
FTGraph: A Flexible Tree-based Graph Store on
Persistent Memory for Large-Scale Dynamic Graphs

Gan Suna,b,c, Jiang Zhoua,b,c,∗, Bo Lia,b,c, Xiaoyan Gua,b,c, Weiping Wanga

aInstitute of Information Engineering, Chinese Academy of Sciences
bSchool of Cyber Security, University of Chinese Academy of Sciences

cKey Laboratory of Cyberspace Security Defense
Beijing, China

{sungan,zhoujiang,libo,guxiaoyan,wangweiping}@iie.ac.cn

Shuibing He
College of Computer Science

and Technology,
Zhejiang University
Hangzhou, China

{heshuibing}@zju.edu.cn

Abstract—Traditional in-memory graph systems often suffer
from scalability due to the limited capacity and volatility of
DRAM. Emerging non-volatile memory (NVM) provides an
opportunity to achieve highly scalable and high-performance
graph stores for its large capacity and persistence characteristics.
However, directly deploying current in-memory graph storage
systems on NVM would cause significant inefficiencies in NVM
access, as their graph organization designed for DRAM may
incur higher write amplification, crash inconsistency and costly
concurrency control overhead in NVM for write-intensive work-
loads. In this paper, we propose FTGraph, a Flexible Tree-
based Graph storage system, for both efficient dynamical graph
updates and analysis. To achieve this goal, we introduce a novel
degree-aware suffix bit tree to effectively manage vertices and
edges of the graph, enabling adaptability to real-world power-
law degree distributions while significantly reducing NVM writes.
Based on it, we adopt two optimization methods, logical vertex
ID translation and sequential storage, for vertices with very high
degrees within the tree to enhance graph analysis operations.
We further integrate 8B NVM atomic writes with optimistic
version-based concurrency control through a dual bitmap design
to ensure low-overhead, log-free crash consistency and reduce
read-writer contention. Experimental results show that FTGraph
achieves up to 21.2× higher update performance and up to
85.4× higher analysis performance, compared with state-of-the-
art dynamic graph systems implemented on NVMs.

Index Terms—dynamic graphs processing; non-volatile mem-
ory; storage system optimization.

I. INTRODUCTION

In recent years, graph-structured data from the Internet and

social media has grown both in size and complexity. For

instance, Facebook manages about 1.39 billion active users,

and their social network graph has more than 400 billion edges

[1]. Many graph processing systems have been proposed re-

cently to enable high-performance graph computation for these

dynamically changing graph data [2, 3, 4, 5, 6]. Typically,

graph processing involves updating the input edges to graph

data structures and running the graph analysis algorithms. That

is, graph updates and analysis on dynamic massive graphs

should be performed efficiently.

In terms of rapid edge insertions, which are among the

most frequent operations in graph updates, it is essential

to design a data structure that is scalable, high-performing,

∗Corresponding Author

and flexible enough to support fast modifications. The recent

work GraphTinker [4] employs two widely-adopted hashing

schemes (Robin Hood Hashing and Tree-Based Hashing [7])

to form a balanced tree structure that reduces probe distance

in following edges, thus supporting high-performance graph

updates. While this representation is effective for updates,

it lacks the ability to capture patterns of graph analysis.

For instance, PageRank and graph traversal analyze a static

snapshot of the graph data, with performance depending on

the efficiency of scanning vertex neighborhoods. To accelerate

graph analysis, most graph processing systems represent the

graph using the popular CSR (Compressed Sparse Row)

format, as CSR uses sequential memory layouts for adjacent

edges, leading to a small storage footprint and high cache

efficiency. It achieves rapid scans but is limited in supporting

high-throughput updates because each update requires creating

a new CSR representation. Therefore, a high-performance

graph processing system should balance efficient edge updates

and fast algorithm analysis.

With the rapid expansion of graph scale, new challenges

arise concerning graph construction and updates, as they spend

the most time in existing systems compared to graph analy-

sis performance. For instance, on 32 cores/threads, updating

the graph takes up to 90% of the overall running time in

incremental connected components [8]. Moreover, efficiently

managing hub vertices is an important factor affecting graph

update performance, yet most existing graph data structures

do not adequately address this aspect. The hub-vertices are

a small number of vertices with very high degrees in graphs

that follow a power-law distribution [5]. This characteristic

has the potential to limit performance and scalability. For

instance, GraphTinker creates same-sized EdgeblockArrays as

the primary data structure for storing edges associated with

a source vertex. This method can lead to extensive pointer

chaining within edge blocks of hub vertices, resulting in non-

compact edge storage, severe memory wastage, and poor data

locality for low-degree vertices. Consequently, a well-designed

degree-aware graph store is essential to minimize the number

of accesses to DRAM for hub vertices and reduce storage and

search overheads for low-degree vertices.

Furthermore, as graphs grow larger, the memory require-

39

2024 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/24/$31.00 ©2024 IEEE
DOI 10.1109/CLUSTER59578.2024.00011

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

79
-8

-3
50

3-
58

71
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
U

ST
ER

59
57

8.
20

24
.0

00
11

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

ments for storing this data can exceed the size of DRAM,

posing scalability challenges for in-memory graph systems due

to the constrained capacity of DRAM. To overcome this lim-

itation, many graph storage systems use distributed DRAMs

on multiple servers to store graph data. However, frequent

network communication is required between hosts for data

transfer, and such communication may become a performance

bottleneck. Some other graph systems use secondary storage

devices (e.g., hard disks or SSDs), but they are hindered by

the poor I/O performance of the storage media and do not

facilitate efficient random accesses.

