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Abstract—Graph convolutional networks (GCNs) are popular
for a variety of graph learning tasks. ReRAM-based processing-
in-memory (PIM) accelerators are promising to expedite GCN
training owing to their in-situ computing capability. However,
existing accelerators can be severely underutilized even with
pipelines, due to the oversight of the skewed execution times
of various GCN stages and the ignorance of skewed degrees
of graph vertices. In this work, we propose GOPIM, a GCN-
oriented pipeline optimization for PIM accelerators to expedite
GCN training. First, GOPIM proposes an ML-based scheme that
allocates crossbar resources to the most needed stages to streamline
the overall pipeline. Second, GOPIM utilizes a selective vertex
updating technique that evenly distributes vertices on crossbars
by interleaved mapping. These techniques collectively reduce
the overall execution time without losing much accuracy. We
also provide a practical architecture design for GOPIM. Our
experimental results show that, GOPIM achieves up to 191×
speedup and 16.1× energy saving, compared to the state-of-the-art
work.

I. INTRODUCTION

Graph convolutional networks (GCNs) are widely used in
node classification [1], [20], [46], link prediction [5], [26], [29],
and recommendation [18], [34], [48]. GCNs are excellent at
extracting information from non-Euclidean graph-structured
data by leveraging multiple layers, each of which consists
of a Combination stage and an Aggregation stage. Recent
studies indicate that more than 84% of the total execution
time on CPU platforms and over 94% on GPU platforms are
dedicated to Aggregation stages [55]. This is because that,
during Aggregation stages, there are lots of irregular memory
accesses, causing a performance bottleneck in the system.

To address this issue, ReRAM-based processing-in-memory
(PIM) architectures have been proposed for GCN training
due to their in-situ computation capacity. Specifically, both
Combination and Aggregation kernels can be expressed as
Matrix Vector Multiplication (MVM) operations, which are
suitable for crossbar-based computations. Compared to conven-
tional accelerators, PIM architectures have shown remarkable
performance and energy efficiency for GCN applications [2],
[7], [23], [32], [33], [38], [49], [55].

Existing ReRAM-based GCN accelerators expedite the
execution process through intra-vertex and inter-vertex par-
allelism [23], [55], and intra-batch parallelism [2], [38]. By
making multiple micro-batchs that belong to the same batch
run in parallel (i.e., intra-batch parallelism), these approaches
improve resource utilization and reduce execution time to
some extent. However, they do not fully resolve the under-
utilization issues of ReRAM crossbars, due to the oversight of
the skewed execution times of various GCN stages. As seen
in Section III-A, in three Aggregation stages, the crossbars
are idle for over 98.47%, 97.50% and 99.03% of the total
training time on average across six datasets. The reason is
that Aggregation and Combination stages’ execution times
differ significantly, and usually long and short stages cannot
overlap well in a pipeline. Moreover, data dependencies exist
among stages. For example, one layer’s Combination must wait
for the completion of previous layer’s Aggregation, and the
corresponding crossbars remain idle during such waiting.

One obvious method to address this idle resource issue
is to employ unutilized crossbar resources as replicas. This
enhances pipeline parallelism by allowing distinct computations
to perform on different crossbar resources of the same data
segment, as done in [2], [23], [42]. However, the resource
allocation strategies in these works tend to be inflexible.
Pipelayer [42] uses the same number of replicas for all stages,
and ReGraphX [2] allocates the crossbars for Aggregation
and Combination stages with the ratio of 2:1. They overlook
substantial variations in execution times across different stages.
Our profiling reveals that, the time ratio between Aggregation
and Combination stages can range from 888× to 1595× on
products dataset.

Another method to streamline the GCN execution pipeline
is graph sparsification, which selects a subset of vertices
to update, rather than updating all vertices. However, graph
sparsification may not always decrease the total execution time.
The reason is that graph vertices show significantly skewed
degrees. Existing mapping strategies place the vertices in order
of the vertex index [2], [38], so that the vertices mapped on



each crossbar exhibit a random degree distribution, and the
reduction in workload resulting from graph sparsification is
similarly unpredictable. Consequently, after graph sparsification,
while some crossbars experience a notable decrease in workload,
others either experience no reduction or see a much smaller
decrease. However, the overall updating time is determined
by the slowest updating subtask. To give an example on the
randomness mentioned above: on the proteins dataset, the
average degree of vertices mapped to each crossbar ranges
from 1.6 to 2266.8, as seen in Section III-A.

To enhance the efficiency of executing GCNs on PIM
accelerators, we introduce GOPIM, a GCN-oriented Pipeline
Optimization for PIM accelerators, focuses on streamlining
pipeline execution to improve performance. Its effectiveness
hinges on two core innovations.

First, we propose a machine-learning-based replica resource
allocation scheme, which takes full account of the characteris-
tics of each stage. Based on the predicted execution time of
different stages, resources are allocated as needed. Within each
stage, these allocated resources are utilized to generate replicas,
effectively reducing the execution time of that particular stage.
This reduction is tailored to each stage’s requirements, ensuring
that the overall execution time of the pipeline is minimized.

Second, we devise an adaptive selective vertex updating
scheme, which selects the most important vertices and evenly
maps them onto the crossbars by interleaved mapping. This
reduces the data updating operations for all crossbars and
ensures load balance among crossbars, effectively reducing the
total update time.

Our major contributions can be summarized as follows:
• Through comprehensive profiling, we discovered the under-

utilization of the pipeline and the underlying reasons, such
as the disparity in the runtime of different stages.

• We propose a machine-learning-based resource allocation
scheme that allocates crossbars to the most needed stages
to streamline the overall pipeline.

• We propose an adaptive selective vertex updating method
for different graphs, which only updates important vertices
and evenly distributes them onto crossbars to reduce the
total update time with acceptable accuracy drop.

• We evaluate GOPIM on a range of GCN models and
graph datasets. GOPIM outperforms the state-of-the-art
SlimGNN-like, ReGraphX, and the ReFlip accelerator
by 2.1×, 2.4×, and 45.1× in terms of speedups, and
achieves an average energy reduction of 35%, 37%, and
65%, respectively.

