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Abstract—Graph neural networks (GNNs) are effective mod-
els for analyzing graph-structured data, but encounter challenges
when training on large distributed graphs. Existing GNN training
frameworks use sampling parallelism and historical embedding
methods to support distributed training and enhance efficiency.
However, these methods suffer from issues like stale historical
embeddings, imbalanced communication messages, and redundant
storage and computation costs. In this paper, we present Emma,
a distributed GNN training framework that incorporates source
node centric chunking for frequent updates of embeddings and
balanced communication, as well as a moving message aggregation
technique to boost training efficiency and reduce storage costs.
Experimental results show that Emma significantly enhances train-
ing efficiency by reducing computation and communication over-
head, leading to a notable speedup while maintaining convergence
accuracy compared to state-of-the-art distributed GNN training
methods.

Index Terms—Graph neural networks (GNNs), distributed GNN
training, graph message aggregation, historical embedding.

I. INTRODUCTION

RAPH Neural Networks (GNNs) are popular for analyz-
Ging graph data by capturing node relationships. Tech-
niques like message passing and neighborhood aggregation
allow GNNs to learn node representations effectively by com-
bining from neighboring information [1]. They have been used
successfully in tasks such as node classification [2], [3], [4],
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graph classification [5], [6], [7], and edge prediction [8], [9],
[10], [11].

Various distributed partition parallel training methods have
been created to enhance GNN training efficiency on large graphs.
These methods partition the graph data into subgraphs and
distribute them among multiple GPUs or machines for paral-
lel training. Effective communication between these devices
is crucial for coordinating the training process efficiently. The
vanilla full-batch GNN training methods, where all nodes in the
graph are trained in each iteration, can be computationally and
communicationally expensive, particularly in situations with
numerous edge connections between subgraphs.

To tackle these issues, various sampling parallel training
methods have been developed to enhance GNN training ef-
ficiency [3], [12], [13], which sample mini-batches from the
entire graph and train each mini-batch on individual GPUs,
thus improving training efficiency. However, sampling methods
may introduce variance that can impact the model’s accuracy.
Recent research has leveraged historical embeddings to address
concerns related to distributed communication and sampling
variance, such as using local historical embeddings to reduce
communication [14], [15], incorporating historical embeddings
for unsampled nodes to mitigate variance [16], [17], and training
exclusively with historical embeddings [18], [19], [20].

Sampling parallelism and historical embedding-based meth-
ods have enhanced GNN training but also introduced new chal-
lenges. One such challenge stems from their used target-node
centric sampling method, which involves sampling target nodes,
updating them by aggregating messages from their in-neighbors
across all partitions in each GNN layer recursively. Unfortu-
nately, this approach has led to issues concerning stale his-
torical embeddings [15], [18] and imbalanced communication
costs [14], [21], due to low sample utilization and unbounded
pulling messages, ultimately impact the overall effectiveness
and efficiency of GNN training.

Furthermore, current historical embedding-based methods
use historical embeddings as the most recent embeddings for
remote aggregation, resulting in costly storage overhead, as
numerous historical embeddings of all nodes in all layers need
to be stored [22]. Additionally, the repetitive aggregation of
these historical embeddings in each training epoch consumes
computational resources and impedes training efficiency [16].

To tackle these issues and delve deeper into the usage of
historical embeddings in distributed GNN training, we propose
anovel distributed GNN training framework Emma. It integrates

1041-4347 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:47:03 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0002-4149-9461
https://orcid.org/0000-0003-1190-9773
https://orcid.org/0000-0001-8915-4169
https://orcid.org/0000-0003-2556-9239
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0003-2621-6048
https://orcid.org/0000-0002-5507-6569
https://orcid.org/0000-0002-1866-9197
mailto:wjie@zju.edu.cn
mailto:raiden@zju.edu.cn
mailto:tonyhu@zju.edu.cn
mailto:heshuibing@zju.edu.cn
mailto:heshuibing@zju.edu.cn
mailto:wangxinyu@zju.edu.cn
mailto:tyzheng@zju.edu.cn
mailto:rwang21@zju.edu.cn
mailto:brooksong@zju.edu.cn
mailto:wusai@zju.edu.cn

HUANG et al.: EFFICIENT DISTRIBUTED GNN TRAINING WITH SOURCE CHUNKING AND MOVING AGGREGATION

source node-centric chunking and moving message aggregation
techniques to reduce computational and communication costs,
while ensuring convergence accuracy similar to full-batch GNN
training. Our key contributions can be outlined as follows:

e We comprehensively analyze the limitations in existing
sampling parallelism and historical embedding-based dis-
tributed GNN training methods, which includes issues
of embedding staleness, imbalanced communication, and
excessive storage and computation costs. We delve into
the specific causes behind these issues and assess their
significance and impact.

® Weintroduce a source node-centric chunking approach that
incorporates historical embeddings in GNN training, which
divides the full-batch source nodes into multiple chunks,
sequentially selecting each chunk, and pushing their latest
embeddings to their out-neighboring nodes. This approach
enables more frequent updates of historical embeddings,
reducing staleness. Furthermore, it supports bounded push-
ing messages, enhancing communication balance and effi-
ciency.

e We introduce a moving message aggregation technique
to update target node embeddings incrementally. Using a
moving average-based approach, we approximate incre-
mental aggregation by combining historical aggregation
values with newly received messages from source nodes,
reducing computational and storage costs for message ag-
gregation.

e Elaborate experiments are conducted on common GNN
models to demonstrate the effectiveness and efficiency of
Emma. The results indicate that Emma surpasses existing
distributed GNN training methods, resulting in a notable
improvement in training efficiency and impressive training
accuracy. Our code is made publicly available at https://
github.com/wjie98/EmmaGNN.

II. BACKGROUND AND MOTIVATION
A. Graph Neural Networks

Message passing in GNNs: Graph neural networks (GNNs)
perform non-linear message-passing operations on graph struc-
tures, drawing inspiration from message-passing neural net-
works (MPNN) [23]. MPNN breaks down GNN operations into
three main stages: message generation, message aggregation,
and node update, with their associated functions given below:

(l) Message(l) (hz(-l_l), €ij, h(l 1))

2 = Aggregate ({m(), vj € N(0)}),
hl(.l) = Updateél) (zl(-l), hglil)) , (D)

where N (i) is the neighbors of node 4, hz(»l) is hidden states of
node ¢ at layer [, e;; is edge features between nodes 7 and j, and

(l) is the message generated at layer [ for edge e(i, j).

Graph convolutional networks (GCNs) [2] and Graph-
SAGE [3] are common GNNs. GCNs use convolutional net-
works for message aggregation, while GraphSAGE employs
neighbor sampling for mini-batch training. Graph attention
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network (GAT) [4] enhances GCNs by incorporating a self-
attention mechanism for message aggregation, allowing nodes
to assign weights to messages based on importance. These
GNN models follow the MPNN pattern for message passing
operations.

Distributed partition parallel training: As graph data and
GNN model complexity grow, with real-world graphs poten-
tially containing millions of nodes and billions of edges, a
single GPU may struggle to handle them efficiently. Distributed
computing is a viable solution to improve the training ability
and efficiency of GNN models. One common approach for
distributed GNN training is partition parallel training, where
the graph is divided into multiple subgraphs by graph partition
algorithms [24], [25], and each GPU is assigned to perform
local message aggregation on a subgraph using the GNN replica.
The model weights are synchronously updated through remote
and local access, as depicted in Fig. 1(a). Various works have
explored this method [14], [15], [22], [26], [27], [28], [29].