Recently, emerging byte-addressable non-volatile memory

(NVM) technologies, such as Intel’s 3D XPoint Optane per-

sistent memory [9], has brought great performance potential

for dynamic graphs. For NVM, its latency is 2-3× higher

than DRAM [10], but orders of magnitude lower than hard

disks and SSDs. Additionally, a dual-socket machine can be

equipped with up to 12 NVDIMMs or up to 6TB NVMs for

storage capacity. Such features make it feasible to construct

large dynamic graphs entirely on NVMs, which improves per-

formance and scalability while also ensuring data persistence.

However, existing in-memory graph data structures cannot

fully leverage NVM if directly ported to it, as NVM and

DRAM possess different performance characteristics. First,

NVM read-write bandwidth is asymmetric, with the read

bandwidth being about 3× higher than that of the write

[10]. Existing DRAM-based dynamic graph systems tend not

to consider the high amount of writes because DRAM has

a smaller gap (1.3×) between read and write bandwidth.

Intensive writes in DRAM-based graph systems may intro-

duce dramatic performance degradation on NVM. Second, for

NVM, the DRAM-based graph data structure is not crash-

consistent and will not recover to a consistent state due to

the absence of data consistency enforcement after a system

power failure. Thus, it is non-trivial to develop consistent data

structures on NVM graph store.

Besides guaranteeing crash consistency, it is also challeng-

ing to achieve efficient concurrent access (linearizability) at

the same time. Typically, the program creates a critical section

to ensure linearizability and then uses persistent instructions

(clwb and sfence) to guarantee crash consistency in the critical

section. However, it is far from efficient as read-only oper-

ations are blocked, and the coarse-grained lock mechanism

results in more thread-waiting overhead on NVM compared

to DRAM. This is because the read/write latency of NVM is

relatively higher than DRAM, and the persistent instructions

are costly compared to other instructions.

To address the above challenges, we propose a novel persis-

tent memory graph data structure, named FTGraph, for both

efficient graph updates and analysis. In FTGraph, adjacent

edges of each vertex are stored separately in the degree-aware

suffix bit trees. The degree-aware suffix bit tree is a lightweight

and dedicated data structure designed for NVM. It leverages

the suffix bits of adjacent vertex IDs to decide the position of

edges within the tree, thus enabling fast graph updates while

maintaining its own balance effectively. As the tree-based

structure might cause expensive random memory jumps during

adjacent edge scans and may not fully exploit Intel Optane

memory’s preference for sequential accesses, we introduce an

optimization method for sequential adjacent edge scans. In

addition, we integrate 8B (8-byte) NVM atomic writes with

optimistic version-based concurrency control through a dual

bitmap design in every tree node. Since each bitmap can be

updated with a single 8B write instruction, maintaining data

consistency after a crash is easily achieved. The dual bitmap is

also a natural version lock for concurrent control. The thread

only starts the procedure if two bitmaps are the same. The

thread reads the new version after the procedure and then

restarts it if the two versions differ. Therefore, a dual bitmap

design can extract more concurrency, guaranteeing that any

concurrent execution remains similar to sequential execution,

even in the event of a system crash.
In summary, we make the following contributions:

• We propose a high-performance persistent memory graph

store named FTGraph for large-scale dynamic graph

updates and analysis. FTGraph adopts a novel degree-

aware suffix bit tree to store adjacent edges for each

vertex, significantly enhancing graph update performance

through an adaptive structure that leverages the power-law

distribution of the graph. We also introduce two optimiza-

tion methods for graph analysis, including logical vertex

ID translation and sequential storage, for high levels of

the degree-aware suffix bit tree.

• We integrate 8B NVM atomic writes with optimistic

version-based concurrency control through a dual bitmap

design to reduce the extra overhead of maintaining crash

consistency and the read-writer contention.

• We implement the prototype FTGraph on NVMs and

conduct extensive experiments to demonstrate its update

and analysis efficiency. Results show that FTGraph out-

performs the state-of-the-art dynamic graphs by up to

21.2× in graph updates and 85.4× in graph analysis.

II. BACKGROUND AND MOTIVATION

A. Non-volatile Memory
While research on NVM began more than 10 years ago,

it wasn’t until 2019 that Intel released the first commercially

available Optane persistent memory, an innovative new tier

between DRAM and SSD. NVM combines byte addressability

and persistence to bring greater capacity to the memory bus,

overcoming the capacity limitations of traditional DRAM.
Performance characteristics. The performance character-

istics of NVM differ from DRAM. The read/write latency

of NVM is up to 2–5× higher than DRAM due to its rela-

tively moderate read/write bandwidth [10]. NVM also exhibits

asymmetric read/write performance and higher random access

overhead. For example, the Intel Optane persistent memory

can deliver up to 40 GB/s for sequential reads and 10 GB/s

for sequential writes, while dropping to 7.4 GB/s and 5.3 GB/s

for random reads and writes, respectively [11]. Therefore, it is

important to minimize unnecessary NVM writes and random

access in persistent data structures.

40

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The architecture of the NVM system and the internal

architecture of Intel Optane persistent memory.

System architecture. Figure 1 shows the architecture of the

NVM system and the internal architecture of Optane persistent

memory. The persistent memory is attached to the memory

bus, which sits one level below the CPU’s multi-level caches.

