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ABSTRACT

Maximal biclique enumeration (MBE) in bipartite graphs is an im-
portant problem in data mining with many real-world applications.
All existing solutions for MBE are designed for CPUs. Parallel MBE
algorithms for GPUs are needed for MBE acceleration leveraging its
many computing cores. However, enumerating maximal bicliques
using GPUs has three main challenges including large memory re-
quirement, thread divergence, and load imbalance. In this paper, we
propose GMBE, the first highly-efficient GPU solution for the MBE
problem. To overcome the challenges, we design a node-reuse ap-
proach to reduce GPU memory usage, a pro-active pruning method
using the vertex’s local neighborhood size to alleviate thread di-
vergence, and a load-aware task scheduling framework to achieve
load balance among threads within GPU warps and blocks. Our
experimental results show that GMBE on an NVIDIA A100 GPU
can achieve 70.6× speedup over the state-of-the-art parallel MBE
algorithm ParMBE on a 96-core CPU machine.
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1 INTRODUCTION

A bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸) contains two disjoint vertex sets
𝑈 and 𝑉 , where an edge 𝑒 ∈ 𝐸 only occurs between two vertices
in 𝑈 and 𝑉 , respectively. A biclique is a complete bipartite graph,
i.e., there exists an edge between two vertices if and only if the two
vertices are in different vertex sets. A maximal biclique in 𝐺 is a
subgraph of 𝐺 , which is a biclique and can not be further enlarged
to form a larger biclique. Maximal biclique enumeration (MBE) aims
to find all maximal bicliques in 𝐺 .

MBE is important in bipartite graph analysis, with widespread ap-
plications, such as anomaly detection in e-commerce networks [30,
35], social recommendation in social networks [29], gene expres-
sion analysis in expression datasets [34, 39], and GNN information
aggregation [38]. Consider an example in an e-commerce network,
where the purchasing relationships can be modeled by a bipartite
graph. It is suspicious for a large group of customers to buy a set
of products together because online sellers are likely to make fake
purchases through illegal platforms to improve their credibility and
positive ratings [10, 30, 35]. We can identify all these suspicious
groups by enumerating all the maximal bicliques in the network,
and then detect them.

Over the past few decades, many MBE algorithms have been
proposed to speed up the enumeration of all maximal bicliques in
bipartite graphs [8, 9, 14, 18, 22, 29, 32, 39]. A mainstream approach
is to use the set enumeration tree [33] to recursively enumerate
all candidate subgraphs, and then judge whether they are maximal
bicliques. The enumeration space of this method is a powerset of V
or U, so the computational overhead is very high [19], especially for
large graphs. Therefore, many efforts are made to reduce the enu-
meration space using pruning [8, 14] and vertex ordering [14, 39].
However, they only achieve limited speedup for not exploring the
parallelism of multi-core CPUs. Other works design parallelization
strategies for the multi-core CPUs to speed up the enumeration pro-
cess [18]. However, their performance speedup is still constrained
by the limited parallelism of CPUs. For instance, the state-of-the-art
parallel MBE algorithm ParMBE [18] costs over 40 minutes to finish
running MBE on a medium-scale bipartite graph Github [25] on a
96-core CPU machine. In contrast, our GPU-based solution can re-
duce the running time to 132 seconds on an NVIDIA A100 GPU [4]
because GPUs offer much higher computational throughput and
parallelism than CPUs.
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There are three major challenges in the design of a highly effi-
cient MBE algorithm for GPUs. First, the existing MBE algorithms
require large memory space and frequent memory allocations to
store the intermediate data of each enumerated subgraph, thus they
cannot efficiently run on GPUs with limited memory capacity and
high dynamic memory allocation overhead [37], due to the severe
shortage of memory resources.

Second, the performance of existingMBE algorithms suffers from
irregular computation [13] while GPUs are suitable to perform reg-
ular computation with high parallelism. Specifically, different GPU
threads in the same warp in the MBE algorithm may take different
execution paths to access different vertex neighbors, causing the
thread divergence problem [15]. GPUs will serialize these diverged
thread operations [1], resulting in low thread utilization and poor
memory access efficiency.

Lastly, existing MBE algorithms have a serious load imbalance
problem on GPUs. The reason is that the maximal biclique sizes
are varied significantly with real-world graphs for the power-law
distribution of vertex degrees. As a result, threads assigned to each
GPU core have different running times. When load imbalance hap-
pens, thousands of GPU threads have to wait for the slowest one to
complete, causing degraded GPU performance.

Many existing studies have used GPUs to improve the perfor-
mance of other graph enumeration problems, like maximal clique
enumeration [36] and graph pattern mining [15]. The optimizations
include data graph partitioning [23], two-level parallelism [17],
adaptive buffering [16], hybrid order on GPU [15], etc. However,
none of them is efficient for MBE using GPUs. This is because
the enumerated subgraphs for MBE generally contain much more
vertices than those in other graph enumeration problems. For in-
stance, it may enumerate maximal bicliques comprising several to
thousands of vertices, while the triangle counting algorithm only
considers subgraphs with three vertices. The larger subgraphs gen-
erated at runtime require larger memory and computation costs
and lead to more serious problems of large memory requirement,
thread divergence, and load imbalance mentioned above.

To address all the challenges and achieve highly efficient maxi-
mal biclique enumeration on GPUs, we design the first GPU-based
MBE algorithm (GMBE) considering the characteristics of GPU
architecture and MBE computation pattern. Specifically, first, we
replace the existing recursion with a stack-based iteration and reuse
the memory of the root node throughout the iteration process. This
approach effectively reduces memory usage because it eliminates
the need to allocate additional memory space for new nodes. Sec-
ond, we use the local neighborhood size of a vertex to reduce the
enumeration space. The new pruning approach can reduce the num-
ber of sub-trees without visiting the nodes. Thus, it can significantly
reduce thread divergence. Finally, GMBE carefully manages the size
of subtrees assigned to GPU threads and schedules the tasks using
two-level queues to achieve load balance within GPU warps and
blocks leveraging persistent thread programming models for GPUs.

We adopt the fast CUDA primitives [28] to implement the GMBE
prototype and conduct extensive experiments on real-world datasets
to demonstrate the efficiency of GMBE. Our experimental results
show that GMBE on an NVIDIA A100 GPU can achieve up to 70.6×
speedup over the state-of-the-art parallel MBE algorithm ParMBE
on a 96-core CPU machine.
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Figure 1: A bipartite graph𝐺0 containing 6maximal bicliques.

2 BACKGROUND

In this section, we briefly review the state-of-the-art MBE algo-
rithms on CPUs and introduce the compute unified device architec-
ture (CUDA) in modern GPUs.

2.1 MBE Algorithms on CPUs

Notation definitions. Given a bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸).𝑈 and
𝑉 are two disjoint vertex sets in 𝐺 . 𝐸 is the edge set in 𝐺 and 𝐸 ⊆
𝑈 ×𝑉 . For each vertex 𝑢 in𝑈 , 𝑁 (𝑢) denotes the neighbors of 𝑢, i.e.,
𝑁 (𝑢) = {𝑣 | (𝑢, 𝑣) ∈ 𝐸}. 𝑁2 (𝑢) denotes the 2-hop neighbors of 𝑢, i.e.,
𝑁2 (𝑢) =