Distributed sampling parallel training: Distributed sampling
parallel training integrates graph sampling techniques [3], [12],
[13], [16], [30] with existing partition parallel methods [31],
[32], [33], where each GPU independently samples a mini-batch
of nodes from the graph data, extracts feature information related
to the sampled nodes remotely, and conducts parallel GNN
training across multiple GPUs, as depicted in Fig. 1(b). Using
sampled mini-batches allows for more frequent updates to the
model weights, improving training efficiency. However, chal-
lenges such as sampling variance and communication overhead
for fetching raw features across machines need to be addressed.
Additionally, concerns about the utilization of sampling nodes
may impact convergence accuracy or require a larger number of
samplers for each training epoch.

Historical embedding enhanced GNN training: Historical
embeddings have significantly enhanced GNN training in recent
years. In distributed partition parallel training, locally preserved
historical embeddings can eliminate the need for frequent dis-
tributed data transfers [15], [28] or the concurrent execution
of computation and communication tasks [14]. For neighbor
sampling methods, historical embeddings can supplement un-
sampled nodes, reduce sampling variance, and improve training
efficiency and accuracy [16], [20], [34], as shown in Fig. 1(c).
Despite these benefits, using historical embeddings may intro-
duce staleness issues, especially in sampling methods where
only the historical embeddings of nodes within the mini-batch
can be updated in each iteration.

B. Limitations in Distributed Training on Large Graphs

Existing sampling parallelism models typically utilize the
target node centric sampling method, which involves sampling
a batch of target nodes, pulling the embeddings of their in-
neighbors from all partitions, and updating the embeddings
of sampled target nodes by aggregating messages from their
in-neighbors. This iterative process continues until the GNN
models converge. While these methods have enhanced GNN
training, they encounter difficulties when handling large graphs.

Limitation #1: Stale historical embeddings: Fresh historical
embeddings are crucial for historical embedding-based GNN
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Fig. 1.

(b) Sampling parallel training

(c) Historical embedding based training

Comparison of different distributed GNN training frameworks: (a) Partition parallel training involves distributing graph data across multiple GPUs

and requires frequent inter-partition communication to access neighboring node embeddings. (b) Sampling parallel training uses subgraph sampling to create
mini-batches for data-parallel training across GPUs, reducing the need for inter-partition communication. However, it may introduce sampling variance issues by
dropping embeddings of unsampled neighbors. (c) Historical embedding-based training employs smaller sampling subgraphs with cached historical embeddings
to supplement unsampled neighbors and reduce sampling variance. While effective in mitigating sampling variance, this method may encounter challenges related

to historical embedding staleness.

training. However, the target node centric sampling method
only updates historical embeddings of sampled target nodes
within the mini-batch once per training iteration. This leads
to low sample utilization and infrequent updates to historical
embeddings, resulting in issue of stale historical embeddings.
As a consequence, outdated node embeddings cause the model
to learn from obsolete information, perpetuating a feedback loop
of suboptimal embeddings propagating through the computation
graph, causing potential convergence issues, such as overfitting
and trapping in local optima [18].

To investigate the severity of stale historical embeddings issue
and its impact on model weight updates, we performed experi-
ments to evaluate the effects of node-wise sampling, layer-wise
sampling, and our suggested layer-wise source node centric
chunking method (see Section III-A) on the staleness of histori-
cal embeddings using the Reddit dataset. To quantify staleness,
we compared the model weight version used for calculating
historical embeddings with the most recent weight version, with
smaller differences indicating better performance. Note that we
used model weight comparison to assess staleness instead of
evaluating the similarity of embeddings. This is because both
model weight and historical embeddings are iteratively and
alternately updated using each other, and embeddings computed
with up-to-date model weights provide more accurate gradient
estimation. While similarity metrics may suggest the closeness
of embeddings, they could potentially mask suboptimal local
minima that impede global optimization [15]. We set the batch
size as 8192 and run a 3-layer GNN model. In node-wise
sampling, each node sampled 8 neighbors, while in layer-wise
sampling, each GNN layer sampled nodes equal to the batch size.
The results, depicted in Fig. 2, reveal that after three epochs of
training using the target node centric sampling method, certain
historical embeddings were notably outdated, with variances
exceeding 30 steps for node-wise sampling and over 70 steps
for layer-wise sampling. In contrast, our node centric chunking
approach exhibited minimal staleness, with only a handful of
nodes having historical embeddings outdated by more than 3
steps, attributed to its more frequent node update strategy.

Limitation #2: Imbalanced communication messages: In the
target node centric sampling method, each sampled target node
needs to recursively fetch messages from its in-neighbors in each
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Fig.2. The staleness histogram of the node embeddings at the last GNN layer
after training for 3 epochs on Reddit dataset.
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during a single communication cycle.

GNN layer, which includes features and historical embeddings
of neighboring nodes from other partitions (refer to Fig. 1).
This can lead to an unbounded retrieval of messages due to the
neighbor explosion problem. Real-world graphs exhibit locality
characteristics and a power law distribution of node degrees,
resulting in uneven distribution of neighboring nodes of sampled
target nodes across different partitions. This exacerbates the
issue of imbalanced cross-partition communication messages,
thereby affecting training efficiency.

To assess the severity of imbalanced communication mes-
sages issue, we conducted tests on communication load balanc-
ing with various sampling methods in distributed clusters, using
the same experimental setup above. We partition the Reddit
graph into 16 partitions, and use 16 GPUs for parallel GNN
training. We tracked the number of communicated messages
(each message representing a node embedding) sent by different
partitions during a single communication cycle, and the results
are presented in Fig. 3. The analysis revealed highly imbal-
anced communicated message distributions for both node-wise
sampling and layer-wise sampling, with the maximum value
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being 3.39x and 3.04x greater than the minimum value, re-
spectively. In contrast, our source node centric chunking method
demonstrated a balanced distribution of communicated mes-
sages among the 16 partitions, with the difference between the
maximum and minimum values being less than 38%.

Limitation #3: Redundant storage and computation costs:
While using local cached historical embeddings can help re-
duce communication overhead by substituting remote neighbor
messages from other partitions, it necessitates storing historical
embeddings of all in-neighbors for all GNN layers within the
target node centric sampling methods. This results in significant
storage costs due to the large number of historical embeddings
that need to be stored [22]. For example, when partitioning
the Reddit graph into 16 partitions, each target node has an
average of 6.33 intra-partition in-neighboring nodes, resulting
in the need to store 6.33 historical embeddings for each target
node. This leads to much higher storage expenses compared to
storing embeddings of target nodes alone. Additionally, relying
on cached historical embeddings for message aggregation cal-
culations in each training epoch results in redundant aggregation
of stale neighbor embeddings, consuming more computational
resources and slowing down the model training process [16],
[22].

III. DESIGN OF EMMA

We aim to overcome the limitations mentioned above and
enhance the computation and communication efficiency of dis-
tributed GNN training while maintaining the model convergence
accuracy as full-batch training. To achieve this goal, we present
Emma, a distributed GNN training framework that incorporates
two innovative techniques: source node centric chunking and
moving message aggregation. Instead of sampling target nodes
and pulling embedding messages from their in-neighbors, the
source node centric chunking approach involves chunking the
entire graph nodes into multiple chunks and each time sequen-
tially selecting one chunk, and then pushing and transmitting
their fresh embeddings to their out-neighbors for subsequent
message aggregation. Subsequently, the framework utilizes the
moving message aggregation technique to update the embed-
dings of target nodes, leveraging both the historical embeddings
of target nodes and newly received messages from the source
nodes. Consequently, Emma improves embedding staleness by
enabling more frequent updates of historical embeddings, as
one source node can contribute to multiple target node updates.
Moreover, it also reduces the computation, communication, and
storage costs for computing node representations. The overview
of Emma is shown in Fig. 4. Next, we introduce the proposed
source node centric chunking and moving message aggregation
techniques in detail.

