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ABSTRACT
This paper presents a heterogeneous collaborative computing frame-
work for SGD-based Matrix Factorization, named HCC-MF. HCC-
MF can train the feature matrix efficiently using multiple CPUs and
GPUs. It performs collaborative computing with data parallelism,
where a server CPU is in charge of management and synchroniza-
tion and other heterogeneous worker CPUs and worker GPUs per-
forms calculation with their data assignments. HCC-MF adopts two
data partition strategies, “data partition with heterogeneous load
balance” and “data partition with hidden synchronization.” We build
a time cost model to guide the data distribution among multiple
workers and we design several communication optimization tech-
niques with consideration of datasets’ and processors’ characteris-
tics. Experimental results indicate that HCC-MF can utilize more
than 88% of the platform’s computing power, yielding a speedup
of 2.9 compared with advanced SGD-based MF, CuMF_SGD, on
large-scale data sets.

CCS CONCEPTS
•Computer systems organization→Heterogeneous (hybrid)
systems.
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1 INTRODUCTION
Matrix factorization (MF) is a collaborative filtering technique and
has been widely used in recommendation systems. Recently, MF
and some of its variants, such as ConVF[14] and NCRPD-MF[9],
have helped recommendation systems achieve high accuracy hence
attracted much attention. Stochastic gradient descent (SGD) is a
commonly used algorithm for solving MF. Some well-known SGD-
based MF algorithms include: FPSGD[2] for multi-core CPU sys-
tem, GPUSGD[13] and CuMF_SGD[27] for GPU system, MSGD[17]
for multi-GPU system, and HSGD[28] (which combines FPSGD
and CuMF_SGD) for single CPU-GPU system. Nowadays, multi-
CPU/GPU systems are well adopted in various computing-intensive
scenarios and SGD-based MF is very suitable for data parallelism,
so it is natural to utilize multi-CPU/GPU collaborative computing
systems for better performance.

However, it faces three challenges. i) Among multiple proces-
sors (including CPUs and GPUs), improper data distribution can
lead to load imbalance. ii) The synchronization overhead caused
by distributed parallel SGD may cancel out the benefits brought by
parallelism. iii) Excessive communication overhead between differ-
ent processors may also offset the benefits brought by parallelism.
The first challenge may cause buckets effect in multi-processor
collaborative computing, i.e., a slower node will drag down the
performance of the entire system. The other two challenges will
affect the collaborative computing system’s actual acceleration rate
and its utilization of computing resources.

In this paper, we design a heterogeneous multi-CPU/GPU col-
laborative computing framework for SGD-based MF to address the
aforementioned challenges, named HCC-MF. Our work includes
modeling the time cost, two data partition strategies, and communi-
cation optimization strategies. ch more than 97% of the best perfor-
mance, and there is almost no computational time overhead.

i) Modeling the time cost. We establish a time cost model in HCC-
MF based on the complexity of the SGD-based MF and the whole
collaborative computing process. The whole process includes com-
puting, communication and synchronization. The model is a piece-
wise function based on the proportion of synchronization overhead,
its independent variable is the size of the input data. The data par-
tition strategy is closely related to whether the synchronization
overhead can be ignored. Therefore, we design two different data
partition strategies for HCC-MF.
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ii) Data partition strategy when synchronization overhead is neg-
ligible. When the computing cost is much greater than the syn-
chronization cost, we focus on accelerating the computing phase
and do not pay much attention to the synchronization phase. We
prove that when the processor load is balanced, the computing time
overhead reaches the theoretical minimum. We bring the runtime
memory bandwidth into consideration, and design a data parti-
tion strategy to balance computing time on each heterogeneous
processor, named “data partition with heterogeneous load balance”.

iii) Data partition strategy when synchronization overhead cannot
be neglected. When the synchronization overhead is large enough,
we try to change the balanced data workload and hide the synchro-
nization overhead with computational cost. We name this strategy
“data partition with hidden synchronization”. These two strategies
are simple and efficient and experiments show that in the corre-
sponding scenario, HCC-MF uses these two strategies to perform
better than the basic strategy.

iv) Communication optimization strategies. We design a series of
communication optimization strategies to reduce the communica-
tion overhead between multi-CPU/GPU. We analyze the training
data characteristics of the recommendation system and propose
two communication optimization strategies, “Transmitting Q Ma-
trix only” and “Transmitting FP16 Data”. More importantly, we hide
part of the communication overhead using GPU’s copy engine (in-
cluding discrete GPU and integrated GPU in CPU) by using the
asynchronous multi-stream mechanism. In our implementation,
we use shared pinned memory and multi-threaded copy for data
transmission. During transmission, we try to reduce the data copy
operations between different processors, and the data copy usually
happens only once in one epoch. Thus, our implementation can
ensure that the data transmission bandwidth of HCC-MF can reach
the maximum bandwidth of the transmission channel when the
amount of data is appropriate.

Our contributions are as follows.

• We design and implement HCC-MF. To our best knowledge,
it is the first multi-CPU/GPU collaborative computing frame-
work for SGD-based MF.
• We design multiple optimization strategies about computing
and communication for HCC-MF to improve the efficiency
of collaborative computing.
• We conduct thorough evaluations to show that HCC-MF can
use almost all the computing power of each CPU and GPU
in the system for collaborative computing SGD-based MF on
large scale data sets. And we also quantitatively analyzed the
effective range of collaborative computing and the defects
of the framework.

The rest of this paper is organized as follows. Section 2 intro-
duces background knowledge and provides our research motivation
derived from some exploratory experiments. Section 3 presents the
design and implementation of the proposed framework HCC-MF.
Section 4 presents the evaluations. Section 5 presents related works.
Section 6 concludes our work and discusses future work.