II. BACKGROUND

A. Graph Convolutional Networks (GCNs)

Basic GCN Structure: To process both vertex and edge
data within the input graph, GCNs adopt a Combination-
Aggregation structure, as shown in Figure 1. In this structure,
the input graph consists of a series of vertices and edges,
represented as vertex feature vectors and an adjacency matrix,
respectively. Combination stages update vertex features through
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Fig. 2. Illustration of data dependency in GCN training.

a multiplication operation on vertex features and the weight of
a Multi-Layer Perceptron (MLP) neural network. Aggregation
stages aggregate each vertex and its neighbors’ feature informa-
tion by multiplying the adjacency matrix with relevant vertex
features [3], [17]. The Combination-Aggregation processes are
performed layer-wise iteratively. In Combination stage, vertex
A’s features in the l − 1-th layer (F l−1

A ) are updated through
linear transformations to Cl

A, as illustrated in Figure 1(b). Then
the calculation enters Aggregation stage as Figure 1(c) shows.
And in this stage, the updated feature information of vertex A
and its neighbors (B, C, and E), Cl

A, Cl
B , Cl

C , and Cl
E , are

aggregated to a new vertex feature, i.e., A’s feature in the l-th
layer F l

A. The Combination-Aggregation process in the l-th
layer is defined as follows:

Cl
v = Combination(F l−1

v ,W l) = F l−1
v Ẇ l (1)

F l
v = AĊl

v (2)

where v is the vertices in the graph, C is the output of the
Combination operation, F is the vertex feature matrix, W is
the weight matrix used by the Combination operation for linear
transformations, and A is the adjacency matrix.
Data Dependencies among Stages: GCN training process
comprises forward passes and backward passes [54]. For ease
of description, we divide this process into four types of stages:
Combination (CO), Aggregation (AG), loss calculation (LC),
and gradient compute (GC). The forward pass contains two
stages (i.e., CO and AG) while the backward pass includes
another two stages (i.e., LC and GC). Figure 2 illustrates a
two-layer GCN training process with eight stages: CO1 →
AG1 → CO2 → AG2 → LC2 → GC2 → LC1 → GC1.
There is a unidirectional dataflow between stages, such as
vertex features (X0, X1, X2), loss values (δ1, δ2), and gradient
update values (∇W , ∇X). Therefore, the various stages of
GCN must be executed in sequence due to data dependencies.
Micro-batch Processing: In deep learning, batch processing
and micro-batch processing can affect the parallel granularity of
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model training, which refers to the size of the data processed
simultaneously [22]. Batch processing updates the model’s
weights in each iteration. Micro-batch processing is a variant
of batch processing, where each batch is further divided into
several micro-batches [22], [36]. The data in each micro-batch
are processed individually, and their gradients are accumulated
for updating the model’s weights. Multiple micro-batches can
be processed in parallel, allowing flexible parallel execution
strategies and flexible pipelining.

B. ReRAM Crossbars for GCNs

In-situ Computing in ReRAM: The resistive random access
memory (ReRAM) is an emerging non-volatile memory with
advantages of high density and low power leakage [53].
ReRAM has the ability to facilitate in-situ Matrix Vector
Multiplication (MVM) operations [10]. Therefore, ReRAM
is naturally suited as an accelerator for GCN training.

For MVM operation, the crossbar cells are programmed with
matrix elements in advance. The input of the crossbar is first
converted into voltage by digital-to-analog converters (DACs)
and then sequentially fed to the wordlines. According to
Kirchoff’s law, the input voltage is converted into currents
and the currents from cells sharing the same bitlines are
accumulated. Then, the accumulated values are stored in sample
and hold (S&H) circuits and converted to digital representation
using analog-to-digital converters (ADC).
Data Mapping Strategy: The data mapping strategy of
crossbars is an important factor that affects the performance
and energy efficiency of ReRAM-based GCN accelerators.
Figure 3 explains a basic mapping strategy. For Combination
stages, weights (W ) are mapped onto the crossbar, with the
vertex feature matrix (F ) serving as the input. Conversely, for
Aggregation stages, the adjacency matrix (A) becomes the input,
while the crossbar maps the feature matrix (F ). This mapping
strategy avoids mapping large sparse A onto crossbars, thus
avoiding crossbar waste and external data movement overhead
of F . When a matrix’s size is larger than the crossbar’s size,
horizontal and vertical tiling extension is used as follows: a
long matrix row will be horizontally mapped onto the same row
of multiple crossbars; and matrix rows beyond one crossbar’s
rows will be vertically mapped to new rows provided by other
crossbars. REPLIP [23] and GoPIM both use this approach.
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Fig. 4. The comparison of idle time percentage of crossbars for various stages.

C. Graph Sparsification

Graph sparsification can accelerate GCN execution, without
significantly altering the structure and functionality of the
graph [39]. It reduces computational demands by removing
edges that are redundant or less relevant. Existing graph
sparsification methods can be categorized into heuristic-based
methods and learning-based ones. Heuristic-based methods [41],
[43] typically rely on local information of the graph and remove
certain edges or nodes to achieve sparsification. Learning-based
methods [28], [45], [55] aim to find an optimal sparsification
strategy that minimizes information loss during the process.

III. MOTIVATION AND CHALLENGES

A. Motivation: The Inefficient Pipeline in ReRAM-based Ac-
celerator

Existing ReRAM-based frameworks (such as ReGraphX [2]
and SlimGNN [38]) use simple pipelines to accelerate GNN
training. However, their pipelines are inefficient due to
under-utilization of crossbars. To thoroughly understand the
under-utilization of pipeline design in SlimGNN, we analyze
GCN [26] models with six datasets (see detailed experimental
setup in Section VII-A) and present the analysis data in Figure 4.
It shows the idle time percentage of the crossbars during a
forward propagation (XBSi is short for “crossbars for stage
i,” meaning the crossbars occupied by the GCN model in the
i-th stage). The data not only show that crossbars are heavily
under-utilized, but also unveil that the idle time percentage
varies largely among stages. XBS1, XBS3, and XBS5 are the
crossbars for mapping Combination stage weights, and they
are idle for 98.47%, 97.50%, and 99.03% of the total time on
average across six datasets, respectively.

This idleness are mainly caused by two reasons. First, data
dependencies exist among stages. We illustrate it with an
example shown in Figure 5. In case (a), for each micro-
batch, each stage-2 cannot start until the corresponding stage-1
finishes. Second, different stages have distinct computation
patterns. Also in Figure 5’s case (a), a micro-batch’s execution
time in stage-1 is much shorter than that in stage-2, causing
stage-1’s crossbars being idle for long time until stage-2
finishes. In real GCN training, Combination stages are much
shorter than Aggregation stages. Please note, in Figure 5,
the communication aspect is not depicted because pipelining
overlaps computation and communication [36]. Inspired by
the resource allocation optimization techniques in pipeline [2],
we aim to use unoccupied crossbar resources as replicas to
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(a) Baseline. Unused crossbar: 3. Execution time units: 52

(b) ReGraphX. Allocate 1 crossbar for stage1 and 2 crossbars for stage2. Execution time units: 18 

(c) Allocate 3 crossbars for stage2. Execution time units: 16

micro-batchbatch
Timeline

stage1
stage2

stage1
stage2

0 4 8 12 16 20 24 28 40 44 5632 36 48 52

Fig. 5. The comparison of two unused crossbar resource allocation methods.
Each interval on the timeline arrow represents one unit of execution time. Each
batch includes two micro-batches. Different colors represent the execution
time of different micro-batches. Shaded areas represent idle time.

shorten the execution times of longer stages, thus streamlining
the overall pipeline.

We also observe that the vertex updating operations—writing
mapped vertices onto crossbars (see in Section IV-B)—can
be time-consuming. For example, these operations take 52%
of the total execution time of AG1 and AG2 on the ppa
dataset, as shown in Figure 2. Inspired by graph sparsification
approaches that improve performance by training only a subset
of edges [55], we also aim to selectively update only a portion
of vertices on ReRAM-based PIM architectures to optimize
performance.