⋃
𝑣∈𝑁 (𝑢) 𝑁 (𝑣) − {𝑢}. For a vertex set 𝑋 , Γ(𝑋 ) denotes the

common neighbors of vertices in 𝑋 , i.e., Γ(𝑋 ) = ⋂
𝑢∈𝑋 𝑁 (𝑢). Δ(𝑋 )

is themaximumdegree of vertices in𝑋 , i.e.,Δ(𝑋 ) = max𝑢∈𝑋 |𝑁 (𝑢) |.
Δ2 (𝑋 ) is the maximum 2-hop degree of vertices in 𝑋 , i.e., Δ2 (𝑋 ) =
max𝑢∈𝑋 |𝑁2 (𝑢) |. We have a symmetrical definition for each vertex
𝑣 in 𝑉 . A biclique is a vertex set pair (𝐿, 𝑅) in 𝐺 s.t., 𝐿 ⊆ 𝑈 and
𝑅 ⊆ 𝑉 and ∀𝑢 ∈ 𝐿, 𝑣 ∈ 𝑅, (𝑢, 𝑣) ∈ 𝐸. A biclique (𝐿, 𝑅) is a maximal
biclique if there is no biclique (𝐿′, 𝑅′) such that (𝐿∪𝑅) ⊂ (𝐿′∪𝑅′).
For instance, Figure 1 shows a bipartite graph 𝐺0 and all maximal
bicliques in 𝐺0.
Problem statement. The MBE problem aims to enumerate all
maximal bicliques in a bipartite graph.
Baseline solution. To efficiently solve the MBE problem, recent
works [8, 14, 18, 22, 24, 29, 32, 39] recursively run a backtracking
procedure to generate the powerset of 𝑉 using a set enumeration
tree [33] and then obtain all maximal bicliques correspondingly. In
most works [8, 18, 29, 32], each enumeration node is represented as
a 3-tuple (𝐿, 𝑅,𝐶), where 𝐿 ⊆ 𝑈 and 𝑅,𝐶 ⊆ 𝑉 . 𝑅 and 𝐶 are disjoint
and used to generate the powerset of𝑉 . 𝑅 stores the current subset
of 𝑉 , while 𝐶 stores the candidate vertices for expanding 𝑅. (𝐿, 𝑅)
is the corresponding biclique where 𝐿 = Γ(𝑅). In the following,
we illustrate the basic recursive procedure for each enumeration
node in existing works using Algorithm 1. Then, we provide a
detailed example to demonstrate the application of Algorithm 1 to
the bipartite graph 𝐺0 in Figure 1.

The procedure starts at a root node initialized as (𝑈 , ∅,𝑉 ). In
each enumeration node, each candidate vertex 𝑣𝑐 ∈ 𝐶 is traversed
sequentially (line #2) to generate a new biclique (𝐿′, 𝑅′) (line #3).
The parent node allows expanding 𝑅 with untraversed candidate
vertices in 𝐶 (lines #5,6). The new candidate set 𝐶 ′ contains all
vertices in 𝐶 − 𝑅′ that connect with any vertex in 𝐿′ (lines #7,8).
The new biclique is maximal if and only if 𝑅′ is equal to Γ(𝐿′)
(line #9). All maximal bicliques are enumerated exactly once (line



Efficient Maximal Biclique Enumeration on GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

Algorithm 1: Recursive MBE Algorithm
Data: Bipartite graph𝐺 (𝑈 ,𝑉 , 𝐸)
Input: Set 𝐿 ⊆ 𝑈 , disjoint sets 𝑅,𝐶 ⊆ 𝑉
Output: All maximal bicliques

1 procedure recursively_search(𝐿, 𝑅,𝐶):
2 foreach 𝑣′ ∈ 𝐶 do

3 𝐿′ ← 𝐿 ∩ 𝑁 (𝑣′) ; 𝑅′ ← 𝑅;𝐶′ ← ∅;
4 foreach 𝑣𝑐 ∈ 𝐶 do // Node generation
5 if 𝐿′ ∩ 𝑁 (𝑣𝑐 ) == 𝐿′ then
6 𝑅′ ← 𝑅′ ∪ {𝑣𝑐 };
7 else if 𝐿′ ∩ 𝑁 (𝑣𝑐 ) ≠ ∅ then
8 𝐶′ ← 𝐶′ ∪ {𝑣𝑐 };

9 if 𝑅′ == Γ (𝐿′) then // Maximality check
10 Output(𝐿′, 𝑅′) as a maximal biclique;
11 recursively_search(𝐿′, 𝑅′,𝐶′) ; // Recursion

12 𝐶 ← 𝐶 \ {𝑣′ };

root node
maximal biclique
non-maximal biclique

L: u1 u2 u3 u4 u5
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Figure 2: An enumeration tree for bipartite graph 𝐺0.

#10). The procedure recursively generates new nodes in a depth-
first search (DFS) manner to enumerate all maximal bicliques (line
#11). After processing a new node, we remove 𝑣𝑐 from the current
candidate set 𝐶 (line #12). Besides, some works [14, 39] use a set
𝑄 to keep traversed candidate vertices for accelerating the node
checking in line #9. Similar to many existing works [8, 18, 29, 32],
we omit the set 𝑄 to reduce the memory consumption.

Example 2.1. Figure 2 depicts an enumeration tree for a bipartite

graph 𝐺0 using Algorithm 1 without any optimization. The vertices

on the edge between two nodes are used to expand 𝑅 of the new node,

including a traversed vertex 𝑣𝑐 and the other untraversed candidate

vertices in parenthesis. For presentation convenience, we always use

the subscript to denote the corresponding vertex set of an enumeration

node. For instance, 𝐿(𝑝) denotes 𝐿 set of node 𝑝 .

We start from the root node and recursively search the subspaces

in a DFS manner by traversing candidate vertices in 𝐶 following a

pre-imposed order. By traversing 𝑣1, we enter node 𝑝 . We know 𝐿(𝑝) =
𝐿(𝑟𝑜𝑜𝑡 ) ∩ 𝑁 (𝑣1) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5} ∩ {𝑢1, 𝑢2} = {𝑢1, 𝑢2}. We then

expand 𝑅 (𝑝) with candidate vertices 𝑣1, 𝑣2, and 𝑣3 because Γ(𝐿(𝑝) ) ∩
𝐶 (𝑟𝑜𝑜𝑡 ) = {𝑣1, 𝑣2, 𝑣3}∩{𝑣1, 𝑣2, 𝑣3, 𝑣4} = {𝑣1, 𝑣2, 𝑣3}. Node 𝑝 generates

a maximal biclique (𝐿(𝑝) , 𝑅 (𝑝) ) because 𝑅 (𝑝) = Γ(𝐿(𝑝) ). 𝑣4 is in the
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Figure 3: GPU architecture.

new candidate vertex set 𝐶 (𝑝) because 𝐿(𝑝) ∩ 𝑁 (𝑣4) = {𝑢1, 𝑢2} ∩
{𝑢2, 𝑢4, 𝑢5} = {𝑢2} ≠ ∅. Continuing this process, the root node can
generate node 𝑠1 by traversing 𝑣3. We then know 𝐿(𝑠1) = {𝑢1, 𝑢2, 𝑢4}
and 𝑅 (𝑠1) = (Γ(𝐿(𝑠1) ) ∩𝐶 (𝑟𝑜𝑜𝑡 ) ) ∪𝑅 (𝑟𝑜𝑜𝑡 ) = {𝑣3}. Compared to node

𝑠 , node 𝑠1 generates a non-maximal biclique because the parent node

of node 𝑠1 (i.e., the root node) fails to expand 𝑅 (𝑠1) with vertex 𝑣2 since
𝑣2 has been traversed by root node to generate node 𝑟 . Other nodes

can be generated similarly as shown in the figure.

Recent optimizations. To reduce the computational overhead,
researchers mainly focus on reducing the enumeration space, us-
ing various vertex ordering and pruning approaches [8, 14, 39].
To achieve further speedup, other works parallelized MBE algo-
rithms on multicore CPUs [18] or distributed architectures [32].
Specifically, existing parallel MBE algorithms distribute all vertices
𝑣 in 𝑉 across CPU threads, and each thread generates a subtree
correspondingly using 1-hop and 2-hop neighbors of 𝑣 . However,
their performance speedup is constrained by the limited parallelism
of CPUs. For instance, the state-of-the-art parallel MBE algorithm
ParMBE [18] costs over 40 minutes to enumerate all maximal bi-
cliques on a medium-scale bipartite graph Github (180k vertices
and 440k edges) on a 96-core CPU machine, as shown in Section 6.2.

2.2 GPU Architecture and Programming

GPU architecture. Figure 3 shows the general architecture of
a modern GPU. A GPU generally consists of a global memory, a
shared L2 cache, and multiple streaming multiprocessors (SMs).
Each SM contains an individual L1 cache, a programmable multi-
bank sharedmemory, andmultiple computing cores. AmodernGPU
can be equipped with thousands of lightweight cores in total, thus
providing massive computing power. Unlike computing resources,
memory resources on the GPU are relatively limited. For example,
the recently popular NVIDIA A100 [4] can provide up to 6,912 cores,
but only up to 80 GB of memory.
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CUDA programming model. The CUDA (Compute Unified De-
vice Architecture) programming model [1, 2] provides a parallel
computing platform and a set of APIs that allows users to efficiently
use GPUs for general-purpose processing. It adopts the SIMT (Sin-
gle instruction, multiple threads) execution model [7] to manage
numerous threads. CUDA divides GPU kernels into multiple grids,
each consisting ofmultiple blocks. A block includesmultiple threads
and is assigned to an SM during execution. The SM groups 32 par-
allel threads into a warp and executes multiple warps concurrently.
For each warp, all threads execute one common instruction at a
time. In this way, thousands of GPU cores can efficiently work in
parallel to achieve high performance.
GPU usage guidelines. There are several notable guidelines for
improving the efficiency of GPU programs. First, dynamic mem-
ory allocations on GPUs are expensive because many threads may
allocate new memory at the same time, causing problems such as
thread contention, synchronization overhead, and memory frag-
mentation [37]. Therefore, we should carefully manage the valuable
GPU memory and avoid frequent memory allocations. Second, we
should minimize the thread divergence, i.e., threads in a warp take
different execution paths on the GPU. Because GPU has to serialize
the different execution paths, thread divergence can severely de-
grade the execution performance [1]. Third, we should pay more
attention to the load balancing among multiple cores on the GPU,
because thousands of cores have to wait for the slowest thread to
run on a lightweight core, which is costly.