Updates are usually first sent to CPU caches, and for safe

persistence, the persistent memory (the first-generation Optane

device) requires software to actively use cache line flush

instructions, such as clwb. Upon flush, the data will reach the

memory controller’s write pending queues (WPQ), which is

included in the asynchronous DRAM refresh (ADR) domain,

and survive power failures. To guarantee specific ordering of

writes, applications should also issue sfence to prevent stores

from being re-ordered by the CPU. However, using special

instructions (clwb and sfence) to persist data from the CPU

cache to NVM can drastically slow down write performance

by up to an order of magnitude. Therefore, it is important to

reduce persistent operations in persistent data structures.

B. Challenges for Dynamic Graphs on NVM

Higher write amplification overhead. Almost all in-

memory graph processing systems are write-intensive, and

data structures used in these systems are highly unsuitable

for direct porting to NVM. For instance, Terrace [8] proposes

a hierarchical design that stores neighbors of medium-degree

vertices in a shared packed memory array (PMA) [12] and

neighbors of high-degree vertices in per-vertex B-trees. PMA

separates an array into several segments and assigns the

lower and upper bound density thresholds for each segment.

When an insertion causes the density of a segment to exceed

the threshold, PMA adjusts the density by redispatching all

elements stored in the segment’s parent, resulting in a higher

number of NVM writes, known as write amplification. The

same situation exists in the B-tree structure. When a node

splits, the B-tree copies the intermediate element to its parent,

potentially causing splits upwards level by level, and moves

all elements on the right of the intermediate element to a new

node.

As discussed aforementioned, NVM has more read/write

overhead than DRAM and exhibits asymmetric read/write

performance. Write amplification in existing graph processing

systems will result in worse performance on NVM. To mitigate

the impact of higher write amplification on NVM, FTGraph

proposes the degree-aware suffix bit tree to support fast graph

insertion, achievable in O(1) write count, along with a compact

1.
19

 1.
78

0.
79

0.
74

3.
41

3.
61

1.
28

1.
18

0

1

2

3

4

OK TT G25 G26

M
ill

io
n

ed
ge

s p
er

 se
co

nd

B-tree Suffix bit tree

(a) Insert throughput

53
 16

3

30
4

62
7

21

33
 13

7

29
1

0

200

400

600

800

OK TT G25 G26

N
V

M
 w

rit
e

am
ou

nt
 (G

B
)

B-tree Suffix bit tree

(b) NVM write amount

Fig. 2: Comparison between the B-tree and the suffix bit tree.

edge data representation for algorithm analysis. Figure 2

illustrates the insertion performance and the amount of data

written to NVM for both B-Tree and our suffix bit tree when

inserting four different datasets. It can be seen that the suffix

bit tree writes only 20%-48% of the data amount compared

to the B-tree. This discrepancy contributes significantly to the

insertion performance bottleneck observed in the B-tree.

Higher crash consistency overhead. NVM is non-volatile,

and an unexpected system crash can result in incomplete writes

or data loss upon the system reboot. This underscores the

importance of ensuring that data updates are either fully com-

pleted or not initiated at all. Common methods of maintaining

data consistency, such as logging or copy-on-write (COW),

introduce redundant writes to NVM, resulting in higher write

overheads. In addition, the CPU initially writes data to caches,

and then leverages explicit cache line flush instructions and

memory barriers to guarantee the persistence of NVM writes.

The lower write bandwidth of NVM compared to DRAM,

along with added data persistence instructions, contributes

to the increased write overhead of NVM. Given the CPU’s

guarantee of 8-byte granularity for atomic writes, our approach

in FTGraph capitalizes on this feature to design a log-free

crash consistency guarantee method utilizing 8-byte NVM

atomic writes [13].

Higher concurrency control overhead. A single thread

struggles to take full advantage of the bandwidth offered by

NVM, and encounters challenges in meeting the demanding

high throughput requirements of dynamic graphs. Therefore,

efficient and correct concurrency control of graph data struc-

tures is essential. GraphTinker [4] does not incorporate con-

currency control within its data structure. Instead, it achieves

parallelization by generating multiple C++ instances. The

dataset is partitioned based on the source vertex IDs of

the edges, and each interval is then loaded into a separate

instance of GraphTinker. This can lead to redundant storage

of certain data in every instance, such as vertex property

arrays and scatter-gather hashing (SGH), ultimately resulting

in significant memory wastage. In graph data structures, where

multiple threads may access the same edge block at the same

41

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overall architecture of FTGraph.

time, a common approach is to place a lock within each edge

block to achieve concurrency control. However, the coarse-

grained lock mechanism results in greater thread-waiting

overhead compared to DRAM, given the higher read/write

latency of NVM. Additionally, persistent instructions consume

significantly more CPU cycles than normal instructions. To

enhance concurrency, FTGraph realizes optimistic version-

based concurrency control.

III. FTGRAPH DESIGN

In this section, we first introduce the main idea and the

overview of FTGraph, which is a NVM-based graph storage

system for large-scale dynamic graphs. Then, we detail the

design and the operations for degree-aware suffix bit trees in

FTGraph. Finally, we describe how to integrate NVM atomic

writes with a fine-grained concurrency mechanism to ensure

crash consistency and improve concurrency acceleration.