2 BACKGROUND AND MOTIVATION
2.1 SGD-based Matrix Factorization
The overall process of MF (Matrix Factorization) in the recommen-
dation system is shown in Figure 1, in which the rating matrix R
reflects the user’s interests in the products. To decide whether to
recommend a product to a user, the recommendation system needs
to accurately calculate the missing interest values in R (the pink
blocks in Figure 1). To this end, MF decomposes R into two matrices
that contain latent features of the user-item interaction, i.e., the
user matrix (often denoted as P) and the item matrix (often denoted
as Q). The product of matrix P and matrix Q, denoted as Rp , needs
to be an approximation of R. Thus, it can be used to predict the
missing interest values in R.

SGD (stochastic gradient descent) is a commonly used algorithm
to update the P and Q in MF. MF methods that invoke SGD can
be called SGD-based MF. The standard SGD is a serial algorithm.
Before performing the current calculation, it must wait for the
previous values to be calculated, as shown in the formula in Figure
1. Recht proposed the Hogwild! algorithm[21] and proved that
asynchronous SGD can also achieve convergence under sparse data
conditions in a shared memory system. It provides a theoretical
basis for us to calculate SGD-based MF in parallel on each processor.
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Figure 1: SGD-based MF uses the root mean square error of
P∗Q and R, as well as L2-norm, to construct the loss function.
The SGD algorithm will iteratively update P and Q to make
the loss function converge. The values in the pink squares
of Rp are the predicted values of * in R.

2.2 Muti-CPU/GPU architecture
Multi-CPU/GPU architecture means that multiple CPUs and multi-
ple GPUs are on a single machine. Recently, this architecture has
been widely used in HPC systems and workstations that pursue per-
formance. For example, among the top 5 of the TOP500 list in 2020,
there are three machines (i.e., Summit, Sierra, and Selene) that adopt
this architecture in their individual nodes[24]. In multi-CPU/GPU
architecture, multiple cores inside a CPU are interconnected by
IMC[5] and they share the physical memory uniformly. CPUs not
located on the same node are connected by high-speed intercon-
nection technology, such as QPI (Quick Path Interconnect)[3], UPI
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(Ultra Path Interconnect)[5], etc. Multiple GPUs can be directly
connected to the CPU through PCI-E, or through NVLINK (only
for some specific NVIDIA GPUs). As shown in Figure 2, as long as
these connection channels are sufficient, processors can commu-
nicate in parallel without losing bandwidth. Currently, there are
many unified programming frameworks for CPU and GPU, such
as CUDA[22], OpenCL[19], oneAPI[10], and ROCm[1], etc., which
can help us conveniently program and implement a collaborative
computing framework for SGD-based MF on heterogeneous CPU
and GPU.

Node 0

CPU 0 CPU 1

Memory

IMC

Node 1

CPU 2 CPU 3

Memory

IMC

Node 2

CPU 4 CPU 5

Memory

IMC

Node 3

CPU 6 CPU 7

Memory

IMC

QPI

QPI

QPI

QPI

Figure 2: A typical multi-CPU/GPU architecture, widely
used in servers, workstations or clusters.

2.3 The Under-utilized CPUs
Recently, as the computing performance gap between GPU and CPU
has become larger[22], researchers prefer to put computing tasks
on the GPU(s)[8, 11, 20, 26]. The CPU(s) in the multi-CPU/GPU
system is usually only used to submit GPU tasks and control GPU
tasks, and its computing performance is under-utilized. However,
some studies have shown that for SGD calculations, the CPU can
also provide acceleration[12, 15, 16]. In order to verify whether this
conclusion is valid for SGD-based MF, we test the SGD-based MF
on different single CPU and single GPU through FPSGD algorithm
and CuMF_SGD algorithm, and then perform CPU/GPU collabo-
rative computing to compute SGD-based MF in a crude and direct
manner (that is, free to adjust the configuration of data partition
and communication). As shown in the “Good collaboration" part in
Figure 3(a), SGD-based MF can be accelerated through multi-
CPU/GPU collaborative computing, even if CPU is weaker
than GPU. More importantly, it may be more economical to
use additional less powerful CPUs for collaborative comput-
ing than to choose a single more powerful GPU (as shown in
Figure 3(b) ). For example, the “6242-2080S” can achieve perfor-
mance close to Telsa V100, but only needs less than 1/3 of its price,
as shown in Figure 3. Therefore, for SGD-based MF, we should
devote the CPUs in multi-CPU/GPU system to the calculation to
improve performance.

2.4 Collaborative computing should be
carefully designed

Data distribution. Figure 3(a) shows that the performance of SGD-
based MF varies greatly on different CPU/GPU. And the execution

time of collaborative computing depends on the execution time
of the slowest node in the system. Therefore, if the amount of
data assigned to the processors is not appropriate, the efficiency of
multi-CPU/GPU collaborative computing will be very low caused
short-board effect, such as the “6242-2080S (Unbalanced data)” in
Figure 3(a).

Communication. There is a very troublesome communication
problem, which may even completely offset the benefits of col-
laborative computing. It is that SGD-based MF needs to transmit
feature matrices P and Q, and the amount of transmitted data is
only related to the dimension of the rating matrix R. Even if there
is a little input data, processing a rating matrix with a larger dimen-
sion will generate higher communication overhead. In this case,
the efficiency of collaborative computing is very poor, such as the
“6242-2080S (Bad communication)” in Figure 3(a).

Summary: For SGD-based MF, we can obtain better perfor-
mance and economic benefits through multi-CPU/GPU collabo-
rative computing. However, we must design a good collaborative
computing process to deal with data distribution and communica-
tion on the processors.

3 DESIGN OF HCC-MF
3.1 Framework description
We design a collaborative computing framework HCC-MF, hoping
to efficiently utilize all the processors (including CPUs and GPUs)
in multi-CPU/GPU system like Figure 2. For this, we try to increase
each processor’s local computing and reduce the interaction among
processors and the management of HCC-MF.