3 CHALLENGES OF MBE ON GPUS

A naive approach to performMBE on the GPU is to divide the whole
enumeration tree into multiple subtrees and assign each subtree to
an individual SM for execution. For example, for the enumeration
tree in Figure 2, we can divide the whole tree into four subtrees, then
assign SM 0 to conduct the execution for enumeration nodes 𝑝 and
𝑞, and assign SM 1 to conduct the execution for enumeration nodes
𝑟 , 𝑠 , 𝑡 and 𝑡1, and so on. However, this naive approach faces the
following three problems, thus making MBE on GPUs challenging.

3.1 Large Memory Requirement

Existing MBE algorithms usually dynamically allocate memory for
new enumeration nodes (lines #3-8 in Algorithm 1), which is very
expensive on GPUs as mentioned in Section 2.2. To achieve high
performance, a typical approach is to pre-allocate enough memory
space on GPUs to accommodate all enumeration nodes before exe-
cution. In this case, each enumeration node requires𝑂 ( |𝐿 |+|𝑅 |+|𝐶 |)
memory bounded by 𝑂 (Δ(𝑉 ) + Δ2 (𝑉 )), and each subtree activates
at most Δ(𝑉 ) nodes at the same time for backtracking. Therefore,
the total amount of memory space that needs to be pre-allocated
for each subtree traversal procedure is Δ(𝑉 ) × (Δ(𝑉 ) + Δ2 (𝑉 )) ×
sizeof(𝑣𝑒𝑟𝑡𝑒𝑥). For example, when using the NVIDIA A100 GPU
with 40 GBmemory to performMBE on a real-world bipartite graph
BookCrossing [25], the memory requirement for each subtree tra-
versal procedure is 13, 601 × (13, 601 + 53, 915) × sizeof(int) B =
3.67 GB.We need more than 108×3.67GB = 397GBmemory to fully
utilize the 108 SMs, which exceeds the maximum memory space
on the GPU (i.e., 40 GB), thus facing a severe memory shortage.
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ing if we assign each enumeration tree to a warp based on

our new algorithm GMBE as shown in Section 6.3.

3.2 Massive Thread Divergence

As mentioned in Section 2.2, thread divergence can significantly
degrade thread performance on GPUs. In the case of MBE on GPUs,
thread divergence becomes more prominent due to two reasons.
First, during the enumeration process of Algorithm 1, threadswithin
the samewarpmay traverse different vertices to generate newnodes
(line #2) and use different neighbors to compute different sets of 𝐿,
𝑅, and 𝐶 (lines #3-9). This leads to each thread accessing different
memory areas and executing different control flows. Second, several
pruning techniques [8, 14, 39] have been proposed to reduce the
enumeration space and accelerate the MBE process (refer to Sec-
tion 2.1). For example, ooMBEA [14] traverses the 2-hop neighbors
of all candidate vertices to identify its defined batch pivots and dis-
card enumerated branches that do not belong to those batch pivots.
However, this further exacerbates thread divergence by generating
more divergent threads through the traversal of 2-hop neighbors.
Hence, it is challenging to mitigate thread divergence during enu-
meration and crucial to develop a GPU-friendly pruning approach.

3.3 Load Imbalance

The parallel MBE algorithm is likely to generate severe imbalanced
workloads on GPUs for two main reasons. First, the running time
for processing each enumeration node in the enumeration tree
varies greatly since nodes contain various numbers of candidate
vertices. Second, the number of nodes in subtrees differs signifi-
cantly because different maximal bicliques (𝐿, 𝑅) contain various
numbers of vertices in 𝑅. The enumeration tree grows as 𝑅 increases
as shown in Algorithm 1. As a result, most cores in the GPU will
spend a large portion of time waiting for the processing of the
largest enumeration tree, which aggravates the load imbalance. Re-
lated graph pattern mining algorithm G2Miner [15] always assigns
each enumeration tree to a warp in the GPU. However, Figure 4
shows that if we assign each enumeration tree to a warp based on
our new algorithm GMBE, over 80% of SMs (i.e., 86 SMs / 108 SMs)
waste 80% of running time (i.e., 1,458s / 1,822s ) waiting for the
slowest one on the BookCrossing dataset. It is necessary to balance
workloads for MBE in a finer granularity.
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4 DESIGN OF GMBE

We propose a new GPU-based MBE algorithm (GMBE) with three
novel techniques. (1) We design a stack-based iterative MBE algo-
rithm to replace the original recursive algorithm. The new MBE
algorithm reuses the nodes of enumeration trees to reduce mem-
ory usage. (2) It uses local neighborhood sizes for pro-actively
pruning for less thread divergence. And (3) it supports load-aware
task scheduling to balance workloads among threads in warps and
blocks. We describe them in detail in the following sections.

4.1 Stack-Based Iteration with Node Reuse

To reduce memory usage, we propose a stack-based iteration with
node reuse. The key idea is that we can reuse a node 𝑥 to represent
its child nodes with additional metadata stored in the node 𝑥 . By
doing this, we save the memory space allocated for the child nodes
of 𝑥 . We can efficiently support node reuse because during enumer-
ation the 𝐿 ∪ 𝑅 ∪𝐶 of the child nodes of 𝑥 is always a subset of the
𝐿∪𝑅∪𝐶 of its parent node 𝑥 . For instance, vertices {𝑢2, 𝑣1, 𝑣2, 𝑣3, 𝑣4}
in child node 𝑞 ({𝑢2}, {𝑣1, 𝑣2, 𝑣3, 𝑣4}, ∅) is the subset of vertices
{𝑢1, 𝑢2, 𝑣1, 𝑣2, 𝑣3, 𝑣4} in its parent node 𝑝 ({𝑢1, 𝑢2}, {𝑣1, 𝑣2, 𝑣3}, {𝑣4})
as shown in Figure 2. We describe this stack-based MBE algorithm
with node reuse in Algorithm 2.

Algorithm 2: Stack-based Iterative MBE Algorithm
Data: Bipartite graph𝐺 (𝑈 ,𝑉 , 𝐸)
Input: Set 𝐿𝑟 ⊆ 𝑈 , disjoint sets 𝑅𝑟 ,𝐶𝑟 ⊆ 𝑉
Output: All maximal bicliques

1 procedure iteratively_search(𝐿𝑟 , 𝑅𝑟 ,𝐶𝑟 ):
2 𝑛𝑜𝑑𝑒_𝑏𝑢𝑓 .init_and_push((𝐿𝑟 , 𝑅𝑟 ,𝐶𝑟 ));
3 while 𝑛𝑜𝑑𝑒_𝑏𝑢𝑓 is not empty do // Iteration
4 (𝐿𝑝 , 𝑅𝑝 ,𝐶𝑝 ) ← 𝑛𝑜𝑑𝑒_𝑏𝑢𝑓 .pop() ;
5 if 𝐶𝑝 is not empty then

6 𝑣′ ← the smallest vertex in𝐶𝑝 ;
7 𝑛𝑜𝑑𝑒_𝑏𝑢𝑓 .push((𝐿𝑝 , 𝑅𝑝 ,𝐶𝑝 \ {𝑣′ }));
8 𝐿′ ← 𝐿𝑝 ∩ 𝑁 (𝑣′) ; 𝑅′ ← 𝑅𝑝 ;𝐶′ ← ∅;
9 foreach 𝑣𝑐 ∈ 𝐶𝑝 do // Node generation
10 if 𝐿′ ∩ 𝑁 (𝑣𝑐 ) == 𝐿′ then
11 𝑅′ ← 𝑅′ ∪ {𝑣𝑐 };
12 else if 𝐿′ ∩ 𝑁 (𝑣𝑐 ) ≠ ∅ then
13 𝐶′ ← 𝐶′ ∪ {𝑣𝑐 };