A. Source Node Centric Chunking

Skewed number of source and target nodes: In distributed
GNN training graphs, there is often a higher number of source
nodes compared to target nodes in each partition, especially for
hub nodes with many neighbors. This imbalance becomes more
pronounced as the number of partitions increases. To verify
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three partitions on the left side, with each machine (GPU) loading a complete
partition and communicating with others via collective operations. The right side
illustrates the execution process on Machine 1 for a single layer of the GNN.
Nodes in these partitions are divided into B chunks, such as chunk 0 ({1, 2, 6})
and chunk 1 ({O, 3,4,5}). The training process involves three main steps: (1)
In the current iteration, chunk 0 ({1, 2, 6}) are selected as source nodes, while
the other chunk is deferred for subsequent iterations. (2) The selected source
nodes send their updated embeddings to their out-neighbors, known as target
nodes, such as {2, 3,4} on Machine 1. (3) The embeddings of the target nodes
are updated using the latest embeddings received from the source nodes and the
locally stored historical embeddings through moving message aggregation. This
process is repeated for each layer of the GNN, completing the entire training
process.

TABLE I
THE AVERAGE NUMBER OF TARGET NODES AND THEIR SOURCE NEIGHBORS
OF EACH PARTITION ON REDDIT

# Partitions. 2 4 6 8 10 12 14 16
# target.(x 10) 116.48 58.24 38.83 29.12 23.30 19.41 16.64  14.56
# source.(x 10%) 190.08  148.19 12258 11197 10545 99.84 91.88 92.21
# source./# target. 1.63 2.54 3.16 3.85 4.53 5.14 5.52 6.33

this observation, we utilized the widely used METIS graph
partitioning algorithm [24] to divide the Reddit dataset into
varying numbers of partitions. We then calculated the average
number of target nodes and their corresponding source neighbors
in each partition, as shown in Table I. The results reveal a
linear decrease in the number of target nodes with an increasing
number of partitions. However, the number of source nodes
does not decrease proportionally due to the presence of com-
mon neighbors among target nodes across partitions, leading to
the duplication of source nodes on multiple partitions. Current
target node-centric sampling-based GNN training methods store
historical embeddings on source nodes for pulling to sampled
target nodes. Target nodes sharing common neighbors in dif-
ferent batches result in redundant message fetching and less
frequent updates, resulting in stale embeddings. The uneven
and unrestricted fetching of messages from numerous source
nodes also contributes to imbalanced communication costs, as
discussed in Section II-B.

Source node centric chunking based GNN training: Acknowl-
edging the discrepancy in source and target nodes per partition
and aiming to overcome challenges in existing target node-
centric sampling-based methods, we propose a novel source
node-centric chunking strategy. In this approach, the full-batch
graph source nodes are partitioned into multiple chunks. During
each iteration, a chunk of source nodes Sy, is selected from the
graph G = (V, &), and their updated embeddings are pushed to
their out-neighbors, necessitating cross-partition communica-
tion for transmitting these embedding messages. Subsequently,
target nodes V, = {i|j € Sy, (j,4) € £} are updated using the
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embeddings of their neighboring source nodes in the current
iteration. The specific chunking and updating process is as
follows. First, the nodes of the entire graph are evenly divided
into B chunks, denoted by source nodes,

s = [51, 82yt SM] , where s; ~U(1, B),
Sb = {.7 |Sj = b,V] € V}a (2)

where B is the number of chunks and U/(1, B) is the uniform
distribution ranging from 1 to B. In a distributed environment,
we consider a partition G = {Vi, &} for the k-th partition,
where & is the induced edge set of the disjoint node set V. We
broadcast the source nodes S to all partitions and obtain the
target nodes Vy;, C V), at each partition as

Vor = {i|j € S, (4,7) € &k} 3

The generated B chunks are used for iterative training, which
updates the model weights B times within B iterations. The
communication volume required for each iteration is reduced
to % of the original amount. Moreover, since the data trans-
mitted by each source node to neighboring partitions remains
constant, a simple random chunking strategy can ensure that
communication volume is approximately uniform across the
chunks without incurring additional overhead. The amount of
data sent by the source nodes is positively correlated with the
node degree. Consequently, the probability that the top k source
nodes with the highest communication volume are assigned to
the same chunk is less than (%)k This can be approximated
as different source nodes with varying communication loads
being uniformly distributed across multiple chunks, resulting in
balanced communication across chunks.

Benefits of source node-centric chunking: Source node-
centric chunking optimizes historical embedding-based dis-
tributed GNN training by balancing communication efficiency
and embedding freshness. To enhance communication effi-
ciency, a global chunking strategy randomly divides all source
nodes into B chunks across the graph, ensuring uniform subsets
and reducing cross-device communication costs through syn-
chronized seeds and localized computation. Synchronized ran-
dom seeds enable independent chunk membership computation,
while localized computation allows each partition to determine
target nodes without cross-partition coordination. For embed-
ding freshness, source node-centric chunking reduces staleness
by enabling more frequent updates of target node embeddings
within each training epoch. Every source node is assigned to one
chunk, processed sequentially within B iterations to guarantee
updates for all out-neighbors. Self-loop edges and messages
ensure frequent updates for nodes with low in-degrees. This
strategy effectively manages staleness for all nodes, with low
in-degree nodes benefiting from frequent self-updates and high
in-degree nodes utilizing adaptive decay to maintain embedding
freshness.

B. Moving Message Aggregation

To address the issue of redundant computation and high stor-
age costs associated with neighbor aggregation by reusing his-
torical embeddings, we further propose a novel moving message

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 37, NO. 12, DECEMBER 2025

aggregation method. This method aims to minimize these costs
by leveraging the historical embeddings and approximating an
incremental neighbor aggregation process:

z; = 7; © {my;} ® {m;;}, forj € N(i), 4)

where m;; denotes the message generated from source nodes,
my,; represents the message received from previous chunks, z;
is the historical aggregated result for node ¢, and N () indi-
cates the set of neighbors of node ¢ involved in cross-partition
communication in the current chunk. This equation updates the
historical aggregated result of the target node by replacing old
messages with new messages from source nodes. The & operator
removes outdated messages, while the & operator incorporates
new ones. This optimization leverages historical aggregated
result to reduce redundant computation and storage costs in the
neighbor aggregation process.

While the incremental aggregation technique offers a direct
and efficient way to update aggregated result without redundant
computations or excessive storage, it does have limitations. It
can result in unstable computation outcomes due to accumulated
floating-point errors during incremental updates. Furthermore, it
requires storing historical versions of neighbor messages, adding
complexity and challenges to the neighbor aggregation process.
Therefore, we introduce a decay coefficient 3 for the historical
results of each node:

z; = fiz; + Aggr{m;, Vj € N(i)}, (5)

where deg;, (7) represents the in-degree of node i. The message
aggregation operation Aggr{m,;, Vj € N(i)} combines the
new messages my;; from the neighbors of node 7 that are involved
in cross-partition communication.

Traditional moving average methods typically use a fixed
decay coefficient 3, which can lead to issues. First, the source
node partitioning strategy could render certain target nodes as
isolated (i.e., |V/(i)| = 0), where neighbor messages carry no
informative content. A fixed 5 would continuously integrate
these non-informative embeddings into node representations,
potentially degrading the model. Second, the source node parti-
tioning causes uneven message counts across aggregation steps
for each node, making fixed 3 suboptimal for handling such
dynamic variations. To address these challenges, we derive an
adaptive decay coefficient through variance stability analysis.
Assuming that both new messages and historical embeddings
follow zero-mean normal distributions with unit variance, we
design the decay coefficient J to maintain variance consistency
and prevent model divergence:

1 A

RO ©)
This formulation ensures that the combination of historical
embeddings (/3,z;) and new messages (Aggr{m,;; }) maintains
stable variance characteristics. The term |N/(i)|/ deg;, (i) auto-
matically adjusts the decay strength based on the proportion of
active neighbors in each chunk, achieving a balanced incorpo-
ration of historical information and new messages.