The workflow of framework is shown in Figure 4, where the
involved steps are denoted as 1○ to 7○. First of all, before the training
starts, the framework will preprocess the input rating matrix (steps
1○ to 3○), which involves operations such as shuffling, sorting, and
data partition. These steps will prepare training data and initialize
feature data for each worker. Afterwards, it comes to the training
process. At the beginning of a training epoch, the workers will pull
feature matrix from the server in parallel (see step 5○). Then the
worker computes SGD-based MF in the data parallelism way (step
6○). After the local feature matrices Pn and Qn is updated, the local
feature matrix will be pushed to the server in parallel (step 7○).
Then, the server will synchronize the data from each worker to
the global feature matrices P and Q (the step 4○ called sync). The
operations of “pull→computing→push→sync” will be repeated
until the objective function converges.

As the above workflow, HCC-MF is designed as an “asynchro-
nous + synchronous” collaborative computing mode based on pa-
rameter server[18]. Each processor as a worker calculates its own
data and updates its training results asynchronously. Processor as
a server is responsible for synchronous management. Synchroniza-
tion management is necessary. The reason is that, no matter how
the data is divided, it is always possible for multiple workers to
process the same row (column) of data. In this way, they will up-
date the training results to same row (column) in the global feature
matrix P (Q). This will cause data race of write-after-write (WAW).
As the number of processors in the system increases or the sparsity
of input data decreases, the risk increases.
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Figure 3: (a) In the test, we use the Netflix dataset for training and record the training time of 20 epochs. The “Bad collab-
oration” is the result of random configuration and no communication optimization in collaborative computing. The “Good
collaboration” is the result of a carefully adjusted configuration. The “CPU” and “GPU” are result of training on corresponding
independent processor. (b) Hardware platform costs.
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Figure 4: The workflow of HCC-MF.

3.2 Time cost of HCC-MF
We establish a time cost model to guide the detailed design data
partition and communication of HCC-MF. The model describes the
overall time cost of a training epoch in collaborative computing. As
shown in Figure 5, the time overhead of an epoch is composed of the
longest time among all workers and its subsequent synchronization
time on the server, which can be written as follow:

T =max {Ti } +Tsync , (1)

where Ti = Ti_pull + Ti_c + Ti_push . When we know the type of
bus that connects the worker and the server, in theory, the cost of
pull and push are the same, and they are both equal to a constant,
k(m+n)/Bbus_i . The time for the worker to process one input data
is 7k/Pi + (16k + 4)/Bi . Since the performance of the processor is
always much greater than the memory bandwidth, i.e., Pi ≫ Bi ,

Table 1: Model parameters in HCC-MF

Symbols Descriptions
m,n Rows and columns of rating matrix
nnz The number of elements in rating matrix
k Columns of matrix P and rows of matrix Q

c , д, p The number of CPUs, GPUs and total processors
Ti The time cost of i-th worker

Ti_pull The pull time of i-th worker
Ti_c The computing time of i-th worker

Ti_push The push time of i-th worker
Ti_sync The synchronization time of i-th worker

Pi Runtime computing performance of i-th worker
Pserver Runtime computing performance of server

Bi Runtime memory bandwidth of i-th worker
Bserver Runtime memory bandwidth of server
Bi_bus Runtime bus bandwdith connecting i-th worker and server
Ti_e The independent execution time in i-th worker
xi Data partition parameters of i-worker
λ The threshold of ignoring synchronization overhead

the 7k/Pi term can be ignored, therefore

Ti ≈
xinnz (16k + 4)

Bi
+
2k(m + n)
Bbus_i

. (2)

The server synchronizes a feature parameter with three read and
write memory operations and one multiply-add operation. We as-
sume that there are t synchronizations after the max time cost, then
we get the synchronizations time:

Tsync =
t∑
i=1

Ti_sync =
t∑
i=1

[
3k(m + n)
Bserver

+
k(m + n)

Pserver

]
≈

3tk(m + n)
Bserver

.

(3)
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Substitute Equations (2) and (3) into Equation (1), then:

T =max

{
xinnz (16k + 4)

Bi
+
2k(m + n)
Bbus_i

}
+
3tk(m + n)
Bserver

, (4)

where the constraints are
∑p
i=1 xi = 1. And t is also a function

related to the data partition x. When the computational cost is
much higher than the synchronization cost, the synchronization
overhead is too small to affect the overall overhead. We can ignore
it and the time cost model will become a piecewise function:

T =

{
max {Ti (xi )} max {Ti } /Tsync ≥ λ,
max {Ti (xi )} +Tsync (x) max {Ti } /Tsync < λ.

(5)

where λ is a threshold that indicates that synchronization overhead
can be ignored. Its value should be changed with the scale of execu-
tion time. In our test environment, HCC-MF can complete training
on different data sets within 30s, and the fastest can be less than 1s.
Therefore, we take its value as 10 in experiments.

Server on CPU 0 Worker on CPU 0 Worker on CPU Worker on GPU

Computing PCI-E Pull/Push QPI Pull/Push Synchronization

Figure 5: Different timing sequence in a training epoch. The
left sub-figure is the original timing sequence without any
optimization. The middle one is the optimized timing se-
quence without considering the synchronization overhead.
The right one is the optimized timing sequence with consid-
ering the synchronization overhead.

3.3 Data distribution management
Data distribution management is a key module on server named
“DataManager” which is responsible for assigning data to each
worker. In “DataManager”, the data grid affect the synchronization
management of server and the calculation content of workers, and
the data partition strategy determines the load of the workers. In
this section, we discuss the design of data grid and data partitioning
strategy.