14 if 𝑅′ == Γ (𝐿′) then // Maximality check
15 Output(𝐿′, 𝑅′) as a maximal biclique;
16 𝑛𝑜𝑑𝑒_𝑏𝑢𝑓 .push((𝐿′, 𝑅′,𝐶′)) ;

Specifically, instead of dynamically creating and freeing nodes
for recursions in Algorithm 1, we replace recursions (line #11 in
Algorithm 1) with iterations (lines #2-5, 7, 16 in Algorithm 2) and
explicitly manage nodes with a stack-like structure node_buf. The
node_buf structure and its update process can refer to Figure 5. A
node_buf consists of a root node (𝐿𝑟 , 𝑅𝑟 ,𝐶𝑟 ), the attribute depth
of each vertex in 𝐿𝑟 ∪ 𝑅𝑟 ∪𝐶𝑟 , and the traversed vertices from the
root node to the current node. The depth of each vertex is updated
according to the depth of the current node (i.e., the number of
ancestor nodes of the current node). We can apply the node reuse

strategy on node_buf by actively updating the depth field, and
backtrack to ancestor nodes using the traversed vertices field. In
this way, GMBE can derive all nodes in a fixed memory region
during iteration, minimizing the need for dynamic allocation in
GPUs. Next, we illustrate the key functions designed for node reuse.
• init_and_push((𝐿𝑟 , 𝑅𝑟 ,𝐶𝑟 )): this function is used for creat-
ing and initializing a node_buf using the root node (𝐿𝑟 , 𝑅𝑟 ,𝐶𝑟 )
of a subtree (line #2 in Algorithm 2). The node_buf stores
all vertices in 𝐿𝑟 ∪ 𝑅𝑟 ∪𝐶𝑟 and actively tracks the depth for
each vertex. We initialize the depth for vertices in 𝐿𝑟 ∪ 𝑅𝑟 to
0 and the depth for vertices in 𝐶𝑟 to∞.
• push((𝐿′, 𝑅′,𝐶 ′)): we use this function to reuse the node_buf
of a parent node to generate a child node (line #16 in Algo-
rithm 2). When we push a new node (𝐿′, 𝑅′,𝐶 ′) at depth
𝐷 , we first update the depths of vertices in 𝐿𝑟 to 𝐷 if they
are also in 𝐿′, and then update the depths of vertices in 𝐶𝑟
to 𝐷 if they are also in 𝑅′ and their current depths are ∞.
Therefore, the new (𝐿′, 𝑅′,𝐶 ′) can be found in the original
(𝐿𝑟 , 𝑅𝑟 ,𝐶𝑟 ) by the depth field, as 𝐿′ contains all vertices in
𝐿𝑟 whose depth is equal to 𝐷 , and 𝑅′ contains all vertices in
𝑅𝑟 ∪𝐶𝑟 whose depth is not greater than 𝐷 , and 𝐶 ′ contains
all vertices in 𝐶𝑟 whose depth is∞. Finally, we append the
traversed vertices with the chosen vertex 𝑣 ′.
• pop(): we use this function to get the current node (𝐿𝑝 , 𝑅𝑝 ,𝐶𝑝 )
and then backtrack to its parent node using node_buf (line #4
in Algorithm 2). When we pop a node (𝐿𝑝 , 𝑅𝑝 ,𝐶𝑝 ) at depth
𝐷 , we first remove the latest traversed vertex 𝑣 ′ in node_buf.
Then, we update the depth for vertices in 𝐿𝑝 to 𝐷 − 1 and
update the depth for vertices in 𝐶𝑝 with depth 𝐷 to∞.

Discussion. Compared to the original node structure which only
tracks the (𝐿, 𝑅,𝐶), our proposed node_buf tracks more informa-
tion with more memory consumption for a single node, which is
bounded by 3 × Δ(𝑉 ) + 2 × Δ2 (𝑉 ). Whereas, a single node_buf is
adequate to be reused for all enumeration nodes for running a sub-
tree traversal procedure shown in Algorithm 2, which significantly
reduces the memory requirement and enables running thousands
of MBE procedures on GPUs in parallel. For instance, an A100 GPU
of 40 GB memory is adequate to run over 10k of subtree traversal
procedures on the BookCrossing dataset [25] because each proce-
dure requires only (3 × 13, 601 + 2 × 53, 915)× sizeof(int) B = 595
KB. Compared to the naive implementation discussed in Section 3.1
which requires 13, 601× (13, 601+ 53, 915)× sizeof(int) B = 3.67 GB,
this node reuse approach saves 6,178× memory space for running
each MBE procedure on BookCrossing.

4.2 Pruning using Local Neighborhood Size

The existing pruning approaches are inefficient on GPUs because
of thread divergence. To address this issue, we propose a new prun-
ing approach to reduce enumeration space and thread divergence.
Specifically, given a node (𝐿, 𝑅,𝐶), we define local neighbors of
a vertex 𝑣 ∈ 𝑉 as 𝑁𝐿 (𝑣), where 𝑁𝐿 (𝑣) is equal to 𝑁 (𝑣) ∩ 𝐿. We
further define local neighborhood size for a vertex 𝑣 as the number
of local neighbors of 𝑣 . We can obtain local neighborhood sizes for
candidate vertices without additional overhead because they are
intermediate results for computing the candidate set (line #12 in
Algorithm 2).
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Figure 5: Illustration of GMBE with pruning using local

neighborhood size.

An interesting observation is that we can safely prune nodes gen-
erated by vertices whose local neighborhood size does not change
after traversing any of its child nodes. We will formulate it in Theo-
rem 4.1. Thus, we further optimize Algorithm 2 bymaintaining local
neighborhood sizes for all candidate vertices in node_buf. We can
then prune useless candidates if their local neighborhood sizes do
not change after popping a traversed child node. The new pruning
approach has low thread divergence because threads in a warp al-
ways check elements in the same candidate set. We use an example
to detail the stack-based iteration algorithm with pruning using
local neighborhood size.

Example 4.1. Figure 5 illustrates that GMBE iteratively enumer-

ates all maximal bicliques in the subtree rooted by node 𝑟 in Figure 2

with the fixed memory in node_buf. Specifically, GMBE initializes

node_buf using node 𝑟 , where 𝐿𝑟 = 𝐿(𝑟 ) , 𝑅𝑟 = 𝑅 (𝑟 ) , and 𝐶𝑟 = 𝐶 (𝑟 ) .
Node_buf then initializes the depth for vertices in 𝐿𝑟 ∪ 𝑅𝑟 to 0 and
initializes the depth for vertices in 𝐶𝑟 to∞. Node_buf initializes the
local neighborhood size (i.e., |𝑁𝐿 |) for vertices in 𝐶𝑟 according to

the definition. For instance, |𝑁𝐿 (𝑣3) | at node 𝑟 is |𝑁 (𝑣3) ∩ 𝐿(𝑟 ) | =
|{𝑢1, 𝑢2, 𝑢4} ∩ {𝑢1, 𝑢2, 𝑢3, 𝑢4}| = 3.

Next, we generate node 𝑠 by traversing 𝑣3. We know 𝐿(𝑠) = 𝐿(𝑟 ) ∩
𝑁 (𝑣3) = {𝑢1, 𝑢2, 𝑢4}. The depth of node 𝑠 is 1, node_buf updates the
depth for 𝑢1, 𝑢2, 𝑢4, and 𝑣3 to 1 because they belong to 𝐿(𝑠) ∪ 𝑅 (𝑠) .
The depth for other vertices (i.e., 𝑢3 and 𝑣4) in 𝐿𝑟 and 𝑅𝑟 remains 0.

The depth for 𝑣4 in 𝐶𝑠 remains as∞.
We then update the local neighborhood size for 𝑣3 and 𝑣4 using

𝐿(𝑠) . We know |𝑁𝐿 (𝑣3) | = |𝑁 (𝑣3)∩𝐿(𝑠) | = |{𝑢1, 𝑢2, 𝑢4}∩{𝑢1, 𝑢2, 𝑢4}|
= 3. |𝑁𝐿 (𝑣4) | = |𝑁 (𝑣4) ∩ 𝐿(𝑠) | = |{𝑢2, 𝑢4, 𝑢5} ∩ {𝑢1, 𝑢2, 𝑢4}| = 2. We

can generate other nodes similarly.

