figure 18: The performance impact of each optimization.

PRESS’s performance gains vary across datasets and models
due to different prefix KV sizes and computational demands.
Notably, OPT-30B has a shorter TTFT than OPT-13B, as it
uses shorter prefixes to avoid GPU memory overflow.
The tail latency. IMPRESS achieves the shortest p99 tail
TTFT. For example, on the RTE dataset with OPT-30B model,
the p99 latencies for ReComp, AS-like, AS+H2O+LRU,
AS+H2O+LFU, and IMPRESS are 3.9s, 9.3s, 6.6s, 5.9s, and
2.95s, respectively. This shows IMPRESS effectively reduces
the tail I/O latency when KVs are loaded from SSD.

6.3 Impact of Individual Techniques
Figure 18 shows the impact of each optimization. Using the
current SOTA system AS+H2O+LFU as the baseline (TTFT
normalized to one), +ITF adds similarity-guided important
token identification for loading important KVs, +RO enables
KV reordering on +ITF, and All incorporates score-based
cache management on +RO. We observe that each optimiza-
tion reduces TTFT, with All achieving the shortest TTFT,
showing the effectiveness of IMPRESS’s individual tech-
niques. Besides, technique contributions vary across models
and datasets. For example, in OPT-30B on RTE, the contribu-
tions of the three techniques are 60%, 30%, and 10%, while
on COPA with OPT-13B, they are 36%, 8%, and 56%.

Figure 19 shows the average KV loading ratio per layer for
OPT-30B on the PIQA dataset using the +ITF system, which
dynamically adjusts KV loading to optimize the trade-off
between accuracy and TTFT. Figure 20 indicates that enabling
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Figure 19: The retention of KVs per model layer using
similarity-guided important token identification.
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Figure 21: The impact of
scored-based cache manage-
ment on GPU hit ratios.

KV reordering results in an average 1.2⇥ reduction in loaded
chunks, as it consolidates important keys and values into fewer
chunks. Figure 21 shows that score-based cache management
boosts the average GPU hit ratio from 68% to 80% across
four datasets, thereby reducing PCIe data transfers.

6.4 Sensitivity Analysis
Alpha value of similarity threshold. Figure 22 depicts the
impact of varying the alpha value on inference accuracy and
TTFT, ranging from 0 to 2. The findings indicate that while an
increased alpha reduces TTFT, it marginally affects inference
accuracy due to a lowered similarity threshold, leading to less
KV loading. This trend is consistent across datasets. Thus, we
optimize alpha at 0.6 for a balance between low TTFT and
high inference precision.
Chunk size. Figure 23 compares the TTFT of the leading
system and IMPRESS with chunk sizes ranging from 16 to
256. Notably, IMPRESS achieves 2.2⇥ to 2.4⇥ improvement
over the AS+H2O+LFU system across all sizes, underscor-
ing IMPRESS’s robustness regardless of chunk dimensions.
Accuracy, being unaffected by chunk size, is not depicted.
Dataset size. We vary the number of prefixes (i.e., few-shot
examples) to create different variants of OpenBookQA, with
dataset sizes ranging from 65GB to 400GB. Figure 24 shows
that IMPRESS consistently outperforms the leading compari-
son system, AS+H2O+LFU, achieving speedups ranging from
1.2⇥ to 2.0⇥.
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Model type. Figure 25 shows the average TTFT for Llama2-
7B and Llama2-13B models on PIQA and COPA. It demon-
strates that IMPRESS achieves a 1.7⇥-2.7⇥ speedup on
Llama models, attributed to similar reasons in §6.2.

6.5 Overhead Analysis
Time overhead. The similarity-guided important token iden-
tification technique in IMPRESS loads keys from the probe
heads to determine the important token index set. While this
adds some I/O and computation overhead, it averages only
6% of our system’s overhead due to the limited number of
probe heads, resulting in minimal loading and computation.
Furthermore, KV reordering asynchronously sorts tokens by
importance and repacks them onto disk, with a total experi-
mental execution time of less than one minute. This process is
non-intrusive to TTFT as it operates outside the critical path.
Space overhead. KV reordering adds a mapping list to
each chunk’s metadata for token position mappings post-
reordering. Score-based cache management adds a score per
chunk. With a 64-token chunk size, these additions account
for less than 0.5% of the chunk’s memory. Additionally,
to avoid loading data from other heads when loading keys
from the probe heads, we redundantly store the keys from the
probe heads separately. This accounts for 1.2% of the total
storage of all prefix KVs, which is a minimal cost considering
high-capacity disks.

7 Related Work

KV cache reuse. Some works [15, 28, 32, 35] accelerate the
decoding phase by reusing KVs across iterations within a
request. These are orthogonal to IMPRESS, which targets
the prefill phase. Recent studies [5, 12, 14, 21, 39, 45] reuse
shared prefix KVs across requests to reduce prefill latency
(i.e., TTFT), but load entire prefix KVs, causing high I/O la-
tency when KVs are on disk. In contrast, IMPRESS prefetches
only important prefix KVs, reducing I/O latency. Other ef-
forts [8, 38] explore finer-grained reuse of prefix KVs at the
text segment level, which is orthogonal to IMPRESS and can
be combined to enable more KV reuse.
KV pruning and quantization. Recent studies [17, 22, 32,
44] show LLM inference can achieve similar output quality
using only a subset of KVs, proposing various methods to
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Figure 24: Results on various
dataset sizes.
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Figure 25: Results on Llama
(LM) models.

identify these KVs. However, they require full keys during the
prefill phase, leading to high I/O latency when combined with
prefix KV storage systems. IMPRESS leverages the similarity
of important token indices across heads to identify important
KVs with minimal I/O, reducing TTFT while maintaining
high accuracy. Others [10,21,23,32,41] focus on KV quanti-
zation to reduce bit counts per key and value element. They
can complement IMPRESS to further decrease data load.
Other efficient LLM serving systems. Some works opti-
mize other aspects of inference systems, such as request
scheduling [1,40], model parallelism strategies [19,36], prefill-
decoding decoupling [11, 13, 27, 33, 46], and distributed KV
cache [20, 29]. These optimizations are also orthogonal to
IMPRESS and can complement its improvements.

8 Conclusion

Existing prefix KV reuse systems do not always reduce TTFT,
especially when disk I/O latency is involved in large-scale
LLM services. We propose IMPRESS, a multi-tier prefix
KV storage system to minimize I/O delay by only loading
important KVs. Simply applying existing important token
identification algorithms is suboptimal, as the reduction in
I/O is limited. Therefore, we first introduce the I/O-efficient
similarity-guided important token identification algorithm to
identify important KVs with minimal I/O. Then, we propose
importance-informed KV management to optimize storage
and caching, further reducing TTFT. Our experiments show
that IMPRESS reduces TTFT by up to 2.8⇥ compared to state-
of-the-art systems, while maintaining comparable inference
accuracy.
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