B. Challenges

Challenge 1: Existing resource allocation methods lead
to suboptimal pipeline performance because they do not
consider varying execution times of different stages. For
example, ReGraphX [23] allocates resources at a fixed ratio
(1:2) between the CO and AG stages. However, this fixed
crossbar allocation is suboptimal for different GNN layers,
models, and datasets.

Setting different numbers of replicas for different stages can
lead to a drastic difference on the overall pipeline execution
time. Let’s use Figure 5 as an example again. In Figure 5(a), no
replicas are created and the pipeline’s execution time is 52 time
units. Here, we assume that three crossbars are available as
unoccupied resources, and the size of data mapped on crossbars
of stage 1 and stage 2 is also one. In other words, there are
enough resources to create only three replicas of stage 1 or
stage 2. In Figure 5(b), ReGraphX allocates crossbars with a
fixed ratio of CO to AG. One crossbar is allocated to stage
1 and two to stage 2. This reduces the execution time for
stage 1 by half and for stage 2 by two-thirds, achieving an
improvement ratio of approximately 65.4%. The total pipeline
execution time is reduced by 34 time units. In Figure 5(c), all
three crossbars are allocated to stage 2, further increasing the
improvement ratio to ∼69.2%, which surpasses ReGraphX. As
a result, the pipeline’s total execution time is reduced by 36
time units. This shows that, despite that ReGraphX’s resource
allocation method is already efficient, there is still potential
for improvement. A simple adjustment in the allocation ratio
can further enhance performance.
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The reason behind this effect is that, in GCN training, there is
a significant difference in execution time between Aggregation
and Combination stages (up to 888×, with an average of 247×).
If the number of replicas is not carefully chosen for each stage,
the pipeline execution may not achieve optimality. Please note
that Figure 5 is a simplified example with only three replicas
to allocate and only two stages to serve. The execution time
ratio of stage 1 and stage 2 is 1:6. In real system, there will
be more crossbar resources to be allocated [16], [24], [27],
and the GCN execution are divided into more stages. In such
systems, the execution time ratio of stage 1 and stage 2 could
be much smaller than 1:6. Consequently, the improvement ratio
could be more pronounced with replicated crossbars.

Challenge 2: Existing mapping strategies for ReRAM-
based GCN accelerators, such as ReGraphX and SlimGNN,
may negate the latency benefits of selective updating. These
frameworks typically use vertex index-based mapping strategies,
which place the vertices in order based on their index. However,
this approach results in a biased degree distribution of vertices
mapped onto each crossbar. Our profiling of the average
degree of mapped vertices per crossbar using this strategy,
illustrated in Figure 6, reveals significant variations across
datasets. For example, in the ddi, proteins, and ppa datasets,
the average degrees of mapped vertices per crossbar vary widely,
ranging from 151.8 to 827.4, 1.6 to 2266.8, and 1 to 1716.91,
respectively.

We name selectively updating part of vertices on ReRAM-
based accelerators with index-based mapping strategy as
Original Selective Updating (OSU). An example on such
challenge is shown in Figure 7. We use vertex degree as the
metric to select vertices, because it is an important metric to
evaluate the vertex’s importance on training [9]. We assume
a graph consists of eight vertices (V1–V8) with degrees of
300, 500, 250, 450, 2, 15, 10, and 1, respectively. And we
assume each crossbar wordline is large enough for a vertex
vector. The default vertex mapping method arranges vertices
based on their indices, mapping V1–V4 to the first crossbar and
V5–V8 to the second. Crossbar 1 and 2 can process in parallel,



but ReRAM writing operations within the same crossbar are
serial [4], [31], [51]. Thus, without sparsification, updating
these eight vertices on the ReRAM accelerator takes 4 cycles.
After enabling sparsification, following the default stragety of
selecting vertices with the highest degree for updating, OSU
chooses to update only V1–V4, which still takes 4 cycles. The
total updating time is not reduced at all, since crossbar 1 does
not receive any workload reduction.

IV. OVERVIEW OF GOPIM

A. Architecture

GOPIM’s architecture is shown in Figure 8. It comprises
a 16GB ReRAM array with multiple Tiles, a 128-KB Global
Buffer, an SRAM-based Weight Manager, an Activation Module,
a set of Adders, and a Central Controller. Specially, we
integrate intra-batch and inter-batch pipeline parallelism [36]
into the system running on ReRAM-based accelerators to enable
faster GCN training. Then, we design an ML-based resource
allocation through a Time Predictor and a Resource Allocator.
We also design an interleaved mapping with adaptive selective
updating scheme (ISU) to compress the execution time of each
training stage.
(1) Tile: Each tile consists of 8 PEs, and each PE contains 32
ReRAM crossbars, an input register, an output register, ADCs,
DACs, S&Hs, and S+As. The ReRAM tiles are connected
through adders and pipeline bus to support the inter-tile data
Aggregation and transmission.
(2) Central Controller: The controller controls the dataflow of
GCN training between the off-chip memory and the GOPIM
chip. To overlap the latency of off-chip memory accesses, input
data are prefetched to the on-chip global buffer. Output results
are written back to the off-chip memory in batches to enforce
sequential memory accesses.
(3) Weight Manager: This unit is made of SRAM and it
calculates the weight gradient during the backward propagation.
We opt for SRAMs rather than ReRAMs mainly because that
there are frequent weight updates in the backward phase and
SRAM has faster update speed than ReRAM. Also, SRAM
has better endurance, which better suits the frequent surge of
writes. SRAM can write 1016 times while ReRAM can write
108 times during their lifetime.
(4) Activation Module: Besides MVM operations, GCN
training also includes activation operations. We choose to use
the ReLU activation function [11] and integrate an activation
module on the GOPIM chip to perform these operations.
(5) Time Predictor and Resource Allocator: These two
components run on the CPU side. First, GOPIM predicts
the execution time (without using replicas) of each stage of
each layer in the GCN training process based on relevant
information derived from the model and dataset. Then, the
Resource Allocator allocates crossbar replicas for each stage
proportionally based on the predicted execution time of the
intra-layer Combination and Aggregation within the constraints
of limited crossbar hardware resources.
(6) ISU Data Mapper: The interleaved mapping with selective
updating scheme runs on the CPU side. First, it determines
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Fig. 8. The architecture and dataflow of GOPIM.

which vertices to update during each epoch based on their
significance. Then it maps the selected vertices on different
crossbars in an interleaved way to realize efficient vertex
updating. More details are shown in Section VI.