After processing the subtree rooted by node 𝑠 , node_buf pops node
𝑠 and recovers the parent node 𝑟 . node_buf resets depth for 𝑢1, 𝑢2, and

Algorithm 3: Naive approach for launching GPU tasks
foreach 𝑣𝑠 ∈ 𝑉 do // Initialize |𝑉 | tasks independently

1 𝐿𝑠 ← 𝑁 (𝑣𝑠 ) ;𝑅𝑠 ← {𝑣𝑠 };𝐶𝑠 ← ∅; // Node generation

2 foreach 𝑣𝑐 ∈ 𝑁2 (𝑣𝑠 ) do
3 if 𝐿𝑠 ∩ 𝑁 (𝑣𝑐 ) == 𝐿𝑠 then

4 𝑅𝑠 ← 𝑅𝑠 ∪ {𝑣𝑐 };
5 else if 𝑣𝑐 is with later order than 𝑣𝑠 then

6 𝐶𝑠 ← 𝐶𝑠 ∪ {𝑣𝑐 };

7 if 𝑣𝑠 is the smallest vertex in 𝑅𝑠 then // Maximality check
// Map each task to a warp or a block

8 iteratively_search(𝐿𝑠 , 𝑅𝑠 ,𝐶𝑠) ;

𝑢4 to 0 and resets the depth for 𝑣3 to∞ because their original depth

is the same as the depth of node 𝑠 . GMBE proactively prunes node 𝑡1
by removing useless candidate vertex 𝑣4 at node 𝑟 because the local
neighborhood size (i.e., 2) for 𝑣4 does not change after popping node 𝑠 .

Theorem 4.1. Assume the current node is 𝑝 in the enumeration

tree. GMBE can safely prune its child nodes generated by choosing a

candidate vertex 𝑣𝑐 in𝐶 (𝑝) if |𝑁𝐿 (𝑣𝑐 ) | for the current node 𝑝 is equal

to |𝑁𝐿 (𝑣𝑐 ) | for any of the child nodes of 𝑝 .

Proof. To prove the theorem, we assume that node 𝑠 has tra-
versed 𝑣𝑚 to generate node 𝑡 and node 𝑠 will traverse 𝑣𝑛 to gener-
ate node 𝑟 . We further assume that |𝑁𝐿 (𝑣𝑛) | for node 𝑠 is equal to
|𝑁𝐿 (𝑣𝑛) | for node 𝑡 . Because |𝑁𝐿 (𝑣𝑛) | for node 𝑠 is equal to |𝑁𝐿 (𝑣𝑛) |
for node 𝑡 , |𝑁 (𝑣𝑛) ∩ 𝐿(𝑠) | = |𝑁 (𝑣𝑛) ∩ 𝐿(𝑡 ) |. Because 𝐿(𝑡 ) = 𝐿(𝑠) ∩
𝑁 (𝑣𝑚), |𝑁 (𝑣𝑛) ∩ 𝐿(𝑠) | = |𝑁 (𝑣𝑛) ∩ 𝐿(𝑡 ) | = |𝑁 (𝑣𝑛) ∩ 𝐿(𝑠) ∩ 𝑁 (𝑣𝑚) |.
Then, we know 𝑁 (𝑣𝑛)∩𝐿(𝑠) ⊆ 𝑁 (𝑣𝑚). Because 𝐿(𝑟 ) = 𝑁 (𝑣𝑛)∩𝐿(𝑠) ,
𝐿(𝑟 ) ⊆ 𝑁 (𝑣𝑚). Thus, we know that 𝑣𝑚 connects with all vertices
in 𝐿(𝑟 ) . Node 𝑟 fails to expand 𝑅 (𝑟 ) with 𝑣𝑚 because GMBE has
traversed 𝑣𝑚 generate node 𝑡 and we can safely prune node 𝑟 , which
produces a non-maximal biclique. □

4.3 Load-Aware Task Scheduling

For exploring the massive parallelism of GPUs, a naive approach
is assigning a task to manage each enumeration tree whose root
node is 𝑣𝑠 (𝑣𝑠 ∈ 𝑉 ). The naive approach is shown in Algorithm 3.
We can then map these tasks to warps [15] or blocks [11] in GPUs.
We denote these schemes as the warp-centric scheme and the block-
centric scheme, respectively. Our research shows that the naive
approach is insufficient to balance the loads among GPU SMs for
the MBE problem because the parallel GPU tasks created at line #8
in Algorithm 3 are highly unbalanced and their loads are determined
by the various sizes of the enumeration trees assigned to the tasks.
We observe that the slowest tasks running in a warp or a block
frequently block other tasks, resulting in up to 97.8% performance
degradation on the EuAll dataset. More results can be found in
Figure 9 in Section 6.2.

To address this issue, we propose a load-aware task-centric

approach for MBE using the persistent thread (PT) [21] program-
ming model for GPUs. Specifically, we create thread groups, each
of which consists of multiple warps. Each thread group is mapped
to a GPU SM. We denote the number of warps on each SM as
WarpPerSM and will discuss its impact on system performance in



Efficient Maximal Biclique Enumeration on GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

Algorithm 4: Load-aware task-centric scheme in GMBE
𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑣 is a global variable initialized as 0 ;
𝑆𝑀_𝑡𝑎𝑠𝑘_𝑞𝑢𝑒𝑢𝑒 is a global concurrent queue for load balance ;
// For each warp

1 procedure warp_kernel:

2 while true do
3 if 𝑆𝑀_𝑡𝑎𝑠𝑘_𝑞𝑢𝑒𝑢𝑒 is not empty then

4 (𝐿, 𝑅,𝐶) ← 𝑆𝑀_𝑡𝑎𝑠𝑘_𝑞𝑢𝑒𝑢𝑒.dequeue() ;

5 else

6 𝑣𝑠 = atomicInc(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑣) ;
7 if 𝑣𝑠 ∈ 𝑉 then

8 𝐿 ← 𝑁 (𝑣𝑠 ) ;𝑅 ← {𝑣𝑠 };𝐶 ← ∅;
9 foreach 𝑣𝑐 ∈ 𝑁2 (𝑣𝑠 ) do
10 if 𝐿 ∩ 𝑁 (𝑣𝑐 ) == 𝐿 then

11 𝑅 ← 𝑅 ∪ {𝑣𝑐 };
12 else if 𝑣𝑐 is with later order than 𝑣𝑠 then

13 𝐶 ← 𝐶 ∪ {𝑣𝑐 };

14 else // All tasks on GPU have been processed
15 return;

16 if 𝑅 == Γ (𝐿) then // Maximality check
17 if min{ |𝐿 |, |𝐶 | } × |𝐶 | > 𝑏𝑜𝑢𝑛𝑑_𝑠𝑖𝑧𝑒 and

min{ |𝐿 |, |𝐶 | } > 𝑏𝑜𝑢𝑛𝑑_ℎ𝑒𝑖𝑔ℎ𝑡 then

18 foreach 𝑣𝑡 ∈ 𝐶 do // Node generation
19 𝐿𝑡 ← 𝑁 (𝑣𝑡 ) ;𝑅𝑡 ← 𝑅;𝐶𝑡 ← ∅;
20 foreach 𝑣𝑐 ∈ 𝐶 do

21 if 𝐿𝑡 ∩ 𝑁 (𝑣𝑐 ) == 𝐿𝑡 then

22 𝑅𝑡 ← 𝑅𝑡 ∪ {𝑣𝑐 };
23 else if 𝐿𝑡 ∩ 𝑁 (𝑣𝑐 ) ≠ ∅ then
24 𝐶𝑡 ← 𝐶𝑡 ∪ {𝑣𝑐 };

25 𝑆𝑀_𝑡𝑎𝑠𝑘_𝑞𝑢𝑒𝑢𝑒.enqueue((𝐿𝑡 , 𝑅𝑡 ,𝐶𝑡 )) ;
26 𝐶 ← 𝐶 \ {𝑣𝑡 };

27 else

28 iteratively_search(𝐿, 𝑅,𝐶);

Section 6.4. We develop a GPU kernel, which can create load-aware
tasks. Any tasks of processing larger enumeration trees are divided
into smaller tasks recursively at runtime. The load-aware tasks
are then added to a global structure SM_task_queue for each SM.
When a task is finished, the software scheduler of PT dequeues a
task from SM_task_queue and executes iteratively_search() on its
corresponding SM. We denote it as the task-centric scheme.