Integration with generic GNN models: The moving message
aggregation method can be seamlessly integrated with various

Bi=1
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message aggregation functions, including sum(-), mean(-), and
attention(-), which are commonly used in GNN models. This
flexibility enables the method to be easily incorporated into a
wide range of GNN architectures. To showcase its versatility, we
will illustrate how the moving message aggregation technique
can be implemented in two popular GNN models: GCN and
GAT. Utilizing the moving message aggregation paradigm, we
can adapt the sum(-) function of GCN [2] below:

zi=Bizi+ »_ my, (7
JEN(3)
GAT [4] involves the normalization of attention values, thus

the normalization term is processed separately to obtain the
weighted neighbor messages:

r, — max{aij ‘ j S N(’L)} @] {fli}7
V(aij) = exp(a;; —r;),
Biry(Wa)zi + 3 jreay (@55 ) m;
Z; = = -
Biy(Ws) + 3 ey V(@i5)
where z; is the historical aggregated result for node ¢, and u; is
the historical maximum attention value among the neighbors of
node 7, r; represents the current maximum attention value among
the same set of neighbors. The attention value a;; between node
¢ and node j is computed using z; and z; from the previous
layer [4]. This approach prevents overflow in the computation
of softmax(-).
Finally, we still need to update the maximum attention value

u,; of node ¢. The update principle is to maintain the denominator
of the corrected softmax(-) to sum as 1:

®)

u; =r; +log | Biy(w;) + Z y(ai;)| - 9
JEN(4)

It is crucial to observe that the update is conducted by adding
the logarithm of the denominator in the attention formula. Given
that the logarithm function can yield both positive and negative
outcomes, this ensures that the value of u; does not increase
indefinitely. Therefore, GAT requires maintaining two historical
embeddings: z; and u;.

Integration with full-batch training: In full-batch training, all
labels in the training set must be considered in the loss function
computation. With moving message aggregation, only messages
within the current target nodes set V), are updated, potentially
leaving some nodes without the latest input. To address this, we
handle self-loop edges for each node individually by using a
vertex-cut scheme akin to METIS for graph data partitioning.
This allows each node to send messages to itself without dis-
tributed communication, ensuring that the self-loop messages
from the previous layer for updating current node’s state are
always the latest and nodes in the GNN are updated at each layer.
Unlike previous methods that cached all neighboring historical
embeddings in each partition [14], [15], our approach stores
historical embeddings on target nodes rather than source nodes.
By employing an incremental aggregation technique as shown in
(5), we retain aggregated historical embeddings exclusively on
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the target nodes. The message aggregation computation relies
solely on the messages m;; and the historical embeddings of
the target nodes, z;. Moreover, moving message aggregation
introduces only a minimal increase in computational complexity
due to its reliance on simple element-wise operations. This ad-
ditional complexity is comparable to that of standard activation
functions or dropout layers, which explains its efficiency. By
seamlessly integrating these operations, our approach maintains
high performance without compromising resource utilization.

Benefits of moving message aggregation: Moving message
aggregation strategy implements an incremental approach to
message aggregation, reducing redundant computations and
storage requirements. Unlike traditional incremental methods,
we introduce a flexible moving aggregation form with adaptive
dynamic decay coefficients, allowing target nodes to adjust to
varying message volumes and use different aggregation func-
tions. To address error accumulation during aggregation, we
employ two key approaches. First, the adaptive [3; is derived
from variance stability analysis to ensure numerical error re-
mains bounded. Second, decay term S3;y(1q;) in (8) filters out
outdated information and acts as a stabilizer to prevent near-zero
denominators in the softmax function, mitigating numerical
instability from diverging values over time. Overall, our moving
message aggregation improves upon existing methods by incor-
porating topology-aware decay and supporting complex aggre-
gators like GAT, effectively reducing error accumulation during
training. Furthermore, moving message aggregation introduces
only a minimal increase in computational complexity, relying
on simple element-wise operations. This added complexity is
comparable to standard activation functions or dropout layers,
which explains its efficiency. By seamlessly integrating these
operations, our approach maintains high performance without
compromising resource utilization.

C. Implementation and Analysis

Prototype implementation: By integrating source node-
centric chunking with message aggregation, we developed a
prototype of the distributed GNN training framework, Emma,
as detailed in Algorithm 1. The implementation of Emma was
carried out using PyG [35], utilizing NVIDIA NCCL as the
communication backend and employing the AlIToAll(-) mech-
anism [36] for efficient distributed communication.

Initially, we applied the METIS algorithm [24] to partition
the entire graph into P segments, assigning each GPU a cor-
responding partition. Each partition’s data is then randomly
divided into B chunks, each containing a set of source nodes. For
each chunk S, we create a partition-to-partition routing table
using BuildAllToAllRouteTable(+) to facilitate communica-
tion across all GNN layers within a single iteration. The current
chunk of source nodes S is then broadcast to all partitions,
allowing each partition to receive the node messages Izlgbll)
These messages are combined with the self-sent messages
H](,ll:l) from each node. Moving message aggregation is then

performed to update the embeddings ZE,lk), after which the node

embeddings Hg )

. for partition & at layer [ are retrieved. The
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Algorithm 1: Emma Training Framework.

1: Input: Partition id &, partition graph
Gr = Vi, Ek, Xk ), label Y, partition features buffer
Z., chunk number B, initial model 6.

2: Qutput: The trained model 6.

3:for/=1to L do

4 24 0
5: end for
6: HyY) « Xyt + 1
7: while t < T do
8: Divide V into B sets{S;,...,Sp} > (3)
9: forb=1to Bdo
10: Ry + BuildAllToAllRouteTable(Sp)
11: for[ =1to L do
122 H§ Y« AlToAN(H V), Ry)
13: Z)(/lk) — MovingAggréli1 (ZSIS, Hg;l)HIiIgb;l))
14: > ()
15: HSZ — Updateéi{l(ZSZ)
16: end for

OL(H Vi)

17: g + AllReduce(—g5"—)

18: Ht — SGD(Gt_l, gt)
19: t—t+1

20: end for

21: end while

loss function is computed using the labels ), followed by
executing the backpropagation algorithm. Gradients of the node
embeddings are propagated to the relevant partitions based on
the routing table R;,. Model gradients from each partition are ag-
gregated using the AllReduce(-) operator, and the optimization
algorithm updates the model. This iterative process continues
forT" - B iterations until convergence. Prior to training, all graph
structures and data are loaded into GPU memory to minimize
data transfers between the GPU and CPU.

Emma minimizes implementation complexity through three
modular components that seamlessly integrate with existing
GNN frameworks: (1) Standard Chunk Loader: Operates locally
within each GPU partition, leveraging native graph partitioning
without new communication protocols. (2) Auto-Grad Enabled
Message Router: Implements a plug-in communication layer
for automatic forward message passing and backward gradient
synchronization using standard AllToAll primitives. (3) Drop-
in Aggregation Replacement: Maintains identical input/output
interfaces as conventional GNN layers, allowing direct substitu-
tion of existing aggregation functions (e.g., pyg.nn.GCNConv)
while preserving the original training pipeline. This modu-
lar design ensures compatibility with mainstream frameworks
and preserves familiar debugging workflows. All critical path
operations appear as standard computation graph nodes in pro-
filers like PyTorch Profiler.

Staleness of historical embeddings:Emma achieves better
freshness of historical embeddings compared to target-centric
sampling methods (TSMs). With the same number of sampled
nodes, the source-node-centric chunking strategy samples |Sp|
nodes per iteration and updates [Vy| = [Vy1 U V2 U -+ - U Vyp|,
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where P is the number of graph partitions and |Vp| > |S,|. In
contrast, traditional TSMs follow the message aggregation path,
where the number of updated nodes in the next layer is less than
that in the previous layer, i.e., | - | < |Sp|.