A. Overview of FTGraph

Graph structure. The overall graph structure of FTGraph

is shown in Figure 3. FTGraph’s major structures are the in-

memory hash table, the in-memory adjacency lists, the vertex

array, and the degree-aware suffix bit trees for each vertex,

where the latter two are stored on NVM. The vertex array is

implemented as a pre-allocated array with a fixed capacity on

NVM. This solution ensures quick vertex look-ups, in O(1).

In the vertex array, vertices are stored according to the order

of their arrival in a semi-dense fashion. To support arbitrary

vertex IDs, the vertex array needs to be associated with a hash

table. We first check if the two vertex IDs have been hashed

before inserting each new edge. If not, the new vertex ID is

mapped to the next unused index in the vertex array. Thus

each physical vertex id maps to an index in the vertex array

by the hash table [4, 2, 3]. The adjacent edges of each vertex

are stored within a degree-aware suffix bit tree and each tree

node (tnode) contains multiple edges, which will be described

in Section III-B in detail. The in-memory hash table index also

maps each vertex to the physical position of its first node of

the tree. It’s effective that vertex look-ups and the retrieval of

their first adjacent edges can exhibit a constant cost [2].

Logical vertex ID translation. Furthermore, translating

physical vertex IDs to logical indices provides a highly

compacted graph data representation. Frequently, most graph

algorithms need to scan neighborhoods, i.e., the Bellman-Ford

algorithm requires scanning the neighborhoods of |V | vertices

in |V | − 1 iterations, where |V | is the number of vertices in

the graph. In fact, there are many empty vertices that have no

in-edges and out-edges, and they do not need to be traversed

while running the analytics. For example, the Twitter graph

has 35% empty vertices. So, translating a physical vertex ID

to a logical index helps to reduce the number of iterations

and the number of vertices to be traversed in each iteration,

improving the analytics performance.

B. Degree-Aware Suffix Bit Tree

The suffix bit tree design. We store the adjacent edges of

each vertex in separate suffix bit trees. Figure 4 gives a simple

example of a suffix bit tree. As shown, each tree node stores

multiple edges and may have two child nodes. The path to

its left child is represented as “0”, while the path to its right

child is represented as “1”. The “0” or “1” is a certain bit of

a number, which provides fast decision-making for traversal

paths. In detail, when inserting or searching an edge, first

check the 0th bit of the destination vertex ID value. If it is

equal to 0 then continue to insert or search in the left child

node at the first level, otherwise continue in the right child

node. Then scan the adjacent edges within the tree node to

42

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The suffix bits of the destination vertex ID indicate the

path (marked in green) of edge insertion and look-ups in the

tree.

insert the target edge at an empty location or search for the

target edge. If the insert or search is still unsuccessful after all

the entry is inspected, then check the 1st bit of the destination

vertex ID of the edge and the same process continues in

its child node (if available). Finally, the insert or search is

successful at the third level as shown in Figure 4.

This hierarchical representation is effective for updates

because it’s of the order O(log(n)) to check if the edge

to be inserted already exists. Furthermore, compared to the

traditional B+ tree, the suffix bit tree keeps the elements

in the tree nodes unordered and avoids complex tree node

splits/merges. In addition, balancing the suffix bit tree can be

achieved without any overhead, as the generally unpredictable

destination vertex ID values will cause the suffix bit tree to

branch out in a naturally balanced manner. Consequently, the

suffix bit tree reduces a lot of unnecessary writes and it’s more

lightweight and more suitable for NVM.

The degree-aware structure design. The natural graphs

commonly found in the real world, like social networks

and the web, often exhibit highly skewed power-law degree

distributions. Therefore, we evaluated four real-world graphs

to analyze their degree characteristics, as shown in Figure

5. In datasets such as Orkut [14] and Twitter [15], vertices

with degrees ranging from 1 to 16 can constitute between

20% to 86%, and from 1 to 64 can account for 63% to 97%,

respectively. Furthermore, vertices with degrees ranging from

1 to 960 can make up to 99% in almost all datasets. Based

on this finding, we target to realize differentiated suffix bit

tree structures for different vertices with varying degrees. To

achieve the goal, a common approach is adaptively hierarchical

data structure representation [16]. Such representations often

have multiple levels and initially, there is only one level (L0)

with a small size. When the level of L0 is full, a new level

(L1) with double the size of L0 is created, and then move

all elements to its L1. After that, the new coming element

updates would be directly written to its L1 level. When the

level of L1 is full, the same process is adopted. Finally, as

the size of the new level gets larger and larger, it will limit

performance and scalability due to more and more extra data

movement overhead across different levels, so special handling

is required.

0
10
20
30
40
50
60
70
80
90

100

1~16 1~32 1~64 1~192 1~448 1~960

Pe
rc

en
ta

ge
 (%

)

Ranges of degrees

Hollywood-2009
Orkut
LiveJounal
Twitter

Fig. 5: Percentage of vertices with various ranges of degrees.

Inspired by this, we combine the suffix bit tree with the

degree-aware structure design, broadly sketched in Figure 6.

Initially, there is only one root node, which can hold at most

16 neighboring edges, i.e. tnode16, as vertices with degrees

ranging from 1 to 16 can account for up to 86% in real-world

graphs. When the root node with the size of 16 is full, it

scales up to a double-size, i.e. tnode32, which can hold at

most 32 neighboring edges. Similarly, the root node will finally

scale up to a maximum size of 64, i.e. tnode64, as vertices

with degrees in the range of 1 to 64 can account for up to

97% in real-world graphs. When there is only a root node, all

neighbors of a vertex are stored in consecutive memory, like

in an array. Thus, either updates or scans will have a good

cache locality.