B. Dataflow

We illustrates the dataflow for ReRAM-based accelerator in
Figure 8. We will elaborate on them in four types of stages:
Combination (CO), Aggregation (AG), loss calculation (LC),
and gradient compute (GC), which are indicated by four colored
arrows. (1) CO: First, weight matrices are fetched into the
global buffer (GB) from off-chip memory (OM), and then
transferred to the crossbars ( 1⃝). Then, GOPIM loads the vertex
features to GB from OM ( 2⃝), and it executes the MVM for
vertex feature transformation computation ( 3⃝). Subsequently,
the transformed vertex features are updated to GB ( 4⃝). (2) AG:
For Aggregation stage next to Combination, the latest version
vertex features are loaded from the GB to the crossbars ( 5⃝).
Next, the adjacency matrix is loaded from OM ( 6⃝) involving
MVM operations for Aggregation ( 7⃝). The results are handled
with Adders and sent to the Activation Module to transform the
intermediate result, which are then moved to GB ( 8⃝). (3) LC:
In backward of the training, we adopt the same computation
mode as in [40], which reads error from the layer l + 1 as
input to compute the error of layer l. The dataflow of LC
stage is the same as the CO stage ( 9⃝ – 12⃝). Specifically, the
input and output of crossbars are errors of adjacent two layers,
while multiple crossbars store weights, vertex features and
adjacency matrix to perform MVM operations in order. (4)
GC: To calculate the weight gradients of layer l, the error
from layer l + 1 will be loaded from OM to Weight Manager
to do element-wise multiplication and accumulation with the
activations from layer l in a channel-to-channel scheme ( 13⃝).
Subsequently, the updated gradients are transmitted to the tiles,
where they are used to rewrite the weights and vertex features
on the crossbars ( 14⃝). This step is considered part of the data
loading process during the CO and AG stages.

V. ML-BASED RESOURCE ALLOCATION FOR PIPELINE

This section presents the details of the design and implemen-
tation of ML-based resource allocation. Section V-A explains
how GOPIM estimates the resource demands for each stage.
Section V-B explains how GOPIM dynamically manages and
allocates resources.



TABLE I
FEATURES USED IN THE TIME PREDICTOR.

Feature Meaning

RCO
IFM the row number of input matrix IFM for Combination

CCO
IFM the column number of input matrix IFM for Combination

RCO
E the row number of mapped weight matrix for Combination

CCO
E the column number of mapped weight matrix for Combination

RAG
A the row number of adjacency matrix (A) for Aggregation

CAG
A the column number of adjacency matrix (A) for Aggregation

RAG
E the row number of mapped feature matrix for Aggregation

CAG
E the column number of mapped feature matrix for Aggregation

s the sparsity of the graph
k the current layer

A. ML-based Execution Time Prediction

The execution time of each stage is the basis for allocating
the crossbar resources. Execution Time Predictor needs to
estimate the execution time accurately based on the workload
characteristics.
Inefficiency of Existing Approaches: Existing approaches
have utilized profiling-like methods to estimate execution
times during online training processes [35]. However, the
profiling technique is time-consuming (e.g., 1688.9 seconds for
one profiling on ppa dataset). Further, with users submitting
diverse models, datasets, vertex dimensions, and hardware
configurations, it’s infeasible to profile every scenario.
Key Idea: To avoid the high time overhead for profiling and
obtain accurate predictions for each stage of every layer, we
employ a machine learning approach. Specifically, for the
user-submitted workload, we extract the model’s architecture
and dataset features as input. Then we use a pre-trained and
lightweight machine learning model (MLP) to rapidly predict
the execution times of each stage after deploying the workload
on a crossbar-based PIM accelerator.
The Input Feature Extraction of Workloads: Input features
significantly affect the predictor model. We identify the param-
eters associated with computation. Empirically, the latency of
each stage correlates with the dimensions of matrices involved
in the MVM operations. For instance, in Combination stages,
careful consideration should be given to the feature dimensions
of weight matrices and input matrices, including both their
row and column numbers. Subsequently, we conduct ablation
studies, sequentially eliminating one feature at a time, and
monitor significant decrease in accuracy. In other words, if the
exclusion of some feature causes a large drop in the predictor’s
accuracy, then we need to keep that feature in the model.
Eventually, we choose ten features as the model input, as listed
in Table I.
The Predictor Structure: One challenge is to choose a
lightweight yet accurate learning-based model. To address
this, we evaluate all the regression models available in the
scikit-learn library and selecte the top five performing models
for our analysis. To benchmark our ML-based predictor, we
compare it with these top-performing models. Additionally,

MLP XGB SVR DT LR BR
(a) Model Selection.

0
1
2
3
4
5
6
7
8
9

RM
SE

2 3 4 5 6
(b) # of Hidden Layers.

0.0

0.2

0.4

0.6

64 128 256 512 1024
(c) # of Neurons.

0.040

0.045

0.050

0.055

0.040

0.045

3.6
3.7

0.200
0.225 0.04

0.05

Fig. 9. The comparison of RMSE for different learning-based models. The
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are short for XGBoost, Support Vector Regression, Decision Tree, Logistic
Regression, and Bernoulli Regression, respectively.

we include a variety of Multilayer Perceptrons (MLPs) in our
comparison. To assess the performance, we utilize the root
mean squared error (RMSE) as our primary evaluation metric,
consistent with established practices as referenced in [19], [47].
As shown in Figure 9(a), the MLP model outperformes other
learning-based approaches. We then systematically vary the
number of layers in the MLPs from two to six, as detailed
in Figure 9(b). Our findings indicate that a three-layer MLP
provides superior performance. Following this, we vary the
number of neurons in the hidden layer of the three-layer MLP,
with the results depicted in Figure 9(c). It indicates that a
configuration with 256 neurons in the hidden layer was the
most effective. Therefore, we select a three-layer MLP model
as our execution time predictor. This model consists of 10
neurons in the input layer, 256 neurons in the hidden layer,
and a single neuron in the output layer.
Training Data Generation and Model Evaluation: The
quality of datasets greatly affects the prediction accuracy of
the model. We record the execution times of all stages of the
workloads on the ReRAM accelerator to create a dataset. To
diversify our models, we conduct six workloads for 30 epochs
to gather the execution records. Each sample is recorded as
(t1, t2, ..., tn) for a model with n stages. We randomly select
samples from these six datasets and split them into training and
test datasets with an 8:2 ratio. We incrementally increase the
number of data samples until we achieve satisfactory prediction
accuracy. In our experiments, we find that training with 2,200
samples provides sufficient accuracy. The results show that the
RMSE of our predictor is 0.0022 on average.