Row (column) grid. In HCC-MF, the server divides the data in
the form of row (column) grid. It means the server divides the rating
matrix R to each group of rows (columns) which will be assigned
to a corresponding worker, as the step 6○ in Figure 4. When input
rating matrix has more rows than columns, the row grid is adopted,
otherwise, the column grid is used. However, using the row grid, the
server must synchronize submitted results of each worker to avoid
data race. This only requires adding a multiply-add operation after

each data submitting. For distributed systems, submitting results
is always necessary, the increase in synchronization overhead is
limited. More importantly, in terms of communication overhead,
using row grids will have advantages, which we will discuss in
detail in section 3.4. Therefore, in the “DataManager” on server, we
adopt the form of row (column) grid to divide the data.

Data partition with heterogeneous load balance. Accord-
ing to the first case of the time cost model, we can establish the
optimization objective function:

θ (x) =min {T } =min

{
max

{
xinnz (16k + 4)

Bi
+
2k(m + n)
Bbus_i

}}
.

In order to solve the equation conveniently, we assume that the
memory bandwidth during the computing of the worker will not
change with the scale of the input data. It should be noted that
in this section we only discuss data partition, so other condition
variables, such as the number of threads, are fixed. Thus, it has a
general form θ (x) = min {max {Ax + B}}. And both A and B are
constants. For this function, we can obtain a useful theorem:
Theorem 1: When

∑m
i=1 xi = 1, ∃ {x1,x2, ...,xi , ...,xm }

minimizes the T (x) =max {Ax + B}, if and only if
a1x1 + b1 = a2x2 + b2 = ... = amxm + bm .
proof 1: Assuming it is not
a1x1 + b1 = a2x2 + b2 = ... = amxm + bm , minimizes the T (x).
Because

∑m
i=1 xi = 1, then there is a pair

{
x ′i ,x

′
j

}
in the solution

set, let aix ′i + bi , aixi + bi , ajx ′j + bj , ajx j + bj , and
x ′i + x

′
j = xi + x j . If aix ′i + bi < aixi + bi , then x ′i < xi , x ′j < x j

and ajx ′j + bj > ajx j + bj . At this time, T (x) is not the minimum
value, which contradicts the assumption. The theorem 1 is proved.

For the HCC-MF, ai is the time cost independently calculated
by the i-th worker . And bi = k(m + n)/Bbus_i , that is the com-
munication time of the i-th worker. Since the bandwidth of x16
PCI-E Gen3 is close to that of QPI (16GB/s v.s. 16∼20.8GB/s), we
consider the communication overhead on each worker to be equal.
Thus, according to Theorem 1, when a1x1 = a2x2 = ... = apxp , the
objective function reach minimum. It means that the computing
cost of each worker is equal, the overall cost is the minimum, like
the middle diagram Figure 5. Then we get the solution of objective
function x that represents the number of rows assigned to workers:

xi =
1∑p

j=1
ai
aj

=
1∑p

j=1
Tj_e
Tj_e

. (6)

This is the basic data partition strategy, named “DP0”.

Table 2: Memory bandwidth (GB/s) of different data parti-
tions under the same configuration. “IW” is shot for “Inde-
pendent Worker” which means that each worker processes
all the input data individually. “DP0” means dividing input
data to workers according to the DP0 strategy.

Worker 6242 6242l-10 2080 2080S
IW 67.3001 39.31905 378.616 407.095
DP0 67.75335 39.5995 388.7935 412.042

However, in reality, memory bandwidth is not necessarily con-
stant. With the help of profiling tools Intel PCM[4] and NVIDIA
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Nsight Systems[6], we find that, while varying input data size of the
worker, the bandwidth of the CPU is constant, but GPUs’ bandwidth
has a little change. The results are shown in Table 2. In addition,
we neglected some non-critical factors when modeling, which are
i) Pi when deriving equation 2, and Pserver when derive equation
3. These factors make that after dividing the data according to DP0,
the computational time of CPU and GPU is unbalanced (the gap is
small), but the computational time of the same type of processor is
still balanced. Therefore, we need to fix the data partition strategy
to ensure a balanced computational time.

We have obtained an observation from a lot of tests: when the
input data changes in a small range, the memory bandwidth at
runtime will not change much, and it can be considered as a con-
stant. Using this feature, we can linearly find a new data partition
based on the data partition, computing cost, and unbalanced cost
obtained by DP0, such as the lines 5-11 in the Algorithm 1. It is
a data partition strategy with heterogeneous load balance named
DP1 as the Algorithm 1. Since the computing time of each worker
by using DP0 is very close, using the DP1, the computational cost
can be balanced by executing the algorithm a few times (usually
only once).

Algorithm 1 Compensation algorithm

Input: Old data partition
{
xb_1,xb_2, ...,xb_p

}
; The computing

time
{
t1, t2, ..., tp

}
;

Output: New data partition
{
x1,x2, ...,xp

}
1: Tavд_cpu ←

1
c
∑c
i=1Ti_cpu , Tavд_дpu ←

1
д
∑д
i=1Ti_дpu

2: while |Tavд_cpu−Tavд_дpu |
min(Tavд_cpu ,Tavд_дpu )

> 0.1 do
3: Tavд_cpu > Tavд_дpu ? l ← 1 : l ← −1

4: ∆T ←
l (Tavд_cpu−Tavд_дpu )

c+д
5: for i = 1→ c do
6: xi_cpu ←

xb_i_cpu (ti_cpu−lд∆T )
ti_cpu

7: end for
8: for j = 1→ д do
9: x j_дpu ←

xb_j_дpu (tj_дpu+lc∆T )
tj_дpu

10: end for
11:

{
xb_1,xb_2, ...,xb_p

}
←

{
xcpu

}
∪
{
xдpu

}
12:

{
t1, t2, ..., tp

}
← sдd_update(

{
xb_1,xb_2, ...,xb_p

}
)