Fig. 6: Overall architecture of degree-aware suffix bit tree with

n+1 levels.

After scaling up to the maximum size of 64, the root node

starts to branch out like the aforementioned suffix bit tree when

it’s full. First, we create two children of the root node with the

43

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

same size as the first level of the suffix bit tree in a contiguous

part of NVM. The 0th bit of the destination vertex ID is then

checked to determine the insert path.

However, if one bit is checked at each level while inserting

edges, the suffix bit tree will have a large height and need a

lot of levels of chaining for the hub vertices, thus increasing

the number of accesses to NVM. To mitigate this issue, two

bits are checked together to determine the insert path after

the levels of the suffix bit tree exceed a certain threshold. In

this way, a full tree node will branch out in the manner of a

quadtree. As vertices with degrees in the range of 1 to 960

can account for up to 99% in almost all datasets, we set the

threshold to 4 (including the level of the root node, i.e. L0),

so the first 4 levels of the suffix bit tree can hold at most 960

neighboring edges (15 tree nodes × 64 edges per tree node =

960 edges), which exploits the structure of power-law graphs.

The tree node design. Figure 7 shows the data structure

of a degree-aware suffix bit tree node with 64 edges. Each

row represents a cache line and is all cache line aligned for

efficient cache line accesses [17, 18]. The first cache line stores

auxiliary data, including next (the pointer to the next level),

locate bitmap (locating empty positions), set bitmap (updating

empty positions), level (the tree node level, starting from 0),

size (the number of edges a tree node can hold), version (the

tree node version). One bitmap takes 8B, which is used to

achieve write atomicity, and each bit of which corresponds to

an edge position. “1” means that the position is occupied by

a valid edge. “0” means that the position is empty. We use

the dual bitmap design to integrate 8B NVM atomic writes

with optimistic version-based concurrency control, which we

introduce later.

The second cache line stores the fingerprint array. The

destination vertex id value is hashed to a 1B fingerprint when

inserting an edge and then the fingerprint is inserted into the

fingerprint array in the same position as the edge. The typical

bitmap+fingerprint node design is widely used on NVM in-

dexes [19, 17, 20, 21], which can improve search computation

inside a tree node with a single SIMD instruction. Three sizes

of tree nodes can store up to 16, 32, and 64 edges, respectively.

We accelerate the fingerprint array matching using a single

128-bit (sse2), 256-bit (avx2), and 512-bit (avx512) SIMD

instruction, respectively. Finally, unsorted edges start from the

third cache line, sharing the same source vertex.

Fig. 7: Data structure of a tree node with 64 edges.

Sequential storage for high levels of the tree. The tree

structure does not provide a highly compacted representation

of edge data, especially quadtrees. When an edge scan iterates

over all nodes of a tree, it needs random accesses, resulting

in poor data locality. Moreover, NVM delivers about 3×
higher latency for random accesses than sequential accesses

for both reads and writes [17], further increasing the cost of

random memory scans. To support efficient data access for

graph analytics, FTGraph manages the copy of high levels of

each tree in separate per-vertex DRAM-based edge lists. We

allocate multiples of 4KB page-aligned memory for these edge

lists, and each memory block uses a pointer to the next block.

As described, only 1% of vertices have degrees greater than

960 in almost all datasets, we set the start level to 4. As a

result, when an edge scan reaches the level of L4, it iterates

over the edge list in DRAM instead, avoiding frequent memory

jumps in quadtrees. Note that, the copy strategy incurs extra

data movement overhead and DRAM space usage, but this

overhead is acceptable because there are only 1% of vertices

need extra edge lists.

C. Crash Consistency and Optimistic Concurrency

With the FTGraph design, there are two bitmaps stored

inside each tree node. The locate bitmap is only used for a

thread to locate an empty position before the insert, while

the corresponding bit in the set bitmap is updated to make

the new edge visible after the insert. Each bitmap can be

updated with a single 8-byte failure-atomic write instruction,

saving the data consistency costs. An insert updates the two

bitmaps successively. When the two bitmaps are not the same,

it indicates that there is a writer inside the tree node and a

thread (writer or reader) should wait until the two bitmaps are

the same. Then a reader optimistically performs an operation

and finally checks the locate bitmap again. If two versions of

the locate bitmap vary, the operation is retried. Thus, the dual

bitmap is also a natural version lock, which allows multiple

readers or one writer to access the node at the same time.

In this way, we can integrate a log-free crash consistency

guarantee approach with optimistic version-based concurrency

control through a dual bitmap design.

Log-free and concurrent insert. The insertion operation

inside a tree node consists of following steps: (1) A thread

first reads the two bitmaps and checks if there is no writer

(i.e., the two bitmaps are the same). If not, the thread should

wait until the two bitmaps are the same. (2) The thread then

checks if an edge already exists. If so, the insert ends. (3) The

thread compares the locate bitmap read in step (1) with the

current locate bitmap. If two versions vary, the thread should

restart from step (1). If not, the thread finds the first empty

position in the locate bitmap and sets the corresponding bit to

1. Notably, the compare-and-update operation should be done

by a failure-atomic CAS (compare-and-swap) instruction. (4)

The new edge is inserted into the corresponding position and

persisted to NVM via a sequence of CLWB and SFENCE

instructions. Next, the 1-byte hash value of the destination

vertex ID is also inserted into the corresponding position in

44

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

the fingerprint array, and the second cache line of the tree

node is persisted. (5) The thread sets the corresponding bit in

the set bitmap via another CAS instruction. Since the locate

bitmap and the set bitmap are in the same cache line, i.e. the

first cache line of the tree node, we only need one persistence

operation. Once the cache line has been flushed successfully,

the insert is considered crash-consistent. Because we use the

set bitmap to indicate the validity of the edges, a partially

written edge remains invalid until the set bitmap is successfully

flushed to NVM, thus ensuring data consistency of the insert

in the event of a system crash. In addition, each thread gets

its specific empty position in the locate bitmap, and once the

position is occupied, each thread can execute the insert and

slow persistent instructions outside the critical section without

interfering with each other, improving the scalability and the

graph update performance.