The key question to answer is how to detect tasks having heavier
loads than others. We use the tree heights and the total number of
nodes in a tree. Specifically, the height of an enumeration tree with
the root node (𝐿, 𝑅,𝐶) is min{|𝐿 |, |𝐶 |}. The number of nodes of the
tree can be estimated asmin{|𝐿 |, |𝐶 |} × |𝐶 |, where |𝐶 | indicates the
maximum number of child nodes for each node in the enumeration
tree. We empirically set two thresholds including 𝑏𝑜𝑢𝑛𝑑_ℎ𝑒𝑖𝑔ℎ𝑡 and
𝑏𝑜𝑢𝑛𝑑_𝑠𝑖𝑧𝑒 . Only when min{|𝐿 |, |𝐶 |} is larger than 𝑏𝑜𝑢𝑛𝑑_ℎ𝑒𝑖𝑔ℎ𝑡
andmin{|𝐿 |, |𝐶 |} × |𝐶 | is larger than 𝑏𝑜𝑢𝑛𝑑_𝑠𝑖𝑧𝑒 , we divide the task
into multiple subtasks to achieve better load balance.

Putting them together. Algorithm 4 describes GMBE, which is a
load-aware task-centric algorithm for GPUs. When SM_task_queue
is not empty, it obtains a node from the queue (lines #3-4). If the size
of the enumeration tree generated from the node is within bounds
(line #17), GMBE directly launches a GPU task (line #28). If the size
of the enumeration tree is larger than the bounds, it enqueues the
root node of sub-trees to be enumerated (lines #18-26). These nodes
will be processed later when they are dequeued. If SM_task_queue
is empty, it will use 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑣 to obtain the current 𝑣𝑠 that needs
to be processed (line #6). Then, it generates a node (L, R, C) (lines
#7-13) and launches its corresponding tree onto GPUs.

5 IMPLEMENTATION ISSUES

Pre-processing.We represent the input bipartite graph 𝐺 in the
compressed sparse row (CSR) format. We first load graph 𝐺 into
CPU memory and quickly extract important characteristics from
𝐺 , such as |𝑈 |, |𝑉 |, |𝐸 |, Δ(𝑉 ), and Δ2 (𝑉 ). Since 𝑈 and 𝑉 are sym-
metrical in the bipartite graph, we always select the vertex set
with fewer vertices as 𝑉 similar to [14]. We then pre-process 𝐺 by
sorting all vertices in 𝑉 using the increasing order of their neigh-
borhood sizes [29, 39] and sorting all neighbor lists of each vertex
using increasing order of vertex IDs similar to most of the related
works [11, 15]. We finally transfer the whole bipartite graph 𝐺 to
the global memory of the GPU and enumerate all maximal bicliques
on GPUs without transferring any extra data from hosts.
Lock-free task queue. To reduce the synchronization overhead,
we manage the task queue in a lock-free manner using the atom-
icCAS primitive [28] in CUDA. We implement a two-level task
queuing mechanism to further improve load balance. Specifically,
we implement a local task queue for each block so that all warps
in the block can balance workloads by accessing the local task
queue. In addition, we implement a global task queue to balance
workloads between different blocks. Each block only allows one
proxy warp to manage tasks between the local task queue and the
global task queue. We implement the local task queues using the
shared memory and implement the global task queue in the global
memory because atomic operations on shared memory are faster
than atomic operations on the global memory.
MBE on multiple GPUs. A high-performance machine may con-
sist of multiple GPUs to accelerate application execution perfor-
mance. To support this scenario, we can easily extend GMBE algo-
rithm to multi-GPU machines. The main idea is sharing the global
variable 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑣 in Algorithm 4 on all GPU devices and replac-
ing the atomicInc primitive in line #6 with atomicInc_system [1].
Consequently, the MBE problem is divided into multiple inde-
pendent sub-problems, and each GPU independently processes
these sub-problems. The overall running time is determined by
the GPU with the longest execution time. Experimental results in
Figure 13 shows that GMBE is efficient on multiple GPUs because
each warp on multiple GPUs can automatically balance workloads
using atomic primitives with little synchronization overhead. The-
oretically, GMBE can also be extended to a distributed computing
environment, where multiple machines (each with one or more
GPUs) are connected by the network. Since this work focuses on
the single-machine environment, we leave the exploration of GMBE
on distributed multi-machine clusters as our future work.
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Table 1: Dataset statistics

Datasets |𝑈 | |𝑉 | |𝐸 | Δ(𝑈 ) Δ2 (𝑈 ) Δ(𝑉 ) Δ2 (𝑉 ) Max. bicliques

MovieLens (Mti) 16,528 7,601 71,154 640 5,817 146 3,217 140,266
Amazon (WA) 265,934 264,148 925,873 168 635 546 903 461,274
Teams (TM) 901,130 34,461 1,366,466 17 18,516 2,671 2,838 517,943

ActorMovies (AM) 383,640 127,823 1,470,404 646 3,956 294 7,798 1,075,444
Wikipedia (WC) 1,853,493 182,947 3,795,796 54 47,190 11,593 4,629 1,677,522
YouTube (YG) 94,238 30,087 293,360 1,035 37,513 7,591 7,356 1,826,587

StackOverflow (SO) 545,195 96,680 1,301,942 4,917 146,089 6,119 31,636 3,320,824
DBLP (Pa) 5,624,219 1,953,085 12,282,059 287 7,519 1,386 2,119 4,899,032
IMDB (IM) 896,302 303,617 3,782,463 1,590 15,451 1,334 15,233 5,160,061
EuAll (EE) 225,409 74,661 420,046 930 135,045 7,631 23,844 12,306,755

BookCrossing (BX) 340,523 105,278 1,149,739 2,502 151,645 13,601 53,915 54,458,953
Github (GH) 120,867 59,519 440,237 3,675 29,649 884 15,994 55,346,398
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Figure 6: Overall evaluation (log scaled).

6 EVALUATION

In this section, we conduct extensive experiments to evaluate the
performance of GMBE and the proposed techniques.

6.1 Experimental Setup

Platform. By default, we evaluate our GPU implementations on an
NVIDIA A100 GPU [4] with 108 streaming multiprocessors (SMs)
and 40 GB of global memory. For the comparison, we run the other
CPU-based MBE algorithms on a Linux server with 96 Xeon(R)
Gold 5318Y CPU @ 2.10GHz CPU cores. The operating system is
Linux kernel-5.4.0.
Datasets.We use 12 real-world datasets to justify the performance
of GMBE as shown in Table 1. It’s worth noting that for datasets
that allow multiple edges between two vertices, such as MovieLens
(Mti), we only retain one unique edge between each vertex pair for
MBE analysis. The number of these unique edges is denoted by |𝐸 |.
Since𝑈 and 𝑉 are symmetrical in the bipartite graph, we always
denote the vertex set with fewer vertices as 𝑉 , i.e., |𝑈 | > |𝑉 |. We
obtain datasets Amazon and EuAll from the SNAP repository [26]
and the other datasets from the KONECT repository [25]. Since the
MBE time mainly depends on the number of maximal bicliques of
the dataset, we sort all datasets in ascending order of their maxi-
mal biclique count. Datasets with more than two million maximal
bicliques are referred to as large datasets in subsequent sections.
Compared Algorithms. Since there is no existing MBE algorithm
working on GPUs, we compare GMBE to the CPU-oriented MBE
algorithms, including the recent serial versions, i.e., MBEA [39],
iMBEA [39], PMBE [8], and ooMBEA [14], and the cutting-edge
parallel MBE algorithm, i.e., ParMBE [18]. For fair comparisons, we
obtain well-optimized codes of all competitors from the authors and

run them on the same platform. We run ParMBE with 96 threads
because our machine contains 96 CPU cores.
Measures. We measure the running time of each algorithm ex-
cluding the time spent reading the graph from the disk. Without
specification, GMBE iteratively enumerates all maximal bicliques
with node reuse, prunes useless nodes using local neighborhood
sizes, and applies the load-aware task-centric scheme for load bal-
ance. By default, GMBE sets the thresholds for 𝑏𝑜𝑢𝑛𝑑_ℎ𝑒𝑖𝑔ℎ𝑡 and
𝑏𝑜𝑢𝑛𝑑_𝑠𝑖𝑧𝑒 to 20 and 1,500 respectively, setsWarpPerSM to 16, and
sorts 𝑉 in ascending order based on the vertex degree before the
enumeration. We also implement other variants to evaluate the
techniques proposed in this paper. We will detail those variants in
the corresponding experiments.