13: Tavд_cpu ←
1
c
∑c
i=1Ti_cpu , Tavд_дpu ←

1
д
∑д
i=1Ti_дpu

14: end while
15:

{
x1,x2, ...,xp

}
←

{
xb_1,xb_2, ...,xb_p

}
16: return

{
x1,x2, ...,xp

}
Data partition with hidden synchronization. In the second

case, synchronization overhead will affect the overall time over-
head. Since the Tsync is a variable, Equation (5) can no longer be
equivalent to linear equations. Existing constraints are too few,
it is difficult to find an exact solution for the objective function,
θ (x) = min

{
max {Ti (xi )} +Tsync (x)

}
. Therefore, we designed a

greedy heuristic method to find sub-optimal solution. First, we use
the time overhead and data partition generated by DP1 as the ini-
tial conditions. Then, we hope that the time cost of each worker
changes according to the law which the synchronization overhead

of the i-th worker can always be hidden by the computational cost
of the i + 1-th, as shown right diagram in Figure 5. Accordingly, we
get the following equation:

T(i±n)_c = Ti_c ± nTi_sync . (7)

Finally, we take the initial conditions as the median value, and
compensate synchronization time to each worker up (+) or down
(-) according to Equation (7). Thus, we can get new data partition
with hidden synchronization named DP2 by using method similar
to the line 6 in Algorithm 1.

3.4 Communication optimization
It is necessary to optimize communication overhead. First, in HCC-
MF, only the feature matrix P and Q are transmitted between the
worker and the server. Therefore, the transmission overhead is
related to the dimensions of the rating matrix. The larger the di-
mension of thematrix, the larger the transmission overhead. Second,
communication overhead may account for a large proportion of
the total cost. According to the Equation 2, the ratio of commu-
nication overhead to computing cost can be obtained to be about
Bi (m + n)/(8xi × nnz × Bbus_i ). Generally, considering the cache,
the ratio of Bi and Bbus_i ranges from 10 to 100. Then, if the dif-
ference between matrix dimensions and matrix elements is less
than three orders of magnitude, that is nnz/(m + n) < 103, commu-
nication overhead and computing time will be in the same order
of magnitude. Therefore, we must optimize the communication of
the system. According to the characteristics of data transmission,
we design three communication optimization strategies to ensure
efficient parameter data transmission in the HCC-MF. The core
ideas are as follows:

• Reduce the amount of data transmission without compromis-
ing data accuracy (data accuracy will affect the convergence
speed of training).
• Construct an asynchronous execution pipeline to overlay
transmission with computing.

These strategies include: “Transmitting Q matrix only”, “Transmit-
ting FP16 Data” and “Asynchronous Computing-Transmission”.

Strategy 1: Transmitting Q matrix only. It means that, dur-
ing the SGD-based MF training, all workers only need to pull or
push Q matrix in every epoch, except for the last push in which
both P and Q matrix need to be pushed. The MF application has
practical significance. Each row in the rating matrix R is the user’s
rating for a series of products. In a large number of random user
scenarios, the rows are independent of each other (the columns
are same). In this way, the rows of the feature matrix P will not
interfere with each other in the SGD update, as shown in Figure 4.
Combined with the row grid data partition, the local feature matrix
P of the worker does not need to be updated to the global feature
matrix P during training. Therefore, for the epochs in the middle of
the training process, each worker only needs to transmit Q matrix.
Correspondingly, if there are more items than users, the strategy
can also be switched to “Transmitting P matrix only". According
to this transmission strategy, the amount of transmitted data is
only about n/(m + n), but the accuracy of training data will not be
affected, where (m + n) is the original amount of data transmission
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without employing this strategy. In the data sets of the actual recom-
mendation systems, the number of users is much greater than the
number of products, i.e,m ≫ n. For example, in the Netflix data set,
there are 480,190 users and 17,771 items. Our strategy can reduce a
large proportion of the original transmission (the proportion lower
bound is 1/2, obtained whenm = n). In this case, the strategy can
reduce data transmission by about 96.4% in practice.

Strategy 2: Transmitting FP16 Data. In the actual recommen-
dation system, common scoring methods include 5-point scale,
10-point scale and 100-point scale. The number of possible values
of the score is finite. The step size of the score value is usually
relatively large. For example, we generally use 1 point or 0.5 points
as the step length in the 100-point system. That means, the feature
matrices P and Q do not need too high precision to represent the
score matrix R. Therefore, we can compress the feature matrix data
and then transmit it. This approach will not affect the accuracy
of the target rating matrix. We implement the IEEE-754 FP32 and
FP16 conversion functions on the GPU and CPU respectively in
the COMM component for data compression and decompression.
In order to ensure conversion efficiency, we use AVX instructions
and multi-threaded parallel acceleration conversion on the CPU. In
theory, the strategy of transmitting compressed data can further
reduce the data transmission by 1/2.

Strategy 3: Asynchronous Computing-Transmission. The
first two strategies are designed for the case where m is much
greater than n. While in practical applications, it is still possible
to encounter a situation where the number of rows and columns
is roughly the same. In this situation, the first two strategies can
only reduce the communication overhead to 1/4 in theory. If the
rating matrix has a particularly large number of rows and columns,
the communication overhead will still be high. For this reason, we
establish multiple asynchronous “pull-computing-push” pipelines
on each worker, trying to hide the communication overhead of pull
and push with computational cost, as show in Figure 6. The copy
engine on the GPU and the multi-stream mechanism provided by
CUDA make it easy for us to implement this strategy for the GPU
workers. For CPU workers, this strategy can only be implemented
if the CPU has an integrated GPU. We can build such multiple
pipelines by using the copy engine of integrated graphics (like Intel
BLT engine). In this case, synchronization on the server will occur
in the middle of the process, and the CPU acting as the server will
no longer be time-sharing as worker.