Optimistic version-based concurrent search. A search

operation involves traveling the levels downwards and finding

the target edge inside the tree nodes. Therefore, there is

find-insert contention inside the tree nodes and travel-scale-

up/branch-out contention outside the tree nodes. While the

dual bitmap can be considered to be a version lock, it’s easy to

solve find-insert contention inside the tree nodes as described.

Similar to PACTree [21], we put an extra optimistic persistent

version lock in each tree node to solve travel-scale-up/branch-

out contention. A scale-up or branch-out atomically increments

the version number upon lock and unlock and the version

number becomes odd and even, respectively. A travel (jumping

to the next level) first checks if there is no scale-up or branch-

out (i.e., an even version number). If so, the travel starts and

then checks the version number again. If two numbers vary,

the travel will retry, thus solving travel-scale-up/branch-out

contention outside the tree nodes.

Log-free scale-ups and branch-outs. When the root nodes

with size 16 or 32 become congested and filled with edges,

they scale up into the root nodes with size 32 or 64. To avoid

tree node space allocation and release and element copying

when the root nodes scale up, we just allocate the same size

of NVM space to the root nodes with a size of 16 as we do

to the root nodes with a size of 64 (trading space for time).

The auxiliary parameter size is used to indicate the size of the

current tree node. When the root nodes with size 16 or 32 scale

up into the root nodes with size 32 or 64, the parameter size is

set to 32 or 64, which not only reduces NVM writes and NVM

memory management overhead but also facilitates maintaining

crash consistency. We set the parameter size to 32 or 64

to achieve scale-ups through an 8-byte NVM atomic write,

followed by a sequence of CLWB and SFENCE instructions.

When the tree nodes with a size of 64 branch out, their 2

or 4 child nodes are allocated simultaneously in a contiguous

segment of NVM memory space. The auxiliary parameter next

is used to point to the start address of the space of the child

nodes. Similarly, the parameter next is updated with a single

8-byte failure-atomic write followed by persistent instructions.

Thus the next is either set successfully via an NVM atomic

write or remains at its initial value 0.

IV. EVALUATION

A. Experimental Setup

Machine Configuration. We conducted our experiments on

a dual-socket machine equipped with two Intel Xeon Gold

5218 @ 2.3GHz (16 cores / 32 threads in SMT mode), 256GB

DRAM, and 1 TB Intel Optane persistent memory 100 Series

in App Direct mode (four DIMMs of 128GB per socket). The

server runs Ubuntu 20.04.1 LTS with a Linux kernel of 5.15.0

and the Ext4-Dax file system is mounted on the PM devices.

Due to the NUMA effects, we bind our programs to run on

socket 1 (using pmem1), thus avoiding remote NVM reads

and writes across the NUMA nodes.

Compared Systems. We considered the following com-

pared systems :

• GraphTinker [4]: an in-memory data structure for dy-

namic graphs, which combines the benefits of Robin

Hood and Tree-Based Hashing to reduce the probe dis-

tance and improve the update throughput. We implement

GraphTinker-N on NVM based on GraphTinker, and we

only store the whole EdgeblockArray on NVM and keep

the vertex property array, the scatter-gather hashing unit,

and the coarse adjacency list (CAL) in DRAM.

• Terrace [8]: an in-memory data structure for dynamic

graphs, which adopts a hierarchical data structure design

by taking advantage of the inherent skewness in the

degree distribution of real-world graphs. We implement

Terrace-N on NVM based on Terrace, and we only store

the in-place (first) level on NVM and keep the second

level and third level on DRAM.

• XPGraph [16]: an XPLine-friendly NVM-based graph

storage system, which allocates an adjacency list in

DRAM to cache edge updates for each vertex and flushes

the entire buffer to NVM when it is full, thus merging

multiple XPLine accesses to NVM into single XPLine

access.

Graph datasets. We use both real-world graphs and syn-

thetic graphs in our experiments. Orkut [14] and Twitter [15]

are real-world graphs, while Graph500-25 and Graph500-26

are generated using graph500 generator [22]. All graphs have

skewed power-law degree distributions and are widely used

in other graph system evaluations. The detailed of these graph

datasets is shown in Table I. Note that, we represent undirected

edges a-b as two directed edges: a→b, b→a [2].