6.2 Overall Evaluation

Figure 6 compares the running time of GMBE to state-of-the-art
MBE algorithms on real-world datasets. The experimental results
show thatGMBE is 3.5×–69.8× faster than any next-best competitor
on CPUs on all testing datasets because GMBE efficiently utilizes
extensive computational resources on GPUs. Specifically, GMBE on
a single A100 GPU outperforms the state-of-the-art parallel MBE
algorithm ParMBE on a 96-core CPU machine by up to 70.6× on
ActorMovies. Compared to all the existing MBE algorithms that
cost over 40 minutes to enumerate all maximal bicliques on Github,
GMBE needs only 132 seconds and thus is helpful for MBE on the
large datasets in practice. In addition, we conduct a performance
analysis of GMBE using the NVIDIA Nsight Compute software [5].
The profiling results indicate that the average warp execution ef-
ficiency is 64%, and the memory utilization is 12% across all real-
world datasets. These outcomes can be attributed to the inherent
irregularity present in the MBE problem [13].
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Table 2: Comparison of the ratio of generated non-maximal

bicliques to maximal bicliques between GMBE and GMBE-

w/o_PRUNE.

Datasets Mti WA TM AM WC YG
GMBE 9.04 0.734 1.63 12.9 0.71 2.11

GMBE-w/o_PRUNE 66.0 3.68 3.88 53.0 2.89 20.1
Datasets SO Pa IM EE BX GH
GMBE 89.4 0.362 15.5 4.04 3.40 11.1

GMBE-w/o_PRUNE 174 1.43 74.4 56.0 27.3 51.4

6.3 Effect of Optimizations

Effect of the node reuse approach. To study the effect of the
node reuse approach in Section 3.1, we design a variant GMBE-
w/o_REUSE that pre-allocates memory on GPUs according to Sec-
tion 3.1. We estimate the memory requirement allocated by the
cudaMalloc primitive for GMBE with and without the node reuse
approach. This memory requirement includes the pre-allocated
memory for the input bipartite graph and the runtime subtrees. Fig-
ure 7 shows that the node reuse approach significantly reduces the
memory requirement by 49×–4,819× on all testing datasets while
GMBE-w/o_REUSE is impractical because its memory requirements
exceed the memory capacity of the A100 GPU on multiple datasets.
Effect of the pruning approach. To study the effect of the local-
neighborhood-size-based pruning approach in Section 4.2, we de-
sign a variant GMBE-w/o_PRUNE that only disables the pruning
function of GMBE. As shown in Figure 8, GMBE constantly outper-
forms GMBE-w/o_PRUNE because the pruning approach prunes
enumeration space for MBE at runtime with less thread divergence.
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Figure 9: Comparison of runtime loads on SMs amongGMBE,

GMBE-WARP, and GMBE-BLOCK.

In addition, the pruning approach enhances memory access coa-
lescence by comparing the sizes of local neighborhoods among
vertices in the same candidate vertex set. To further explore the
pruning efficiency, we use 𝛼 to represent the number of maximal
bicliques and 𝛿 to represent the number of pruned non-maximal bi-
cliques generated by node checking (line #14 in Algorithm 2). Since
𝛼 remains constant for each dataset, we use the ratio 𝛿/𝛼 to indicate
the pruning efficiency for both GMBE and GMBE-w/o_PRUNE, as
presented in Table 2. By comparing the ratio 𝛿/𝛼 of both GMBE
and GMBE-w/o_PRUNE, we observe that the proposed pruning ap-
proach can avoid 48.7%-92.8% non-maximal biclique checks among
all testing datasets. This pruning technique plays a crucial role,
particularly for larger datasets where the enumeration space grows
with an increasing number of maximal bicliques. Consequently, the
pruning approach significantly reduces the running time on Github
from 1,191 seconds to 132 seconds.
Effect of the task scheduling approach. To study the effect of
the load-aware task scheduling approach in Section 4.3, we design
two variants GMBE-WARP and GMBE-BLOCK that apply warp-
centric and block-centric schemes respectively. As shown in Fig-
ure 8, GMBE is significantly faster than GMBE-WARP and GMBE-
BLOCK on large datasets, including EuALL, Github, BookCrossing,
StackOverflow, and IMDB, and spends less than one second on the
other datasets. GMBE is more performant on large datasets because
it dynamically detects and partitions the tasks having heavy loads
and manages lock-free task queues to rebalance the workloads in
finer granularity. As a result, GMBE is 44.7× and 9.3× faster than
GMBE-WARP and GMBE-BLOCK on EuAll, respectively.
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for load-aware task scheduling (log scaled).

To further explore the load imbalance problem for MBE on GPUs,
we record the number of active SMs while running GMBE, GMBE-
WARP, and GMBE-BLOCK. Figure 9 reports the comparison of
runtime loads on SMs on the BookCrossing and EuAll datasets. Be-
cause of the imbalanced workloads, SMs with light workloads may
finish early and wait for the SM with the heaviest workload, which
is costly. GMBE-WARP gains the worst performance because the
number of active SMs decreases rapidly due to the load imbalance.
GMBE-BLOCK obtains better performance than GMBE-WARP be-
causeGMBE-BLOCK could spend more resources on each workload
than GMBE-WARP (i.e., a block vs. a warp) which reduces the time
waiting for the SM with the heaviest workload. However, GMBE-
BLOCK is insufficient because the workloads for the MBE problem
could be severely imbalanced. For instance, over 80% of SMs (86
SMs / 108 SMs) waste over 80% of running time (98s / 118s) waiting
for the slowest SM on EuALL. GMBE always achieves the best per-
formance because GMBE works in the finest granularity and each
SM finishes its work roughly at the same time. GMBE completes
even before the number of active SMs of GMBE-BLOCK starts to
decrease on BookCrossing because GMBE activates all warps in
each SM while GMBE-BLOCK may use only use a small portion of
warps in each SM at runtime.

6.4 Sensitivity Analysis

Impact of thresholds for load-aware task scheduling. To ex-
plore the efficient configuration for thresholds 𝑏𝑜𝑢𝑛𝑑_ℎ𝑒𝑖𝑔ℎ𝑡 and
𝑏𝑜𝑢𝑛𝑑_𝑠𝑖𝑧𝑒 in Section 4.3, we designmultiple variantsGMBE-(𝑚,𝑛),
where𝑚 and𝑛 represent𝑏𝑜𝑢𝑛𝑑_ℎ𝑒𝑖𝑔ℎ𝑡 and𝑏𝑜𝑢𝑛𝑑_𝑠𝑖𝑧𝑒 respectively.
We always set𝑚 larger than 𝑛2 because |𝐿 | × |𝐶 | is always greater or
equal to (𝑚𝑖𝑛{|𝐿 |, |𝐶 |})2. The selection of thresholds is a trade-off
between the parallel granularity and synchronization overhead. We
require smaller thresholds to balance workloads in finer granular-
ity. However, the thresholds should not be too small. Otherwise,
we have to manage more tasks with the huge synchronization
overhead. Figure 10 shows that the variant GMBE-(20, 1500) is em-
pirically better than the others in most cases. Thus, GMBE applies
this configuration by default.
Impact of the number of warps in each SM. To determine the
parameterWarpPerSM in the PT model in Section 4.3, we design
variants that set WarpPerSM to 8, 16, 24, and 32, respectively. The
selection of WarpPerSM is a trade-off between parallelism and
the resources for each warp. Intuitively, we expect WarpPerSM
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to be larger so that we can run more MBE tasks in parallel. How-
ever, WarpPerSM should not be too large since the computational
resources (e.g., registers) in each SM are limited. A larger Warp-
PerSMmay decrease the performance of GMBE because each warp
will have fewer resources to run MBE tasks. Figure 11 shows that
the variant GMBE(16) outperforms the other variants by up to
3.83× on most large datasets, such as BookCrossing, StackOverflow,
IMDB, DBLP, and EuAll. In addition,GMBE(16) is 0.94× slower than
GMBE(32) on Github due to its extensive enumeration space that
requires more warps to enumerate maximal bicliques in parallel.
Considering its efficiency in most cases, GMBE sets WarpPerSM to
16 by default.
Adaptability on different GPUs. To explore the adaptability of
GMBE, we evaluate GMBE on an NVIDIA A100 GPU (108 SMs,
40 GB global memory), an NVIDIA V100 GPU (80 SMs, 32 GB
global memory) [6], and an NVIDIA 2080Ti GPU (68 SMs, 11 GB
global memory) [3], respectively. Figure 12 shows that GMBE is
adaptive on all three GPUs. GMBE-A100 is slightly faster than both
GMBE-V100 and GMBE-2080Ti because an A100 GPU contains
more computational resources than other GPUs.
Scalability on multi-GPU. To explore the scalability of GMBE on
multi-GPU, we conduct experiments on a machine with 8 NVIDIA
V100 GPUs. To optimize GMBE for multi-GPU configurations, we
divide the problem into multiple independent sub-problems, and
the total execution time is determined by the longest-running sub-
problem. Figure 13 shows that GMBE scales out linearly on Github
and BookCrossing datasets as we increase the number of GPUs
because each GPU finishes its execution almost at the same time.
With the help of multiple GPUs, GMBE can enumerate over 55
million maximal bicliques on Github dataset within 31 seconds,
meaning a performance speedup of 77× compared to the state-of-
the-art parallel MBE algorithm ParMBE on a 96-core CPU machine
(i.e., 2,411 seconds).
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Figure 13: Scalability of GMBE on amachinewithmulti-GPU.