3.5 Implementation of HCC-MF
Transparent utilization of the CPUs andGPUs.We implement
the HCC-MF that can use all CPUs and GPUs in the system to
accelerate SGD-based MF. In HCC-MF, one CPU in the system is
designated as the parameter server, and all the other connected
CPUs and GPUs are workers. In addition, when “Asynchronous
Computing-Transmission” is not used, a special worker will be
created to time-sharing reuse the server’s CPU. The server and the
workers are designed as process instances, so that both CPU and
GPU are transparent to users. Server and CPU workers is bound to
the corresponding CPU through setting CPU affinity. GPU workers
is bound to the parameter server. Then the corresponding GPU
is selected using device API, like CUDA API “cudaSetDevice” or
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Figure 6: Asynchronous computing-transmission does not
reduce computational time. Asynchronous pull and push
make the transmission hidden by calculation. In theory, it
can reduce the transmission overhead to 1/streams.

OpenCLAPI “clCreateContext”. Then, the server will create a thread
to synchronize the received training results from workers, named
“Sync”. The worker will create its own thread pool and train the
feature matrix asynchronously, as shown in the Figure 4.

Implementation of communication module. “COMM" is a
communication module between the server and workers, which
connects the server and the workers through IPC (Inter-Process
Communication). The communication optimization strategies men-
tioned in the previous chapter are integrated in “COMM”. It provides
two simple interfaces, “Pull” and “Push”, to transfer feature matrix
between worker and server. In order to make full use of the inde-
pendent QPI and PCI-E channel in the system shown in Figure 2,
the “COMM” create a piece of shared memory on each server and
worker, called “pull buffer” and “push buffer” respectively, as shown
in Figure 4. The “pull buffer” is mapped into the address space of
each worker and the “push buffer” is mapped into the server by
“COMM”. In this way, the “Pull” and “Push” of each worker is paral-
lel. More importantly, if the feature matrix is directly stored in the
respective shared memory, then the communication between the
worker and the server only needs to copy once.

4 EVALUATION
In this section, we evaluate the proposed HCC-MF on real open
source datasets. To demonstrate the performance of HCC-MF, we
design several experiments around the following key questions:

• In a real multi-CPU/GPU system, can HCC-MF effectively
improve the execution performance of an SGD-based MF
application? (Section 4.2)
• Does the core design proposed in Section 3 effectively im-
prove the performance of collaborative computing? (Section
4.3 and Section 4.4)
• What is the HCC-MF’s utilization of computing resources
in multi-CPU/GPU system? (Section 4.5)
• What are the limitations of HCC-MF? (Section 4.6)
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4.1 Experimental setup
We conduct experiments on a multi-CPU/GPU workstation with
two Intel(R) Xeon(R) Gold 6242 CPUs, one NVIDIA RTX 2080 GPU
(GPU_1, configured with 41,216 threads) and one NVIDIA RTX
2080 Super GPU (GPU_0, configured with 43,008 threads). The two
GPUs are directly connected to CPU_0 with PCI-E 3.0 x16 and the
CPU_1 (configured with 24 threads) are connected to CPU_0 with
Intel UPI (Intel Ultra Path Interconnect). In the overall performance
test, CPU_0 is configured with 16 threads to obtain the maximum
performance. In other tests, in order to increase the heterogeneity
between CPU_0 and CPU_1, we configure CPU_0 with 10 threads.
We adopt relevant data sets and training parameter settings of MF
according to existing studies, as shown in Table 3, where Netflix,
R1, R2, and Movielens are real data sets, while R1* is a data set
generated by adding data according to the uniform distribution on
the basis of R1 in order to verify the data distribution strategy.

Table 3: Parameters of data sets and SGD-based MF training,
where the learning rate γ is 0.005.

Data Set m n nnz λ1, λ2
Netflix 480190 17771 99072112 0.01

Yahoo! Music R1 1948883 1101750 115579437 1
R1* 1948883 1101750 199999997 1

Yahoo! Music R2 1000000 136736 383838609 0.01
Movielens-20m 138494 131263 20000260 0.01

4.2 Overall performance
We evaluate the overall performance of HCC-MF from three aspects:
training effect, training speed, and utilization of processors. As
far as we know, currently there is no program or framework for
MF applications on multi-CPU-GPU heterogeneous systems. We
compare HCC-MF with FPSGD and CuMF_SGD, which are the
state-of-the-art SGD-based MF approaches on a single processor,
to show the performance of HCC-MF. It should be noted that we
did not directly use their open source code. We modify the open
source implementation of these methods (faster than their open
source implementation)1, and use them as the computing task of
HCC-MF. Considering the fairness of comparison and correctness
of collaborative computing evaluation, we use themodified versions
of FPSGD and CuMF_SGD as baselines.

On the one hand, we show that HCC-MF can accelerate the
training speed while still having the same convergence rate as the
single processor algorithms. Parallel SGD may update a parameter
at the same time, which will cause convergence problems, such
as slow convergence or non-convergence[25]. We first tested the
training effect after 100 epoch training, the results of convergence
rate and training speed are shown in Figure 7. It can be seen that
1The main modifications: i) We added the implementation of AVX and SSE instructions
to the parameter update kernel in FPSGD, which is only implemented in ordinary C
language in the open source code. Under the same configuration, the open source
version training Netflix 20 times will take 22.9s, while our version only needs 12.9s.
ii) we have added the implementation version of AVX512F to the kernel function
of inner product and parameter update. Using AVX512F, on our test platform, our
implementation training Netflix 20 times only takes 5.5s. iii) Refer to the FPSGD, we
added the block sorting by row to the grid_promblem of CuMF_SGD to improve cache
hit rate. 20 Netflix training time is reduced from 2.84s to 2.25s on RTX 2080.
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Figure 7: (a), (b) and (c) is the comparison of the convergence
rate on different data sets, indicating the convergence effect
under a certain training epoch. (d), (e) and (f) is comparison
of the training speed on different data sets.