TABLE I: Graph datasets with number of vertices, number of

edges, and average degree of vertices

Graphs Vertices |V | Edges |E| D̄
Orkut (OK) 3.0× 106 234× 106 76
Twitter (TT) 61.6× 106 1.4× 109 23
Graph500-25 (G25) 33.5× 106 1.0× 109 31
Graph500-26 (G26) 67.1× 106 2.1× 109 31

Evaluation metrics. We first evaluate FTGraph and its

competitors in graph update performance, which includes

single-threaded insert and multi-threaded insert. Then we

45

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

0.
86

0.
25

0.
48

0.
45

8.
68

1.
75

3.
81

3.
37

0.
48

0.
04

0.
07

3.
40

3.
59

1.
10

1.
01

0

2

4

6

8

10

OK TT G25 G26

In
se

rt
th

ro
ug

hp
ut

(M
 e

dg
es

\s
)

GraphTinker-N XPGraph Terrace-N FTGraph

Fig. 8: Graph insertion time among various graph systems on

different datasets and with a batch size of one million edges.

choose four algorithms, including BFS (breadth-first-search),

CC (connected-components), PR (page-rank), SSSP (single-

source-shortest-path), and a 2-Hop query to simulate the

various use cases to demonstrate the impact of FTGraph on

analytics. We verify the correctness of multi-threaded insert

by the fact that every edge in the datasets can be found. The

algorithms are almost exactly the same as in XPGraph. The

results of the algorithms and the queries executed by different

graph systems should be the same so we verify the correctness

of the algorithms and the queries by the same outputs.

B. Graph Update Performance

Single-threaded insertion. The experiment starts with an

empty data structure and imports the graph data in batches.

The batch size of edges used in our experiments is 1 million

edges per batch. Figure 8 shows the throughput of various

graphs for single-threaded inserts using different datasets.

Missing bars indicate that a system could not load the graph

due to memory restrictions. FTGraph outperforms Terrace-N

and GraphTinker-N across all the datasets, and, conversely,

Terrace-N is always slower than others. More precisely,

FTGraph is consistently faster and achieves 1.9× to 3.8×
speedups than GraphTinker-N and 5.6× to 21.2× speedups

than Terrace-N for different graphs.

Moreover, we also find that XPGraph is always faster than

others on various datasets except Twitter, there are three main

reasons for this. First, XPGraph does not perform the check if

an edge exists, which helps to improve the insert performance

but may lead to duplicate edges and wrong results of graph

analysis. Second, XPGraph has high hidden costs, as it uses

background threads to perform the buffering phase and the

flushing phase. Third, XPGraph uses DRAM as a cache to

batch updates into the adjacency lists, which amortizes the

NVM access cost for each edge update.

The three other systems all check if an edge exists. FTGraph

is superior to the others because the flexible suffix bit trees

allow for efficient checks. Inside the tree nodes, FTGraph

uses SIMD instructions to accelerate the process of checking

whether any fingerprint matches the search edge’s fingerprint.

0

5

10

15

20

25

30

1 2 4 8 16

In
se

rt
th

ro
ug

hp
ut

(M
 e

dg
es

\s
)

of threads

GraphTinker-N Terrace-N
XPGraph FTGraph

Fig. 9: Multi-threaded graph insertion throughput among var-

ious graph systems on the Orkut dataset and with a batch size

of one million edges.

It then only accesses entries with matching fingerprints, skip-

ping all the other entries. Outside the tree nodes, FTGraph

travels to the target tree node according to the source vertex

ID’s suffix bits with the order O(logN), where N is the number

of tree nodes. Furthermore, when inserting an edge, FTGraph

can complete the insertion in O(1) write count after it reaches

the target tree node.

Compared to others, FTGraph has almost no write amplifi-

cation. GraphTinker can make fewer edge traverses during up-

dates through Robin Hood Hashing and Tree-Based Hashing.

However, when a new edge is inserted, the Robin Hood Hash-

ing may cause more edges to move. In addition, GraphTinker

maintains a separate CAL representation, and every edge needs

to be copied again into the CAL, thus increasing maintenance

overhead. Terrace introduces a hierarchical design and mainly

stores neighbors in a single shared PMA (the second level) and

per-vertex B-Trees (the third level). Both the PMA and B-trees

cause high write amplification as described. In addition, if the

degree of a vertex becomes greater than the maximum number

of neighbors that can be stored in the PMA, Terrace removes

that vertex’s neighbors from the PMA and inserts them in a

B-tree along with the new incoming neighbors, which results

in serious write amplification and poor insert performance.

Multi-threaded insertion. Figure 9 shows the insertion

throughput of FTGraph and other graph systems as the number

of threads increases on the Orkut dataset. As shown, XP-

Graph is superior to the others for similar reasons as single-

threaded. FTGraph performs better than the other two in each

case, which achieves 2.14× to 8.85× higher throughput than

GraphTinker-N, and 8.26× to 12.04× higher throughput than

Terrace-N.

GraphTinker realizes the parallelism by partitioning the

edge dataset into several instances according to their source

vertex IDs. It is an ideal approach to concurrency, as there

is no read-writer contention among GraphTinker instances.

But in terms of scalability, we can observe that FTGraph

has linear scalability like GraphTinker, as FTGraph realizes

a relaxed and fine-grained concurrency control mechanism to

46

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

10
.8

9

85
.4

2

55
.4

8

58
.6

8

1.
58

2.
02

2.
29

2.
67

1.
29

 8.
96

4.
49

4.
87

1 1 1 1

0
10
20
30
40
50
60
70
80
90

OK TT G25 G26

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e
GraphTinker-N XPGraph Terrace-N FTGraph

Fig. 10: Graph query performance among various graph sys-

tems using different datasets when running the 2-HOP query.

reduce the read-writer contention. In addition, FTGraph has

a higher throughput overall. For the same reason as in the

single-threaded case, high write amplification in edge blocks

and the CAL representation slow down the rate of inserts.