Furthermore, our method leverages distributed partitioned
parallelism during training, allowing cross-partition sharing of
node embeddings (activations) in each iteration. Traditional
sampling approaches rely on mini-batch training, requiring each
partition to redundantly compute and store embeddings. This
enables our method to maintain a larger |Sp|, accelerating the
propagation of neighbor messages.

Existing historical embedding techniques, such as Py-
GAS [18] and Sancus [15], introduce some staleness in historical
embeddings, despite theoretical assurances. Our source-node-
centric chunking and periodic embedding updating guarantee
better staleness control than current methods, enhancing con-
vergence properties.

Convergence properties: The moving message aggregation
can approximate vanilla message aggregation with various op-
erators at the convergence point. Let Aggr(-) in (5) be sum(-).
After normalization, neighborhood messages m;; € [—1, 1] fol-
low an identical distribution with expectation E[mj;], and
z; converges to a stable distribution with expectation E[z}].
We demonstrate that E[mj;] and E[z;] are linearly related.
Given that z; follows the same distribution as z;, we can
rewrite (5) to obtain E[zj] = BE[z]] + >, ;) mj;. This
leads to E[z}] = Z]i\%};m” = deg;, (¢) W We can de-
rive the approximation error using Hoeffding’s inequality: For
any € > 0,

. ( E[z!]

degin(i)
where the updated node embedding E[z}] is bounded by neigh-
borhood messages [E[m;]. The same approximation error bound
applies to the mean(-) and attention(-) operators depicted in
(8).

The optimization process converges with appropriate hyper-
parameter settings. With n = O(el), 81 = O(e¥), B2 € [0, 1],
Buk = O(eX7%), and T = O(¢~£+2)), Emma guarantees con-
vergence to an e-stationary point, ensuring that E[||VF(w.)]|]
< e for a randomly selected 7 € {1,...,T}. Here, L is the
number of GNN layers, F'(w,) denotes the GNN model with
weights w after 7 training iterations, 7 is the total number of
training iterations, 7 is the learning rate, and 5; and (5 are the
exponential decay rates for the Adam optimizer. Additionally,
By, represents the adaptive decay coefficient for node v at layer
k, as defined in (6).

The source node-centric chunking aligns with the DropE-
dge [37] regularization strategy under specific conditions,
effectively addressing the over-smoothing issue in GNNs.
The following properties hold: (1) The edge selection prob-
ability matches that of DropEdge: P((j,i) € &) = +, and
(2) Pairwise dependency between edges diminishes asymp-
totically: E|Cov(I;:), ;1) = OB V| for (j,i) #
(4',4"), where I(; ;) is the indicator variable for the inclusion of

- E[ml-}-]

< e> > 1—2exp (—;W(@')é) ,
(10)
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TABLE II
STATISTICS OF GRAPH DATASETS

# Nodes  # Edges  # Features  # Classes
Reddit 233K 114M 602 41
Yelp 716K ™ 300 100
Products 2.4M 62M 100 47
Papers100M 111M 1.6B 128 172
TABLE III
HYPERPARAMETER SETTINGS
# Layers  Hidden units  Dropout p
Reddit 4 256 0.5
Yelp 4 512 0.1
Products 3 256 0.3
Papers100M 3 64 0.5

edge (7, 9) in chunk b. These properties ensure that as the number
of nodes increases, the source node-centric chunking approaches
edge-independent sampling akin to DropEdge regularization,
effectively delaying over-smoothing in GNNs while preserving
structural stochasticity.

Communication Balancing: Source node-centric chunking
ensures balanced communication via two properties: (a) Expec-
tation preservation: limg, |, |Bilb‘ > e, D(dy) % ¢ Eld,]
for chunk size |By|, node load D(d,), and constant ¢, which
guarantees no systematic communication bias is introduced,
and (b) Variance control for L-layer GNN with B chunks:
Var(zlel Xél)) < L. y|E=G-D whereXél) indicates mes-
sages inclusion at [ layer in chunk b and v donates power-law
exponent. The O(L/B) growth ensures stable communication

without severe fluctuations, improving over traditional methods
by O(|V|(L-DE=1/(-1)),

IV. EVALUATION
A. Experiment Settings

Setups: Our setup consists of six machines interconnected
with two-port 100 G NICs. Each machine is equipped with
four NVIDIA A40 (48 G), two Xeon 6342R@2.80 GHz, and
PCle4x16 for connecting CPU-GPU and GPU-GPU. We used
one of the machines for our primary experiments and also
evaluated distributed scalability in Section IV-F.

Graph datasets: We evaluate our method on four com-
monly used graph datasets, i.e., Reddit [3], Yelp [30], OGB-
Products [38], and OGB-Papers100M [39]. Table II lists the
statistics of these datasets. For evaluation metrics, we employ
micro-f1 score for the multi-label Yelp dataset and classification
accuracy for the other single-label datasets.

GNN models: We evaluated our method using two GNN
models, GCN and GAT. We used the same hyperparameters for
different training methods, as shown in Table III. For the GAT
model, we simplified the number of attention heads to 1. We
maintained a learning rate of 0.001 and used the Adam optimizer
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with hyperparameters setto 51, = 0.9 and 83 = 0.999. Addition-
ally, we incorporated LayerNorm [40] for normalization at each
layer.

Baselines: We compared our method with nine state-of-the-art
distributed GNN training methods. (1) BNS-GCN [28] samples
boundary nodes across partitions and transmits only the
sampled nodes to reduce communication. (2) PipeGCN [14]
overlaps partition data synchronization with asynchronous
communication using historical embeddings for graph
convolution. (3) Sancus [15] leverages historical embeddings
and synchronizes only the partitions with high staleness to
reduce communication overhead. We terminate the partitioned
broadcast communication every 2 epochs after the first 50
epochs. (4) GAS [18] combines first-order neighborhood
sampling with historical embeddings to approximate full-graph
GNN training. (5) LMC [19] optimizes the forward and
backward propagation processes based on GAS to ensure
convergence. (6) DistDGL [21] accelerates training using a
subgraph sampling, implemented using DGL’s native distributed
parallel framework. (7) AdaQP [41] employs adaptive message
quantization to alleviate communication overhead in distributed
full-batch training. (8) Sanqus [42] extends Sancus by combin-
ing staleness-aware synchronization with message quantization
for enhanced training efficiency. (9) NeutronTP [43] introduces
tensor parallelism by partitioning data along feature dimensions
rather than graph structures to achieve perfect load balancing.
To align the hyperparameters across different methods as
closely as possible, we set the message sampling probability
for BNS-GCN to 0.1 and the chunk size for our method to
B =10, ensuring similar communication volumes. For the
other methods, which do not have parameters that directly
influence communication volume, we use the default settings as
specified in their respective papers. For full-batch frameworks,
we maintain consistency between the number of partitions
and GPUs (= 4). For subgraph sampling frameworks like
DistDGL, we employ an equivalent GPU configuration
(=4). For single-GPU frameworks (LMC and GAS), we
conduct experiments using a single GPU. The experimental
comparisons are conducted using the open-source code
provided by the authors. Most of the codebases offer GCN
training components, so our primary comparisons are conducted
on the GCN model. Where applicable, we also compare the
GAT model using the codebases that support it.

B. Training Efficiency

1) GCN Training Efficiency.: We first evaluate on the GCN
model with simple linear message aggregation.