B. Resource Allocation Strategy

Inefficiency of Existing Approaches: The ultimate goal is
to effectively allocate an optimal number of replicated and
mapped weight matrices or vertex feature matrices for each
Combination or Aggregation stage, while adhering to hardware
resource constraints. Existing methodologies typically employ
dynamic programming techniques to make these allocation
decisions [27]. However, this approach often incurs significant
decision-making time. When dealing with large datasets such as
products, decisions may take more than 3 days to be finalized.
Key Idea: To avoid long resource allocation time, we propose
a max-heap based approach. The key idea is to utilize two
max heaps to implement resource allocation strategy based on
the greedy algorithm. One max heap stores crossbar resource
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Fig. 10. The pipeline of GCN training on ReRAM-based accelerator.

adjustment values, while the other stores execution durations
for all stages. This approach allows GOPIM to quickly identify
the stages where adding resource replicas can minimize the
total execution time of the pipeline.
Overall Execution Time of the Pipeline: Figure 10 illustrates
the pipeline designed for ReRAM-based accelerators in the
context of a 2-layer GCN model. For a GCN model with L
layers, GOPIM divides it into 4L stages. Each layer consists
of individual stages: CO, AG, LC and GC. For illustrative
purposes, we set the micro-batch size (denoted as B) as 3,
with distinct block colors representing three sequential micro-
batches of input data. Because of the data dependency of stages
within one micro-batch, for the same micro-batch, the execution
start time of i-th stage (T j

i (start)) is not earlier than the end
time of the (i− 1)-th stage (T j

i−1(end)). Additionally, for the
same group of crossbars, the execution of the j-th micro-batch
must not occur prior to the execution completion of the (j−1)-
th micro-batch (T j−1

i (end)). B represents the number of total
micro-batches. The total execution time (TA) of the pipeline
can be expressed as:

T j
i (start) ≥ T j−1

i (end) (3)

T j
i (start) ≥ T j

i−1(end) (4)

T j
max = max(T j

i ), i = 1, 2, 3, · · · , 4L (5)

TA =

4L∑
i=1

(T j
i ) + (B − 1)× T j

max (6)

Resource Allocation Algorithm: To efficiently allocate cross-
bar resources during training, we employ a max heap-based
greedy algorithm. We establish two max heaps, Hv and Hp,
where each node is a key-value pair. The keys represent the
adjusted values of each stage’s replica number and execution
time duration, respectively. The values within both heaps
denote the index of the respective stage. When unused crossbar
resources are available, GOPIM augments the replica count for
the stage of the top node in Hp. Then, GOPIM checks whether
the stage with the highest adjustment value also has the longest
execution time. If so, the adjusted values and execution time
for this stege are updated, and subsequently, both max heaps
are adjusted from top-down. Otherwise, the adjusted value for
the top node of Hv is recomputed. Then, GOPIM finds the
corresponding node in Hp and decrements its execution time.
Next, adjust two heaps top-down. Subsequently, the unused
crossbar resources are reduced. GOPIM iterates through the
replica allocation process until the available unused crossbar

Algorithm 1: Crossbar allocation algorithm
Input: CPIM : the number of unused crossbars;
N : the number of stage;
P [1, 2, 3, . . . , n]: the execution time for N stages;
X[1, 2, 3, . . . , n]: the number of crossbars for one replica of
mapped weight or vertex feature matrix N stages;
Output: R[1, 2, 3, . . . , n]: number of replicas for N stages.

1 V [1, 2, . . . , n] ← computeAdjustValue();
2 Initiate a max heap Hv according to V , Hv.key = V ;

Hv.value is the index of the corresponding stage;
3 Initiate a max heap Hp according to P , Hp.key = P ,

Hp.value is the index of the corresponding stage;
4 while CPIM > 0 do
5 v ← Hv.top();
6 p← Hp.top();
7 R[v.value] + +;
8 if v.value == p.value then
9 v.key ← computeAdjustV alue();

10 p.key ← adjustExcutionT ime();
11 shiftHeap(Hv, Hp)
12 end
13 else
14 v.key ← computeAdjustV alue();
15 p← findNode(Hp, v.value);
16 p.key ← adjustExcutionT ime();
17 shiftHeap(Hv, Hp)
18 end
19 CPIM ← updateTotalUnusedCrossbars();
20 end
21 return

resources are exhausted. A high-level algorithm for the resource
allocation strategy is shown in Algorithm 1.

VI. INTERLEAVED MAPPING WITH SELECTIVE UPDATING

A. Key Idea

Selectively updating the vertices can effectively reduce the
number of ReRAM write operations. Low-degree vertices,
while having less impact on training accuracy, still consume
the same update frequencies (or time) as high-degree vertices
during training. By moderately reducing the update frequency
of these low-degree vertices, we can speed up the training
process without significantly compromising accuracy. Vertices
are categorized as important or less important based on
their degrees, with a predefined adaptive division ratio (see
Section VI-C). Important vertices are updated in every epoch,
while less important ones are updated every 20 epochs. Besides
accuracy, we also need to consider write balance among
crossbars, and we adopt an interleaved approach to map vertices.
This ensures that all crossbars receive almost the same amount
of write/update reduction, so that their execution time can be
reduced all together. We refer to this solution as the interleaved
mapping with adaptive selective update method (ISU).

B. Interleaved Mapping

The mapping method of ISU is illustrated in Figure 11.
Assuming the graph data have a total of N vertices and the size
of each crossbar is M , the interleaved mapping strategy works
as follows. First, it calculates the degrees of all vertices and
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sorts them in descending order. Then, the reorderd vertices list
is divided into K scopes, each containing N/K vertices. Since
vertices within the same interval have similar degrees, they
can be considered equally or similarly important. The different
intervals represent clusters of vertices with varying levels of
importance. When vertices are mapped to each crossbar in a
round-robin fashion, one vertex from each interval is selected
to be assigned to a specific crossbar, and each vertex can only
be assigned once. This strategy ensures that each crossbar maps
vertices from different intervals, resulting in a more balanced
distribution of vertex degrees across all crossbars.

Interleaved mapping, working together with selective updat-
ing, not only equalizes the number of update rows for both
crossbars, but also ensures that both crossbars drop low-degree
non-important vertices, as shown in the example in Figure 12.
In this example, four high-degree vertices are categorized into
the important group and they are evenly mapped to all crossbars
(two vertices on each crossbar). The degrees of the dropped
vertices for the two crossbars are 15, 2, 10, and 1, respectively.

C. Adaptive Selective Vertex Updating

Mitigating update frequency within a threshold can effec-
tively decrease execution time. Specifically, GOPIM selectively
prioritizes vertex updates, targeting a subset based on their
significance—vertices are ranked by their degrees, and only the
top θ (a percentage value) are selected for updates. A simple
approach would be to use a fixed θ value for all datasets, but it is
challenging to determine a proper θ that works across different
graphs. For example, using a low θ may yield significant
performance gains for dense graphs, as fewer vertices are
updated. However, the same low θ may cause a notable drop in
accuracy for sparse graphs, as eliminating many useful vertices
would be harmful.

To address this, GOPIM employs an adaptive update thresh-
old through the following steps. (1) Accuracy benchmarking:
we benchmark the accuray of GOPIM with different θ values.
(2) Accuracy analysis: we analyze the impact of different θ
values on accuracy, ensuring that the precision loss remains
below 1%. Our analysis shows that sparse graphs require

TABLE II
SPECIFICATIONS OF RERAM-BASED ACCELERATOR SIMULATOR.