on different data sets, the convergence rate of SGD-based MF in
HCC-MF is equivalent to that in single-processor methods, but the
training speed in HCC-MF is faster than that in single-processor
methods. For example, on R2, the training speed of HCC-MF is 2.9x
that of CuMF_SGD and 3.1x that of FPSGD. Of course, it must be
noted that on R1, due to the use of the “asynchronous calculation-
transmission strategy”, a small part of the training results is lost. To
obtain high training speed, the execution in worker is completely
asynchronous. Therefore, several asynchronous streams in a same
worker may train the same row of parameters concurrently, result-
ing in the coverage of the training results. However, Hogwild![21]
proves that this influence is relatively small if the data are sparse
and random enough. The data HCC-MF processes can meet these
requirements. Because the rating matrix is always sparse, and there
are only a few asynchronous streams in HCC-MF. As shown in
Figure 7 (b) and (e), the loss function fluctuates during training, but
it maintains a downward trend until it converges.

On the other hand, we evaluate whether HCC-MF fully utilizes
the computing performance of the heterogeneous system. The tradi-
tional peak performance cannot well evaluate the real performance
of the application, and the speedup is not enough to reflect the
utilization of heterogeneous processors by system. Therefore, we
define the “computing power” instead of peak performance and
the “computing power utilization” instead of speedup to further
evaluate the overall performance of the multi-CPU/GPU system.
“Computing power” reflects the computing performance of a proces-
sor for a certain application. In SGD-based MF, “computing power”
means the number of rating matrix elements that can be updated per
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unit time on a certain processor, which can be written as:

computinд_power =
nnz × epochs

cost_time
(8)

Ideal “computing power” of system is the sum of the “computing
power” of all the processors in the system. “Computing power
utilization” is used to describe the utilization of heterogeneous
processors by HCC-MF. We define it as the ratio of the HCC-MF’s
actual “computing power” to the ideal “computing power” of system.
In Table 4, the first four data columns present the “computing power”
of several processors to independently calculate SGD-based MF,
the column “Ideal” presents the ideal “computing power” of the
system and the HCC-MF column is the tested “computing power” of
HCC-MF in the experiments. According to Table 4, on Netflix and
R2 data sets, HCC-MF shows high utilization (more than 85%) of the
ideal computing power. On R1, HCC-MF also has a good utilization
(62%) of the ideal computing power. On MovieLens, HCC-MF utilize
46% of the ideal computing power, that’s because this type of data
set is not suitable for multi-CPU/GPU acceleration, we will discuss
it in section 4.6.

4.3 Data partition strategy evaluation
In this set of experiments, we verify that the timing sequence of
HCC-MF is consistent with the proposed time cost model, and
demonstrate the performance of HCC-MF’s data partitioning strat-
egy. According to our design, when synchronization overhead can
be ignored, dividing data according to DP1 HCC-MF should obtain
a more balanced load and better performance, when synchroniza-
tion overhead needs to be considered, dividing data according to
DP2 should hide synchronization overhead and obtain better per-
formance.

We run the training process for 20 epochs and record the cumula-
tive time cost of the pull, computing, and push operation(including
push and sync), respectively. The results are shown in Figure 8.
Comparing Figure 8 and Figure 5, we can find the actual execu-
tion process of HCC-MF is consistent with the proposed time cost
model. Next, we demonstrate the performance of DP1 and DP2.
On one hand, HCC-MF finds that the computational cost is much
higher than the synchronization overhead on Netflix and R2, so
it chooses the DP1 strategy. In this case, the computing time of
DP1 is more balanced, and the overall overhead is also smaller,
which are reduced by 12.2% and 10% respectively compared with
DP0, as shown in the Figures 8 (b) and (d). On the other hand, for
R1, HCC-MF considers the synchronization overhead and chooses
DP2. In Figures 8 (c) and (f), the computing cost of DP2 is not bal-
anced, but the synchronization overhead of the previous worker
are hidden. It enables the HCC-MF to end the current iteration as
soon as the last worker ends, while DP1 has to wait for a period of
time. Therefore, DP2 gets a smaller overall time cost than DP1, for
example, it decreased by 12.1% on R1*-4workers.

4.4 Communication evaluation
Communication performance is an important performance indi-
cator of HCC-MF. From the above-recorded data, we can obtain
the communication time cost of HCC-MF, which are the sum of
the cumulative time cost of pull and push, as shown in Table 5. It
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Figure 8: Time statistics of 20 epochs using different data
partition strategies.

can be seen that actual performance of our communication opti-
mization strategies are also in line with the design. Explanations
are as follows. Without any optimization, “COMM” (the commu-
nication module of HCC-MF) will transmit both P and Q matrices
(abbreviated as P&Q in the table). When compare the computing
time cost in Figure 8 with the communication time cost in Table
5, the communication overhead is indeed much larger than com-
putational cost, which confirms that the benefits of parallelism are
canceled out. Using “Transmitting Qmatrix only” (abbreviated as Q
in the table), theoretically, the communication performance will be
accelerated by 20(m+n)/(m+20n) times on the basis of P&Q. So the
theoretical communication speedup of Netflix, R1_NEW and R2 are:
19.4, 2.5 and 6.1. The actual communication speedup are: 18.3, 2.9,
7.5, which are very close to theoretical values. When “Transmitting
FP16 Data” is further executed based on Q (abbreviated as half-Q
in the table), it can improve the communication performance by
more than two times compared with only employing Q, exceed-
ing the theoretical value. This phenomenon may be caused by the
combination of memory access and more data being cached.