Total time cost: We measured the total time for GCN model
training to converge and compared our Emma with BNS-GCN,
PipeGCN, Sancus, LMC, DistDGL, AdaQP, Sanqus and Neu-
tronTP. The results are presented in Table IV. For the Prod-
ucts, Reddit, and Yelp datasets, we used a single machine with
four GPUs for evaluation. For the Papers100 M dataset, we
used six machines with a total of 24 GPUs. GAS and LMC
are single-GPU frameworks by chunk-wise offloading, while
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TABLE IV
ToTAL TIME COST OF GCN TRAINING

Time cost (seconds)

Dataset

BNS-GCN  PipeGCN  Sancus GAS LMC
Products 519.0 3433 454.1 2814.3 3152.1
Reddit 837.6 1214.1 4293.0 491.1 542.5
Yelp 1050.5 721.9 — 1396.8 1100.2
Papers100M 2067.1 OOM OOM — —
Dataset Time cost (seconds)

DistDGL AdaQP Sanqus  NeutronTP Ours
Products 6002.3 330.8 1063.9 3479.8 125.6
Reddit 1577.6 555.9 4307.7 1280.3 442.3
Yelp 402.2 570.6 1818.2 907.7 395.3
Papers100M 4367.5 OOM OOM OOM 985.5
—— Sancus BNS-GCN = - AdaQP NeutronTP
ffffff PipeGCN LMC Sanqus —— Ours

=100 7 60
504 401
. 200,/
0 200 400 0 200 400 0 200 400
Time/Sec. Time/Sec. Time/Sec.
(a) Products (b) Reddit (c) Yelp

Fig. 5. Accuracy curve of GCN training.
DistDGL is a distributed mini-batch training framework us-
ing subgraph sampling. The other frameworks train GNN on
full-batch mode. The missing value for Sancus on the Yelp
dataset is attributed to its failure to converge, as shown in
Fig. 5. Notably, our Emma achieved the lowest time costs in all
testing cases. Specifically, on the Products dataset, Emma was
2.73x faster than its best competitor PipeGCN. Overall, Emma
achieved an average speedup of 2.89x, 2.44x, 6.66x, 9.70x,
17.46 %, 1.78x, 7.60x and 10.97 x over BNS-GCN, PipeGCN,
Sancus, LMC, DistDGL, AdaQP, Sanqus and NeutronTP, re-
spectively, demonstrating its efficiency for graph learning tasks.
Our efficiency stems primarily from the lower communication
cost of push sampling and the decreased computation cost of
moving message aggregation. For the Papers100 M dataset, we
only tested the frameworks capable of distributed scaling. It is
evident that the available resources were insufficient to train the
GCN model in full-batch mode for most frameworks. PipeGCN
requires additional buffers for asynchronous communication;
Sancus and Sanqus’ historical embedding storage reduces their
memory scalability; AdaQP’s long message processing chain
introduces significant storage pressure; and NeutronTP, while
reducing intermediate layer memory usage through tensor paral-
lelism, does not reduce the storage overhead for graph structures
and demands higher GPU interconnect bandwidth. The Dist-
DGL framework trains only on labeled nodes. Since only about
1.5% of the nodes in the Papers100 M dataset have labels, the
amount of data DistDGL trains on is even smaller than that of the
Products dataset. This allows DistDGL to complete training in a
shorter time. We further discuss the reduction in communication
and computation costs in Section IV-E.

Training throughput: We also measure the throughput of train-
ing epochs by comparing our Emma with BNS-GCN, Pipe GCN,
Sancus, LMC, DistDGL, AdaQP, Sanqus and NeutronTP, and
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TABLE V
THROUGHPUT OF GCN TRAINING

Throughput (# epochs/s)

Dataset

BNS-GCN  PipeGCN  Sancus GAS LMC
Products 0.85 1.19 1.10 0.21 0.14
Reddit 2.65 2.30 0.25 2.14 1.63
Yelp 2.24 2.99 0.62 1.23 1.09
Paper100M 0.31 OOM OOM — —
Dataset Throughput (# epochs/s)

DistDGL AdaQP Sanqus  NeutronTP  Ours
Products 1.4 x 1073 0.7558 0.6578 0.2298 3.98
Reddit 1.5 x 1073 0.8994 0.4016 0.3124 6.33
Yelp 2.6 x 1072 0.7010 0.5494 0.7602 6.83
Papers00M 2.3 x 102 OOM OOM OOM 0.51

the results are shown in Table V. Our Emma consistently
demonstrates the highest throughput for training each epoch
on the GCN model across all testing cases. For instance, the
top-performing competitor PipeGCN achieves an average of
2.99 epochs per second on the Yelp dataset, while our method
achieves an average of 6.83 epochs per second, representing a
2.28x faster training throughput. DistDGL exhibits extremely
low training throughput due to the high cost of its subgraph
sampling and the redundancy of many nodes being sampled and
computed multiple times. Similarly, due to the limited number of
labeled nodes in the Papers100 M dataset, its throughput exceeds
that of the medium-sized Products dataset. The dense edges
in the Reddit dataset increase the cost of subgraph sampling,
thereby reducing the training throughput.

Convergence efficiency: We further compare the convergence
efficiency by plotting the accuracy curves for Sancus, PipeGCN,
BNS-GCN, LMC, AdaQP, Sanqus, NeutronTP and Emma on
the GCN model in Fig. 5. The x-axis represents the elapsed
training time, and the y-axis indicates the corresponding training
accuracy. We can see that Emma always achieves the highest
training accuracy under the same time overhead, and achieves
convergence quickly and stably on all three datasets. On the
Yelp dataset, the Sancus method fails to converge. Methods such
as LMC, Sanqus, and NeutronTP exhibit under-convergence,
which is more pronounced in the Yelp multi-label classification
task, making these frameworks more susceptible to their design
limitations.

2) GAT Training Efficiency.: We proceed to assess on the
GAT model with self-attention based message aggregation.
We compare Emma with PipeGCN, BNS-GCN, and DistDGL.
While these three methods are primarily designed for GCN
model training, they can also be extended to accommodate GAT
model. We use the GAT implementation provided in the official
code of BNS-GCN and integrate it into the official code of
PipeGCN.

Total time cost: We measure the total time cost for GAT
model training to converge and report the results in Table VI
through an early stopping termination strategy. We observe
that Emma is the fastest method in most cases, except when
compared with PipeGCN on Reddit. However, PipeGCN ex-
hibits under-convergence and terminates early on this dataset,
while Emma’s accuracy continues to improve throughout train-
ing, ultimately achieving state-of-the-art (SOTA) performance,
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TABLE VI
ToTtAL TIME COST OF GAT TRAINING

Time cost (seconds)

Dataset
BNS-GCN  PipeGCN  DistDGL ~ Ours
Products 953.8 336.8 6122.1 179.2
Reddit 3870.5 142.1 1805.6 605.3
Yelp 2317.6 2117.9 708.1 418.3
TABLE VII
THROUGHPUT OF GAT TRAINING
Dataset Throughput (# epochs/s)
BNS-GCN  PipeGCN DistDGL Ours
Products 0.51 1.18 1.3x 1073 2.79
Reddit 0.66 1.54 1.3 x 1073 4.13
Yelp 1.27 1.24 2.2 x 1072 5.02
TABLE VIII
ACCURACY OF GCN TRAINING
Dataset Accuracy (%)
BNS-GCN  PipeGCN  Sancus GAS LMC
Products 79.50 78.69 75.60 75.63 74.25
Reddit 97.12 97.06 94.40 95.40 95.43
Yelp 65.26 65.28 — 44.23 44.37
Papers100M 61.45 OOM OOM — —
Dataset Accuracy (%)
DistDGL AdaQP Sanqus  NeutronTP  Ours
Products 77.87 78.43 74.98 75.08 79.53
Reddit 95.29 96.48 94.35 94.00 96.91
Yelp 64.23 59.86 41.40 40.63 65.21
Papers100M 61.32 OOM OOM OOM 61.84
PipeGCN BNS-GCN — Ours
00 60
g ! [
<90 50 40
@
= 0 R £ i 204,
0 -
0 250 500 750 O 250 500 750 O 250 500 750
Time/Sec. Time/Sec. Time/Sec.
(a) Products (b) Reddit (c) Yelp
Fig. 6. Accuracy curve of GAT training.
TABLE IX

ACCURACY OF GAT TRAINING

Accuracy (%)

Dataset

BNS-GCN  PipeGCN  DistDGL  Ours
Products 78.08 77.93 77.79 78.94
Reddit 92.88 41.03 95.38 96.94
Yelp 43.66 39.41 61.48 65.15

as show in Fig. 6 and Table IX On average, Emma achieved a
speedup of 5.75x over BNS-GCN, 3.47x over PipeGCN, and
12.95x over DistDGL. Notably, our performance improvement
on GAT models is more significant than on GCN models, at-
tributed to our incremental aggregation strategy that reduces
more computation costs for the comprehensive self-attention-
based message aggregation.
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Training throughput: We also compare the GAT training
throughput and show the results in Table VII. We can see that our
model achieves the highest throughput on all datasets, especially
on Yelp, where it is 3.95x faster than BNS-GCN and 4.05x
faster than PipeGCN. On Products and Reddit, our model is also
significantly faster than BNS-GCN, and more than twice as fast
as PipeGCN. This demonstrates the efficiency of our incremental
message aggregation method for graph attention networks.