7 RELATED WORK

Maximal Biclique Enumeration on CPUs. The most efficient
class of MBE algorithms [8, 14, 18, 29, 31, 32, 39] is based on
backtracking with recursions on CPUs. Most of the research ef-
forts [8, 14, 29, 39] applied various sorting and pruning techniques
on a serial MBE algorithm to reduce the search space for the MBE
problem. Some other works [18, 32] improved the efficiency of MBE
by parallelizing MBE algorithms on multicore CPUs or distributed
architectures. However, the existing MBE algorithms do not work
on GPUs due to the challenges in Section 3, and thus achieve limited
performance with limited computational resources on CPUs.
Related Problems on GPUs. Although GPUs are widely used to
accelerate related graph algorithms, such as maximal clique enumer-
ation (MCE) [12, 27, 36] and graph patternmining (GPM) [11, 15, 20],
it is still challenging for MBE on GPUs. Specifically, MCE on GPUs
suffers from similar performance issues as MBE described in Sec-
tion 3. As a result, the latest GPU-based MCE algorithm GBK [36]
only obtained a suboptimal performance, which is comparable to a
single-thread sequence algorithm on the CPU. Because the enumer-
ated subgraphs (i.e., maximal bicliques) for MBE generally contain
more vertices than those for other GPM problems, optimizations in
the latest GPU-based GPM frameworkG2Miner [15] cannot address
the memory issue and severe load imbalance for MBE on GPUs.

8 CONCLUSION

In this paper, we present GMBE, the first highly-efficient GPU
solution for the MBE problem. MBE on GPUs faces serious chal-
lenges, including large memory requirement, thread divergence,
and severe load imbalance. To address these problems, we design a
node-reuse approach to reduce GPU memory usage, a pro-active
pruning method using local neighborhood size, and a load-aware

task scheduling framework to achieve load balance among threads
within warps and blocks. We conduct comprehensive evaluations
using 12 real-world datasets and three different GPUs. Our experi-
mental results show that GMBE outperforms the state-of-the-art
parallel MBE algorithm ParMBE by 70.6×.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://doi.org/10.5281/zenodo.8079259

ARTIFACT IDENTIFICATION
In this paper, we propose GMBE, the first highly-efficient GPU

solution for the maximal biclique enumeration (MBE) problem. The

computational artifact provides the source code and scripts to re-

produce all experimental results.GMBE is implemented in C++ and

CUDA. The artifact includes all comparison baselines (i.e.,MBEA,

iMBEA, PMBE, ooMBEA, and ParMBE) for justifying the perfor-

mance of GMBE and all variants of GMBE for evaluating all pro-

posed techniques. This artifact enables others to conduct their own

studies on any Linux machine with NVIDIA GPUs.

REPRODUCIBILITY OF EXPERIMENTS
1 ARTIFACT CHECKLIST

• Platforms:
- An NVIDIA A100 GPU

- An NVIDIA 2080Ti GPU

- 8 NVIDIA V100 GPUs

- A machine with 96 Xeon(R) Gold 5318Y CPU @ 2.10GHz

CPU cores

• System Details:
- 18.04-Ubuntu x86_64 GNU/Linux

- Linux kernel: 5.4.0

• Software Dependencies:
- GNU Make 4.2.1

- CMake 3.22.0

- CUDA toolkit 11.7

- GCC/G++ 10.3.0

- Python 2.7.18

- Python packages: zplot 1.41, pathlib 1.0.1

- C++ library: libtbb-dev 2020.1-2

- Ubuntu apt package: Ghostscript, Texlive-extra-utils

- Nvidia driver 510.85.02

- Docker 20.10.10

2 DESCRIPTION
The computational artifact provides scripts to reproduce all ex-

perimental results of GMBE, including Figures 6-13 and Table 2.

Users need to download the source code and scripts from https:

//github.com/fhxu00/MBE-GPU.git. The following is the directory

structure of the repository:

• README.md: This file contains a detailed step-by-step

“Try out GMBE” guide.

• src/: This directory contains the core source code of GMBE

implementation.

• scripts/: This directory has scripts to run experiments.

• baselines/: This directory contains the zipped source codes

of the comparison baselines, i.e., MBEA, iMBEA, PMBE,

ParMBE, and ooMBEA.

• preprocess/: This directory has scripts to preprocess the

graph datasets.

• fig/: This directory contains the scripts to generate figures.

After downloading the source code and scripts, users need

to prepare graph datasets and compile the code using our pro-

vided scripts. We provide a docker image in the repository https:

//hub.docker.com/r/fhxu00/gmbe for the convenience to deploy

this project. Please refer to the corresponding README.md for a

detailed guide.

3 EXPERIMENTALWORKFLOW
Step 1: Prepare datasets.

We use 12 real-world datasets for our evaluation. Users can

download and preprocess them with the script in the directory

preprocess/, which will take roughly 10 minutes. After executing the

script, users can find the preprocessed datasets in the new directory

datasets/.
Step 2: GPU Setup.

We provide the specifications for setting up the project on A100,

V100, and 2080Ti GPUs in the CMakeList.txt file located in the

project directory. Users can deploy GMBE on other GPUs by set-

ting the "CUDA_NVCC_FLAGS" and "DMAX_SM" flags for the

designated GPU, following the guidelines provided in the GPU

manufacturer’s documentation. The "DMAX_SM" flag indicates the

maximum number of SMs on the GPU.

Step 3: Execute scripts to generate results.
We provide the scripts to automatically generate the experimen-

tal results of Figures 6-13 and Table 2 in scripts/. It will take roughly
9 hours to generate all the results. The running progress and the

expected running time of each experiment would be printed to the

file scripts/progress.txt automatically. All the experimental results

would be printed to the file scripts/results.txt and the results re-

quired to generate the figure would be printed to the data file in

the corresponding subdirectory in fig/.
Step 4: Execute scripts to generate figures.

We provide the script to generate figures in the directory fig/,
executingwhichwill take roughly 30 seconds. The generated figures

would be found under the directory fig/.

4 EVALUATION AND EXPECTED RESULTS
Users can reproduce all experimental results with the scripts, which

should roughly match the figures from the paper. Note that, the

results may be not the exact ones presented in the paper. Because

in our subsequent experiments, we found that different states of

the GPUs may also impact the performance.

ARTIFACT DEPENDENCIES REQUIREMENTS
To conduct the experiments for GMBE, a Linuxmachine with Nvidia

GPUs is required. The experiments of ParMBE require a machine

with multi-core CPU and the C++ library libtbb-dev. The input

datasets used can be obtained from two open-source repositories:

https://github.com/fhxu00/MBE-GPU.git
https://github.com/fhxu00/MBE-GPU.git
https://hub.docker.com/r/fhxu00/gmbe
https://hub.docker.com/r/fhxu00/gmbe
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SNAP and KONECT. These datasets were collected from the real

world and are widely used in MBE research.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
The process about how to install, compile and deploy the code is

detailed in the ’README.md’ of our source code. It takes no more

than 10 minutes to complete the process.

OTHER NOTES
The project has also been deployed on

ChameleonCloud, which can be found at

https://chi.uc.chameleoncloud.org/project/instances/b28ae6f2-

aec0-4583-8126-789efcaefb2f/.
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