Besides, “COMM” is a good implementation in terms of commu-
nication between processors. To illustrate it, we have implemented a
communication module based on ps-lite, named “COMM-P”, which
has same function with “COMM”. And we tested the communi-
cation time of “COMM-P” under different strategies, as the same
configuration the above experiment. Shown in Table 5, using the
same optimization strategy, the communication performance of
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Table 4: HCC-MF’s “computing power” of 20-epoch training time (Updates/s)

6242-24T 6242-16T 2080 2080s Ideal HCC utilization
Netflix 348790567 272502189.3 918333483.2 1052866849 2592493089 2228476993 86%
R1 190891071 191469060.9 801190194 939313585.8 2122863911 1310424456 62%
R2 266293289 212851540 339096219.3 354261902.7 1172502951 1034234303 88%

MovieLens-20m 261609815 250860330 835890148.7 905200490.3 2253560784 1025654359 46%

the “COMM” is significantly better than the “COMM-P”. Because
“COMM” can support point-to-point communication between work-
ers without entering the kernel by using shared memory. More
importantly, we ensure less temporary memory creation and re-
lease as well as fewer memory copies.

Finally, whether it is “COMM” or “COMMP”, the same commu-
nication performance trend is reflected in each communication
optimization strategy. It can explain that our communication strat-
egy is stable.

4.5 Utilization under different system scales
By adding workers one by one, we test the “computing power”
under different system scales to reflect HCC-MF’s utilization of
computing resources. Figure 9 is the stacked graph of “computing
power” in HCC-MF. It can be found that the “computing power”
always increases with the increase of workers. For Netflix and
R2, which have low communication and synchronization costs,
HCC-MF can use more than 80% of the “computing power” of each
ordinary worker. The special worker that reuses the server’s CPU
can contribute more than 70% of the “computing power”. For R1
and R1*, despite the substantial increase in communication over-
head and synchronization overhead, each ordinary worker can still
provide 45% of the “computing power” stably.

4.6 Limitations
HCC-MF has achieved good performance on some large-scale data
sets, it still has some limitations. Through some experiments, we
found that the HCC-MF cannot well accelerate the data set whose
computing cost and communication cost are close, like MovieLens-
20m. According to our design and the verification in Section 4.4,
the communication overhead of HCC-MF is related to the scale
of the rating matrix which is about n/2(streams × Bbuf ). It will
not decrease with the increase of workers. In this way, if the com-
munication overhead is very close to the computational cost, by
increasing the processor to reduce the computational cost, the over-
all overhead will not be reduced too much, like Table 6.

5 RELATEDWORK
There are many parallel solutions for SGD-based MF, which can
be mainly divided into distributed solutions and local solutions. i)
In distributed solutions, DSGD[7] and DSGD++[23] divide the data
by rows and synchronizes the feature matrix after each iteration.
Their workflow is very consistent with the form of MapReduce and
parameter server. We also adopt this type of workflow in HCC-MF.
But DSGD and DSGD++ equally divide the input data into rows,
which does not consider the difference in machine performance.
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Figure 9: The result of increased “computing power” after
adding heterogeneous processors in turn.

It leads to the problem that the high-performance machines be-
ing blocked by the low-performance machines in a heterogeneous
system. NOMAD[29] is an asynchronous and lock-free distributed
framework for SGD-based MF. However, its lock-free mechanism is
completely supported by the transmission of parameter messages.
Differently, in NOMAD, a worker who finishes processing column
will pass the column to other workers that will bring huge com-
munication overhead. More importantly, even though the initial
state of the worker is to process the data in the diagonal area, if the
distribution of the elements in rating matrix is not balanced, the
data race will occur. This kind of asynchronous and lock-free hides
the risk of calculation errors on some data sets. ii) In local solutions,
FPSGD and CuMF_SGD are two advanced solutions in shared mem-
ory system. They all try to make threads process independent data
blocks to avoid synchronization. In addition, CuMF_SGD design
cooperates with warp threads and coalesced memory access to
improve GPU performance. However, it must use global locks to
effectively protect the independence of the data block.



A Novel Multi-CPU/GPU Collaborative Computing Framework for SGD-based Matrix Factorization ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Table 5: The communication time of 20 epochs

Netflix R1_NEW R2
Optimization Cost time (s) Speedup Cost time (s) Speedup Cost time (s) Speedup

COMM
P&Q 3.289744 1x 19.569929 1x 7.0763885 1x
Q 0.180084684 18.3x 6.729931 2.9x 0.9467911 7.5x

half-Q 0.056680425 58x 2.04014235 9.6x 0.31296455 22.6x

COMM-P
P&Q 21.8169325 1x 140.821585 1x 51.00871 1x
Q 1.461305316 14.9x 50.57931 2.8x 7.190965 7.1x

half-Q 0.53061025 41.1x 24.5123435 5.7x 4.039398 12.6x

Table 6: Limitation shown with MovieLens-20m

worker pull computing push cost

HCC
2080S 0.088 0.368 0.103 0.559

2080S-2080 0.097 0.2 0.132 0.449
0.097 0.198 0.124 0.449

CuMF_SGD 2080S N/A N/A N/A 0.559

6 CONCLUSION
We designed a multi-CPU/GPU collaborative computing framework
HCC-MF for SGD-based MF with “asynchronous + synchronous”
working mode. We build time cost model of collaborative com-
puting workflow verified the effectiveness of the model through
experiments on actual system. According to the model, we propose
corresponding optimization strategies for the load balancing, syn-
chronization, and communication problems it faces. Experiments
show, the framework can effectively use the multi-CPUs/GPUs in
the system for acceleration. HCC-MF can use up to 88% of the “com-
puting power” of the entire platform to obtain 2.9x the acceleration
of a single GPU on larger data sets. HCC-MF still has limitations
in communication, which decreases its acceleration effect on some
data sets close to the square matrix.Wewill try to solve this problem
in the future.
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