Convergence efficiency: We also plot the convergence curves
of BNS-GCN, PipeGCN and Emma on the GAT model for differ-
ent datasets in Fig. 6. On the Products datasets, the three methods
show similar convergence efficiency. However, on Reddit and
Yelp, BNS-GCN and PipeGCN exhibit periodic fluctuations in
test accuracy even after several hundreds of epochs, indicating
unstable training results and low convergence efficiency. The
poor performance of PipeGCN in training GAT models is due
to its reliance on stale historical embeddings for each node,
which works well with simple GCN aggregation layers but
can lead to model instability in complex weighted attention
layers. BNS-GCN, while employing a similar message sampling
strategy, lacks the design to reduce aggregation variance using
historical embeddings, resulting in slow convergence and signif-
icant performance fluctuations. In contrast, our proposed method
converges to the stable level much faster.

C. GNN Training Accuracy

1) GCN Training Accuracy: We compared the training ac-
curacy of our method with nine baseline models, including
BNS-GCN, PipeGCN, Sancus, GAS, LMC, DistDGL, AdaQP,
Sanqus and NeutronTP. The test accuracy of the model with
the best validation accuracy is shown in Table VIII, following
the protocol of previous works [28]. Our model demonstrates
comparable accuracy to the best competitor, BNS-GCN, with
differences ranging from 0.05% to 0.33%. It is worth noting that
BNS-GCN takes approximately 2.98x longer than our model
to achieve this accuracy. This highlights the effectiveness and
robustness of our model for graph learning tasks.

2) GAT Training Accuracy: We compared the accuracy of
PipeGCN, BNS-GCN, DistDGL and our proposed Emma on
the GAT model, with results shown in Table IX. Our method
consistently achieved the highest accuracy in GAT training on
Reddit and Yelp. In particular, we improve the accuracy on Yelp
from 61.65% to 65.15%. This demonstrates the effectiveness
and robustness of Emma for the more complicated GAT model.

D. Ablation Study

We further conduct ablation studies to analyze the contribu-
tions of the proposed methods in terms of accuracy, efficiency,
and memory usage, as shown in Table X. Under our adaptive
decay coefficient, if the source node-centric chunking is not used
and only moving aggregation is applied, the computational form
is consistent with the case where neither mechanism is enabled.
In terms of throughput, the additional overhead of moving
aggregation is negligible. Chunking reduces peak memory us-
age, while the historical embeddings used in moving aggrega-
tion increase memory usage. However, the memory reduction
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TABLE X
ABLATION STUDY

. Products Reddit Yelp
Configuration
GCN GAT GCN GAT GCN GAT
Accuracy (%)
w. chunking, w. moving 79.53 78.94 96.91 96.94 65.21 65.15
w. chunking, w.o. moving 78.57 78.62 96.73 93.85 64.36 59.03
w.0. chunking, w.o. moving 79.80 79.24 96.88 96.14 64.16 60.50
Throughput (epoch/s)
w. chunking, w. moving 4.34 3.41 10.05 713 6.12 5.05
w. chunking, w.0. moving 433 3.41 10.05 7.12 6.12 5.04
w.0. chunking, w. moving 1.26 0.82 1.72 1.00 3.13 2.01
w.0. chunking, w.o. moving 1.28 0.83 1.73 1.01 3.18 2.06
Peak Memory (MB)
w. chunking, w. moving 9834.63 9093.02 2162.45  2080.74  5489.39  5841.62
w. chunking, w.o. moving 8408.85 7770.40 1856.08  1889.73  4933.10  5134.37
w.o. chunking, w. moving 12195.00 1444721  2831.57 5241.87 5994.68  6936.98
w.0. chunking, w.o. moving ~ 10768.42  13129.20  2526.72  5059.35  5439.34  6234.22
=5 =3 Ay
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(a) GCN model (b) GAT model

Fig. 7. Time costs breakdown.

achieved by chunking is significantly greater, effectively oft-
setting the additional memory overhead introduced by moving
aggregation.

E. Breakdown Analysis

1) Computation and Communication Costs: To analyze the
performance improvements, we decompose the average training
time of each epoch into communication and computation time.
PipeGCN overlaps computation and communication for parallel
acceleration, and we define the non-overlapping communication
cost as the communication time. Fig. 7(a) and (b) present the
results for the GCN and GAT models, respectively.

We observe that the GAT model requires significantly more
computation time than the GCN model due to its self-attention-
based aggregation mechanism. Notably, for the GAT model,
PipeGCN incurs no communication time on Products and Red-
dit, indicating that communication is entirely integrated within
the computation. Overall, our method consistently achieves
the lowest communication cost by transferring only relevant
messages to the sampled node in the current epoch, thereby
avoiding the message passing costs from unsampled nodes. In
terms of computation time, our approach either outperforms
or matches BNS-GCN, which discards all messages from un-
sampled nodes. We leverage buffered historical aggregation
values to approximate the untransferred missing messages, thus
enhancing training accuracy. In contrast, PipeGCN aggregates
messages from all neighbors without sampling, resulting in
inferior performance compared to our method.

While Sanqus reduces communication overhead through
adaptive quantization, it incurs additional computational costs,
leading to decreased overall performance. NeutronTP achieves
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Fig. 8. Peak memory usage during GNN training.

effective communication load balancing via tensor parallelism
but converts sparse communication between graph partitions
into dense communication between tensors, which increases
demands on network bandwidth.

2) Peak Memory Usage: We analyze the memory usage of
Emma and compare it with PipeGCN and BNS-GCN. We mea-
sured the average peak memory usage per GPU during GCN
and GAT training, with results shown in Fig. 8(a) and (b),
respectively. For GCN models, our method demonstrated lower
memory usage than PipeGCN and slightly higher usage than
BNS-GCN. This is because both BNS-GCN and our method
construct a subgraph from the original graph before each epoch,
contributing to efficient memory utilization.

Our approach introduces a buffer to store historical aggrega-
tion values, which adds some storage overhead. However, the
buffer size is proportional to the number of target nodes and
is comparable to the space required for a single element-wise
computation. With optimizations in the model code, Emma
achieves memory efficiency that matches or even surpasses that
of BNS-GCN. In contrast, PipeGCN’s asynchronous commu-
nication requires each partition to allocate send and receive
buffers independently of the computation graph, resulting in sig-
nificantly higher memory consumption. Additionally, for GAT
models with complex message passing, Emma aggregates fewer
messages, which reduces the need for temporary storage and
leads to significantly lower memory usage.

F. Scalability on Multiple GPUs and Machines

We evaluate the scalability of our method across different
cluster configurations. Specifically, we train Emma using vary-
ing numbers of GPU servers, each equipped with 4 GPUs inter-
connected via a 100 Gx2 network. We utilize the METIS [24]
graph partitioning algorithm for graph partitioning during dis-
tributed training.