Component Power(mW) Area(mm2) Params. Spec.
PE properties (8 PEs per Tile)

ADC 64 0.0384 Resolution 8 Bits
Total 32

DAC 8 0.00034 Resolution 2 Bits
Total 32×64

S&H 0.02 0.00008 Total 32×64

Crossbar 6.2 0.00051
Bits per Cell 2

Size 64×64
Total 32

IR 2.32 0.0038 Size 4KB
OR 0.42 0.0014 Size 512B
S+A 0.8 0.00096 Total 16

Tile properties (65536 Tiles per Chip)
Tile 654.08 0.36392 Total 65536

Input Buffer 7.95 0.034 Size 32KB
Crossbar Buffer 59.42 0.208 Size 256KB
Output Buffer 1.28 0.0041 Size 4KB

NFU 2.04 0.0024 Total 8
PFU 3.2 0.00192 Total 8

Chip properties

Weight Computer 99.6 3.21 Width 16 Bits
Total 1

Activation Module 0.0266 0.0030 Width 16 Bits
Total 1

Central Controller 580.41 2.65 Total 1

a higher threshold to maintain structural integrity, while
dense graphs can use a lower threshold due to the higher
redundancy of vertex connections. (3) Threshold determination:
we determine the optimal θ values for both sparse and dense
graphs. For graphs with an average vertex degree of 8 or less
(classified as sparse), we set the threshold at 80%. For denser
graphs, the update threshold is set at 50% (see Section VII-E).

VII. EVALUATION

A. Experimental Setup

Experimental Platform: We implemented GOPIM in a
modified PIM-based simulator, NeuroSim [40], to model the
proposed pipeline and mapping framework. The simulator
models all the microarchitectural characteristics of GOPIM,
including the on-chip storage buffers, processing-in-memory
(PIM) storage and compute elements, and other peripheral
circuits. Table II summarizes the GOPIM configuration, which
consists of 65536 tiles, with each tile featuring 8 PEs. Each PE
includes 32 ReRAM crossbars organized in a 4×8 matrix layout.
Each crossbar is 64×64, and the read and write latencies are
29.31 ns and 50.88 ns, respectively [37]. We utilize the same
methods in CACTI [50] and NVSim [13] to estimate latency
and energy. We define the crossbar array resource constraint
as 16GB, as referred to in [16], [24].
Baselines: We choose the following counterparts, which are
the most relevant and recent ReRAM-based GCN accelerators
in terms of pipeline resource allocation and graph sparsification.
(1) Serial represents the sequential execution without pipeline
and graph sparsification. (2) SlimGNN-like is derived from
SlimGNN [38] but without its weight pruning. SlimGNN-like
optimizes pipeline resource allocation with replicas based



TABLE III
DETAILED INFORMATION OF DATASETS.

Name Category Average
# Vertices

Average
# Edges

Average
# Vertex’s Deg.

Vertex Feature
Dimension

ddi Link 4267 1334889 500.5 256
collab Link 235868 1285465 8.2 128
ppa Link 576289 30326273 73.7 58
proteins Node 132534 39561252 597.0 8
arxiv Node 169343 1166243 13.7 128
products Node 2449029 61859140 50.5 100
Cora Node 2708 10556 3.9 1433

TABLE IV
GCN MODEL ARCHITECTURE AND TRAINING PARAMETERS.

Name # Layer Learning
Rate Dropout # Input

Channels
# Hidden
Channels

# Output
Channels

ddi 2 0.005 0.5 256 256 256
collab 3 0.001 0 128 256 256
ppa 3 0.01 0 58 256 256
proteins 3 0.01 0 8 256 112
arxiv 3 0.01 0.5 128 256 40
products 3 0.01 0.5 100 256 47
Cora 3 0.005 0.5 256 256 256

on the space requirements of each stage. It also leverages
input subgraph pruning and index-based mapping for graph
sparsification. (3) ReGraphX sets a fixed resource allocation
ratio and it discards graph sparsification; (4) ReFlip adopts
replicas only in combination phases and without sparsification.
(5) To demonstrate the effectiveness of ISU in GOPIM, we also
implement GOPIM-Vanilla, which is the version of GOPIM
without using ISU. We do not compare CPU/GPU systems
because ReFlip has outperformed them. For a fair comparison,
all accelerators including GOPIM are equipped with the same
crossbar resources.
Datasets and Models: Table III presents six datasets from
Open Graph Benchmarks (OGB) [21] and one dataset Cora,
selected to cover two prediction task types. The first three are
used for link prediction tasks, and the last four serve node
prediction tasks. For each type, we select datasets with three
graph density: large, medium, and small. The graph density
is defined as the ratio of the actual number of edges to the
maximum possible number of edges in the graph [15]. A
denser graph has a higher average number of vertex’s degree.
We evaluate GOPIM with the most popular GCNs models.
The model parameters on different datasets are presented in
Table IV. We choose 64 as the micro-batch size by default.

B. Overall Performance and Energy Saving

We first evaluate the performance and energy saving of
GOPIM with Serial, SlimGNN-like, ReGraphX, and ReFlip in
Figure 13. The experimental results do not include the CPU
prediction latency. On average, the CPU execution time takes
less than 1 second per model, which is negligible compared
to the whole GCN training process. The end-to-end execution
time and energy consumption are normalized to that of the
Serial approach.
End-to-End Speedup: Figure 13(a) shows the end-to-end
speedup comparison results between five baselines and GOPIM.
First, we can observe that GOPIM achieves the best perfor-
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Fig. 13. The overall performance of GOPIM for GCN with five datasets,
compared with baselines.

mance among the six schemes for all five datasets. Specifically,
GOPIM achieves 10.2×–3454.3× (727.6× on average), 1.4×–
2.9× (2.1× on average), 1.7×–2.9× (2.4× on average),
1.1×–191.4× (45.1× on average), and 1.1×–2.0× (1.5×
on average), compared to Serial, SlimGNN-like, ReGraphX,
ReFlip, and GOPIM-Vanilla, respectively. The observation that
GOPIM consistently outperforms GOPIM-Vanilla highlights
the effectiveness of ISU.

Second, we can observe that the highest speedup is obtained
under the case with the dataset that has the smallest number of
vertices. Specifically, the ddi dataset demonstrates the greatest
speedup (i.e., 3454.3×) compared to the other dataset. This
is attributed to the fact that ddi dataset, with its minimum
number of vertices, necessitates fewer crossbars to create a
replica, offering more acceleration opportunities for GOPIM.

Third, the dataset with denser graph can provide more
opportunities for GOPIM compared to ReFlip. The number of
vertices in ppa surpasses that in collab, implying that GOPIM
has fewer replicas available to enhance parallelism given the
existing amount of unused crossbars. However, despite this
limitation, we observe that GOPIM demonstrates a superior
speedup on the ppa dataset compared to the collab dataset.
Specifically, GOPIM showcases 4.6× speedups and 1.1×
speedups on ppa and collab datasets, respectively. This can be
attributed to the following reasons: (a) ReFlip adopts a hybrid
execution model, utilizing the row-major model for high-degree
vertices and the column-major model for low-degree ones. The
latter execution model leads to the repeated loading of vertices.
(b) ppa dataset exhibits higher density than collab dataset,
with the average degree of vertices in being 73.7 and 8.2,
respectively. Consequently, ReFlip needs to repeatedly load
more source vertices with ppa, compared to with collab.
Energy Saving: Figure 13(b) presents the energy saving
compasion among the five counterparts for the various datasets.
First, we can observe that GOPIM achieves the best energy
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Fig. 14. The performance impact on total execution time and energy
consumption with intra-&inter-batch pipeline, ISU, and ML-based resource
allocation.

saving among the baselines for all datasets. Specifically,
compared to Serial, GOPIM consumes 4.0× less energy
on average across the five datasets, while SlimGNN-like,
ReGraphX, ReFlip, and GOPIM-Vanilla achieve average energy
savings of 2.6×, 2.5×, 1.4×, and 3.0×, respectively. This
is because GOPIM integrates both intra-batch and inter-batch
parallelism to shorten the idle time for most crossbars while
SlimGNN-like and ReGrahX only support intra-batch pipeline.
Additionally, GOPIM uses the ML-based resource allocation
strategy to further reducing the idle time for most crossbars.
Furthermore, GOPIM uses selective vertex updating strategy to
reduce the write operations, which are not supported in other
baselines.