1) Distributed Training Accuracy: We assess the conver-
gence accuracy for both GCN and GAT models, presenting the
results in Fig. 9. Our analysis reveals that as the number of
GPUs increases, the training accuracy remains stable for both
models. This demonstrates the reliable performance of Emma in
distributed training across multiple GPUs and machines.

2) Distributed Training Throughput: We evaluate the train-
ing throughput of both the GCN and GAT models, with results
illustrated in Fig. 10. Our analysis shows that as the number of
GPUs increases from 4 to 16, the training throughput consis-
tently improves for both models, highlighting the strong scala-
bility of our approach. However, we observe slightly diminished
scalability on the Yelp dataset when transitioning from 8 to 12
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Fig. 11.  Time cost breakdown in distributed training.

GPUs. This is due to the graph’s sparse structure and higher rep-
resentation dimensions, which increase the computational load
for dense matrix projection operations. Consequently, the rising
communication costs associated with more partitions offset the
computational efficiency gains from distributed scaling.

3) Time Cost Breakdown: We conducted a detailed analysis
of the time breakdown for the GCN and GAT models using
various numbers of GPUs, as shown in Fig. 11. Generally, com-
putation time decreases with an increasing number of partitions
since each partition processes a smaller portion of the graph.
However, we observe minor fluctuations in communication time
due to the need for point-to-point communication among all
partitions over a bandwidth-limited network. Additionally, the
overall volume of network communication increases with more
partitions, leading to reduced communication scalability.

4) Per GPU Memory Usage: We also measured the average
peak memory usage per GPU for the GCN and GAT models in
Fig. 12. As the number of GPUs increases, per GPU memory us-
age shows a decreasing trend, as training data can be effectively
distributed across multiple GPUs.

5) Communication Load Balancing: We evaluated the com-
munication load balancing factor for node-wise subgraph sam-
pling [3], layer-wise subgraph sampling [13], and our proposed

7101

m 1 OGB-Products [ Reddit [ Yelp

S10

Q

IS

3

55 5

[

£

§ 0 4 8 12 16 0 4 8 12 16
# GPUs # GPUs

(a) GCN model (b) GAT model

Fig. 12.  Peak memory usage in distributed training.

TABLE XI
AVERAGE COMMUNICATION IMBALANCE FACTOR IN DISTRIBUTED SAMPLING
ON REDDIT (LOWER IS BETTER)

# Partitions. 2 4 6 8 10 12 14 16
Node-wise subgraph sampling ~ 1.01 144 164 1.72 3.02 3.09 304 339
Layer-wise subgraph sampling  1.21 1.47 1.60 1.72 268 276 296 3.04
Source node-centric chunking 1.04 1.09 115 121 126 130 1.34 138

source node-centric chunking on the Reddit dataset. The balanc-
ing factor, defined as the ratio of the maximum to the minimum
number of messages sent by partitions in a single communication
cycle, indicates better balance when closer to 1. We used a
unified batch/chunk size of 8192 and a 3-layer GNN model.
In node-wise sampling, each node samples 8 neighbors, while
layer-wise sampling samples a number of nodes equal to the
batch/chunk size. We recorded the average imbalance factors
during training. Results in Table XI show that our source node-
centric chunking achieves superior balance when the number
of partitions is four or more. This improvement is due to the
uniform chunking of source nodes in our approach, while target
node-centric sampling lacks source node constraints for load
balancing.

G. Parameter Configurations

Our proposed method, Emma, allows us to adjust the number
of chunks B in a single sampling iteration to achieve differ-
ent performance levels. This is analogous to the sample rate
in BNS-GCN [28] or the drop probability in DropEdge [37].
For example, setting B = 5 corresponds to a sample rate of
1/5 = 20% for dropping messages at graph boundaries.

The moving aggregation strategy we employ prioritizes the
most recent aggregated messages during training. However, as
the number of chunks increases, the weight of the latest aggrega-
tion results diminishes, making it more challenging for the model
to approximate the most current global neighbor aggregation.
Conversely, this approach results in smoother moving aggre-
gation operations. We evaluate the impact of different chunk
settings on various performance aspects.

1) Impact on Training Throughput: We first evaluate the ef-
fect of different settings of B on training throughput. The results
for the GCN and GAT models are presented in Fig. 13(a) and
(b), respectively. For both models, training throughput increases
with larger B. On the Reddit dataset, the benefits are particularly
pronounced due to its relatively dense structure, which features a
high number of messages and edges. Increasing B significantly
reduces message communication and aggregation computation,
resulting in more substantial performance gains.
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2) Impact on Convergence Efficiency: We also investigate
how model accuracy varies with different settings of B. By
fixing other parameters and adjusting the number of chunks, we
observe corresponding changes in accuracy and performance, as
shown in Figs. 14 and 15. As the number of chunks increases,
model convergence becomes more stable while causing negligi-
ble accuracy drops (<0.5%) on some datasets. According to (5),
a larger B results in higher average values of 3, for each node,
leading to smoother updates in the moving aggregation results.

3) Impact on Communication Time: We examined the
changes in communication time of our method with different
chunk settings. The experimental results are shown in Fig. 16. As
the number of chunks increases, communication time decreases
significantly. This reduction occurs because, for a given number
of chunks B, only % of the nodes and edges in the graph
participate in communication per epoch on average.
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4) Impact on Memory Usage: We also investigated how peak
memory usage varies with different numbers of chunks. The
variation in memory utilization for the GCN model is illustrated
in Fig. 17, where the horizontal axis represents the number of
chunks and the vertical axis shows memory usage in gigabytes
(GB). The results indicate that the number of chunks has no
significant impact on peak memory usage during the training
process of the GCN model.

V. RELATED WORKS

Distributed GNN Training: Several methodologies comple-
ment the discussions in Section II-A regarding distributed GNN
training [14], [15], [22], [26], [27], [28], [29], [44], [45], [46],
[47]. To reduce communication overhead in partition-parallel
training, DIGEST [45] uses a centralized parameter server to
synchronize node embeddings, avoiding peer-to-peer commu-
nication. AdaQP [46] enhances data transmission via adaptive
quantization. Sanqus [42] reduces communication and storage
pressure by dynamically sensing the staleness of embeddings
and quantizing partition messages. NeutronTP [43] introduces
tensor parallelism in GNN training, achieving complete commu-
nication load balancing and minimizing the storage of interme-
diate layers. In contrast, DSP [47] employs a parallel pipeline
with a distributed sampler to boost GPU utilization. P3 [48]
partitions graph node features and executes the initial GNN layer
within each partition, reducing distributed feature retrieval costs.
NeutronStar [49] leverages hybrid dependency management
for efficient communication by accessing dependent data from
neighboring partitions or local caches.

Graph Learning Frameworks: Most open-source frameworks
for graph learning support graph neural networks based on the
message-passing paradigm [35], [50]. The most widely used
frameworks are PyTorch Geometric [35] (PyG) and Deep Graph
Library [50] (DGL). PyG adopts a data-centric approach, utiliz-
ing Gather and Scatter operators to efficiently propagate mes-
sages between nodes and edges. In contrast, DGL allows users
to define message-passing computations directly from a graph-
centric perspective. Both frameworks continuously evolve with
new features and models. Numerous graph neural network
frameworks tailored to specific graph data types extend their
capabilities based on PyG and DGL foundations, including
PyG-Temporal [51], DistDGL [21], and DistTGL [52].

VI. CONCLUSION

This paper presents Emma, a distributed GNN training
framework that enhances the efficiency and accuracy of existing
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historical embedding-based sampling methods. Emma employs
a source node-centric chunking technique to mitigate the stale-
ness of historical embeddings while improving communication
balance and efficiency. Additionally, it utilizes a moving mes-
sage aggregation strategy to minimize redundant aggregation of
historical embeddings, significantly reducing computation and
storage costs. Extensive evaluations demonstrate the effective-
ness of Emma in terms of training efficiency, accuracy, memory
usage, and scalability across various models and datasets.
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