Second, we also observe that GOPIM gains the largest
energy saving for ddi dataset. Specially, compared to Serial,
GOPIM consumes 4.8×, 4.0×, 4.0×, 3.5×, and 3.7× (4.0×
on average) less energy on the five datasets. This is because ddi
dataset, with its minimal vertex count, requires fewer crossbars
for one replica, thereby offering more chances to mitigate
crossbar idle time for GOPIM. Additionally, we notice that for
ddi, ppa and proteins datasets, ReFlip consumes more energy
compared to Serial. The reason is that when the product of the
number of vertices and the average degree of vertices increases,
more vertices are repeatedly loaded onto crossbars. In other
words, the number of ReRAM rewrite operations increases.

C. Impact of Individual Techniques

Figure 14 illustrates the impact of each optimization tech-
nique within GOPIM on the end-to-end training time and
energy consumption across five datasets. The Serial version
refers to the basic ReRAM-based accelerator for GCN, which
operates in a layer-wise and sequential style. The +PP variant
integrates both intra-batch and inter-batch pipelining to expedite
the training process without replicas. The +ISU version
incorporates an interleaved mapping with selective update (or
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occupied by the GCN model in the i-th stage.

TABLE V
THE ACCURACY IMPACT OF GOPIM.

Dataset ddi collab ppa proteins arxiv

GOPIM-Vanilla 39.39% 45.66% 10.87% 71.96% 71.9%
GOPIM 43.40% 45.01% 11.94% 73.58 % 71.7%

Acc Impact +4.01 % -0.65 % +1.07% +1.62% -0.2%

rewriting) of vertices on the version of +PP. GOPIM denotes
the version with all optimizations including the ML-based
resource allocation strategy and the interleaved mapping with
selective update technique.

Figure 14(a) shows +PP achieves a speedup of 2.6× over
Serial on ddi dataset. The primary reason is that +PP can
overlap the stages of each samples in a batch and within the
bounded staleness batches. +ISU allows Aggregation to shorten
the loading data duration by decreasing the ReRAM write
times. By employing ML-based crossbar replica allocation,
GOPIM achieves a speedup of 3472.3×. This is because that
using unused crossbars for replica can improve the intra-batch
parallelism. Moreover, allocating more replicas to stages with
longer durations minimizes idle time in the pipeline.

Figure 14(b) presents the energy savings contributed by
each technique. +PP, +ISU, and GOPIM deliver up to 62%,
75%, and 79% energy reduction, respectively, across all
datasets. +PP minimizes idle time without additional hardware,
maintaining similar power levels. +ISU cuts energy use by
diminishing ReRAM rewrites during Aggregation. Although
GOPIM activates more components, its reduction in execution
time leads to significant overall energy savings.

D. Effectiveness Analysis

The Idle Time of Crossbars: Figure 15 shows the comparison
of idle time percentage of crossbars between Naive and
GOPIM. Naive represents the ReRAM-based accelerator with
pipelining and vertex index-based mapping strategy. We only
present the results on ddi for space limitation (we have similar
observation on other datasets). We can observe that GOPIM
reduces the average idle time percentage of the crossbars for all
batch sizes. Specifically, ISU achieves an average reduction of
46.75%, 49.75%, and 51.75% in the crossbars’ idle percentage
for micro-batch sizes of 32, 64, and 128, respectively. This
is because that GOPIM utilizes resource replicas to shorten
the duration of longer pipeline stages, thereby minimizing the
execution time disparity among different stages. Consequently,



TABLE VI
THE CROSSBAR ALLOCATION DETAILS ON ddi. [. . . ] DENOTES REPLICA AND CROSSBAR NUMBERS IN STAGES OF A GCN TRAINING PROCESS.

Dataset Method Numbers of Replicas Numbers of Crossbars Total Crossbars

ddi Serial [1, 1, 1, 1, 1, 1, 1, 1] [32, 534, 32, 534, 32, 534, 32, 534] 2264
GOPIM [59, 364, 60, 616, 61, 487, 61, 484] [1888, 194144, 1920, 328636, 1952, 258146, 1952, 258214] 1046852
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thresholds for dense graph ddi; (b) Accuracy with various selective updating
thresholds for sparse graph Cora; (c) Speedup performance with various batch
sizes.
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Fig. 17. Evaluation on scalability: (a) The speedups of GOPIM as the
dimensions of the vertex features are increased from 256 to 2048; (b) The
performance and energy savings on the products dataset.

this approach reduces the idle time of the crossbar in each
stage.

The Accuracy Impact of ISU: Table V shows the model
accuracy impact of GOPIM on various dataset. For ddi, ppa,
and proteins datasets, GOPIM improves the accuracy by 4.01%,
1.07%, and 1.62%, respectively. For other datasets, GOPIM
reduces the accuracy by 0.2%–0.65%, which is acceptable
(commonly an accuracy loss below 1% is acceptable [25]).
This is because that ISU makes GOPIM focus on the high-
degree vertices’ influence to the training and neglects a portion
of unimportant low-degree vertices.

The Replica Number Analysis: Table VI presents the
details of crossbar resource allocation for each stage. Due
to space constraints, we only display the results of ddi (similar
observations apply to other datasets). A N -layer GCN training
process has 4N stages (i.e., CO1–AG1, . . . , COn–AGn, LCn–
GCn, . . . , LC1–GC1) as mentioned in Section (II). The model
on ddi uses a 2-layer structure with an 8-stage training process.
The Serial method maps data to crossbars once per stage,
with the number of crossbars determined by parameters like
the weight matrix in Combination and vertex dimensions in
Aggregation. GOPIM allocates crossbars for stages within a
layer using varying ratios, based on ML-predicted execution
times. For example, in the ddi model, the crossbar replica ratios
for Combination and Aggregation stages in the first and second
layers are 0.162 and 0.097, respectively.

E. Sensitivity Studies
Update Threshold: The update threshold (i.e., θ described
in Section VI) can impact the accuracy of GCN model. We
study GOPIM’s sensitivity to various update thresholds using
two datasets: ddi, representing dense graphs (average vertex
degree > 8), and Cora, representing sparse graphs (average
vertex degree <= 8). Figure 16(a) and Figure 16(b) show
that GOPIM achieves the highest accuracy, with an accuracy
drop of less than 1%, when θ is set to 50% for ddi and 80%
for Cora. Moreover, GOPIM is not sensitive to the threshold
variations within certain ranges. This means that users can select
any value within these ranges to maintain both accuracy and
performance. Specifically, for dense graphs, setting θ between
40% and 50%, and for sparse graphs, setting θ between 70%
and 80%, ensures that the accuracy loss remains below 1%
while optimizing performance. These findings highlight the
necessity of using an adaptive threshold for different datasets.
Micro-batch Size: We study the impact of the micro-batch
sizes on system performance. As Figure 16(b) shows, as the
micro-batch size increases, the speedup of GOPIM normlized
to Serial increases. This is because, while increasing the
micro-batch size, the intra-micro-batch pipeline mechanism
in GOPIM helps exploit the parallelism of training, which
reduces end-to-end time to a greater extent.

F. Scalability Analysis
Dimension Size of Vertex Feature: Figure 17(a) illustrates
the speedup outcomes of GOPIM across varying vertex feature
dimensions, ranging from 256 to 2048. It is evident that GOPIM
consistently demonstrates speedups as the dimension size in-
creases, underscoring its commendable scalability. Nevertheless,
the speedups taper off with increasing dimension sizes. This
occurs because larger dimensions necessitate more crossbars
per replica, leaving less room to exploit the benefits of ML-
based resource allocation.
Larger Dataset: We explore the scalability of GOPIM using
a larger dataset (i.e., products containing 2,449,029 vertices).
As shown in Figure 17(b), GOPIM achieves a 5.9× speedup
and 1.8× energy saving, compared to Serial. Though GOPIM
may exhibit diminishing improvements as the dataset size
increases due to fewer unoccupied crossbar resources to
balance the pipeline, it can be addressed by augmenting the
crossbar resources. In addition, GOPIM’s selective updating
with interleaved mapping method still works well to reduce
the overall execution time.
Sparse Dataset: We also evaluate GOPIM on a sparse dataset
Cora, whose average vertex degree is 3.9. The update threshold
θ of ISU is set to 80%. Compared to Serial, SlimGNN-like,
ReGraphX, and ReFlip, GOPIM achieves speedups of 3460.5×,



TABLE VII
THE SPEEDUPS (NORMOLIZED TO SERIAL) COMPARISON OF ML AND

PROFILING METHOD.

Dataset ddi collab ppa proteins arxiv

ML 3454.31 36.82 10.18 71.64 64.78
Profiling 3469.17 36.82 10.20 71.83 66.20

1.30×, 1.26×, and 1.27×, respectively, along with energy
savings of 8%, 3.8%, 3.8%, and 19.5%. Although GOPIM
achieves less benefits for sparser graphs due to the fewer
dropped vertices for updating, it consistently outperforms all
the baselines. Meanwhile, the accuracy loss of GOPIM is
0.28%, which is ignorable. This indicates GOPIM is universal
for both dense and sparse graphs. On the other hand, a large
number of graphs (e.g., proteins, ddi, and ppa) are denser,
where GOPIM can always deliver substantial benefits.

G. Overhead Analysis and Discussion

Time Overhead for Predictor: To train GOPIM’s predictor,
we need collect the training dataset. The total time for doing
this is about 7 days. Then, it takes about 4 minutes to train
our predictor. With the trained predictor, it takes only a few
milliseconds to predict the execution times of all stages.
Model Generalizability on Unseen Datasets: We train our
ML model on five datasets and use the trained model to predict
the execution time of each stage of the GCN on the remaining
unseen dataset. By comparing the predicted execution time
with the actual execution time, we calculate the prediction
accuracy. Repeating this process for different unseen datasets,
we obtain six sets of experimental results. The results show
that GOPIM’s ML approach achieves an average prediction
accuracy of 93.4% on unseen datasets. This demonstrates that
our model has good generalization on unseen datasets.
The Comparison of ML model and profiling: Table VII
shows the comparison between the ML approach and the
profiling method. We can observe that GOPIM’s ML-based
approach achieves a speedup comparable to the profiling
method, with a maximum difference of only 4.3%, while
reducing the time overhead by an average of 94%. This
advantage is attributed to ML model’s generalizability. In other
words, ML model can handle unseen data while profiling
cannot. In order to achieve similar performance across multiple
datasets, the profiling-based method requires significantly more
time (compared to the ML-based method) to gather execution
times for each stage in every epoch.

VIII. RELATED WORK

Customized Architectures for GCN: Various crossbar-based
processing-in-memory accelerators optimize architecture and
dataflow for GCN by vertex data reusing [49], exploring
hybrid execution model [23], heterogeneous crossbar size [2],
input graph pruning or weight pruning [33], [38], dense
data mapping and scheduling strategies [7], edge selection
strategy [55]. Instead, in this work, we focus on the learning-
based resource allocation and mapping strategies with vertex
selective updating.

Exploring Parallelism for GCN Accelerators: Multiple
GCN accelerators optimize their performance by leveraging
either intra-vertex and inter-vertex parallelism [8], [23], [32],
[55], intra-batch parallelism [2], [38], [44], inter-batch paral-
lelism [44], or a combination of these techniques [30], [44].
However, either they are not applicable to ReRAM-based
accelerators, or they still suffer from issues that fail to fully
utilize PIM-based crossbars.In this study, we introduce an ML-
based crossbar allocation strategy to mitigate idle time and
employ an interleaved mapping strategy with selective updating
to achieve a more efficient pipeline.
Removing Redundancy in Graphs: Heuristic-based [41],
[43] and model-based [28], [45], [55] graph sparsifications
are widely used to accelerate GCN execution by removing
less-relevant or redundant edges from graphs. However, the
heuristic-based approaches ignore hardware mapping strategies
and the model-based methods require extensive times for
data collection and model training. In contrast, our approach,
GOPIM, incorporates vertex mapping strategies on PIM during
graph sparsification. This approach considers both the hardware
characteristics of the crossbar and is lightweight.
Pipeline Resource Allocation in DNN vs. GNN: Prior
studies accelerate DNN training with optimized resource
allocation, such as [6], [12], [14], [52], [56]. Compared to DNN
training, GNN training exhibits highly dependent computing
mode and longer execution times between stages, making the
resource allocation more promising and challenging. GOPIM
proposes innovative approaches to maximize resource allocation
efficiency in GNN training.

IX. CONCLUSION

GCN is becoming an increasingly important tool for graph
learning. In this paper, we propose GOPIM to improve the
execution efficiency of GCN on PIM accelerators. GOPIM
integrates a machine-learning method to allocate unoccupied
resources for streamlining the overall pipeline. GOPIM also
employs selective updating of graph vertices with interleaved
mapping, to reduce training time and ensure workload balance
across all crossbars. GOPIM integrates the two core techniques
with intra-batch and inter-batch parallelism to form its archi-
tecture design. Experimental results show that the proposed
architecture can meet our design goal, achieving up to 191×
speedup and 16.1× energy saving.
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