Terrace always suffers from the high cost of deleting a vertex’s

neighbors from the PMA and inserting them in a B-tree.

Memory usage. Table II reports the memory footprint of

the different systems when running on the Twitter dataset.

FTGraph uses the least amount of DRAM, as it only requires

DRAM to store the high levels of each tree for fast graph

analysis. FTGraph’s overhead of NVM mainly comes from

the pre-allocated vertex array and root nodes of each tree due

to many empty vertices. On the other hand, FTGraph allocates

two or four new tree nodes simultaneously when a tree node

branches out. This also leads to higher space usage.

TABLE II: Memory footprint (in GB) of different systems

when running on the Twitter graph.

Media GraphTinker-N XPGraph Terrace-N FTGraph
DRAM 119.86 4.13 26.13 2.22
NVM 267.33 90.90 3.67 35.15

C. Graph Analysis Performance

In this section, we first evaluate graph query performance

among various graphs, i.e., the 2-HOP neighbor query, and

then evaluate graph computation performance via four com-

mon graph algorithms BFS, CC, PR, and BF. We execute the

same algorithm implementations on all systems evaluated.

For the 2-HOP query, we first access the neighbors of

random 215 non-zero degree vertices and then access the

neighbors of the corresponding 1-HOP neighbors. The differ-

ent graph systems access the neighbors of the same selected

vertices to make sure the complexity of the query is the same.

As shown in Figure 10, FTGraph performs better than other

graph systems when running the 2-HOP query.

As for graph analytic algorithms BFS, CC, PR, and BF, FT-

Graph always achieves the best performance. From Figure 11,

it can been seen that compared to GraphTinker-N, FTGraph

achieves up to 5.56×, 6.84×, 7.54×, and 6.31× speedup for

BFS, CC, PR, and BF respectively. Accordingly, FTGraph

achieves up to 2.60×, 5.92×, 2.96×, and 3.24× better speedup

than Terrace-N. For XPGraph, we also observe that FTGraph

performs up to 4.83× better than it.

We believe there are three major causes for that. First,

real-world graphs generally have a power-law distribution,

and only a small part of vertices have degrees larger than

64 as noted in Figure 5, so the neighbors of most vertices

can be stored in just one root node of size 64, or even in

root nodes of size 32 and 16. For these low-degree vertices,

edges are stored sequentially in a contiguous tree node, which

benefits fast scans for graph analysis. Second, as all children

of a tree node are allocated simultaneously in the same

contiguous segment of NVM, the hierarchical traversal of

the trees provides an opportunity for contiguous child node

accesses and good locality. Further, we add DRAM-based edge

lists for compacted edge representation of high levels of the

tree, which offers a good data access locality and significantly

reduces the number of random access on NVM. Third, logical

vertex ID translation provides a highly compacted graph data

representation and skips the computations for empty vertices.

GraphTinker-N is almost always slower than the other

systems. It maintains a separate copy of the edges in the

database by a coarse adjacency list (CAL) representation,

achieving a more compact edge data representation in the

database but suffering from traveling more edges. Because

several source vertices share an adjacency list in the CAL

representation, the edges in an adjacency list can belong to

different vertices. When retrieving the edges of a vertex, all

edges of other vertices are also traveled, which may incur a

greater latency.

Both Terrace-N and XPGraph do not use a logical vertex

ID translation strategy. As a result, they suffer from a lot

of unnecessary traverses for empty vertices. In addition, we

can observe that Terrace-N performs poorly when running on

large graphs, such as Twitter, Graph500-25, and Graph500-

26. Terrace-N adopts individual B-trees for each high-degree

vertex, and each B-tree scatters the neighbors into multiple

tree nodes, which does not feature efficient scans due to many

random accesses.

D. Efficiency of edge lists.

First, we measure the impact of edge lists on graph update

and analysis performance. Any edge inserted into the tree

nodes with a level greater than 3 should be copied into

a separate edge list. This slows down the performance of

graph updates as shown in Table III. There is a 0.52%-9.37%

slowdown compared to its original version without edge lists.

In summary, adding edge lists has little effect on graph updates

because the edge list format supports fast updates as each

update is simply appended to the end of the list. As for the

impact on graph analysis, we can observe that it has a limited

improvement when running a small dataset, i.e., Orkut, as there

are a few vertices that have high degrees and need separate

edge lists. But FTGraph can run faster on different benchmarks

47

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Comparative analysis of different graph systems using various datasets and algorithms. The normalized running time

refers to the performance ratios of various systems compared to FTGraph, with smaller values indicating better efficiency.

when running on other datasets by up to 83%. Intuitively, the

sequential storage format of edge lists can significantly reduce

the number of random accesses on NVM.

Then, we measure the benefit of edge lists on graph analysis

performance when setting a different start level and show the

results in Figure 12. It’s obvious that the more edges of a tree

are copied into the edge list, the higher the graph analysis

performance. However, larger edge lists cost more DRAM

space. For example, it costs 2x the DRAM space when we

set the default start level from 4 to 0. Therefore, the start

level of 4 is a good choice to balance DRAM space usage

and graph analysis.

TABLE III: Percentage of performance reduction in graph

updates and performance improvement in graph analysis when

adding edge lists.

Graphs 2-HOP BFS PR CC BF Insert
OK 17.96% 0.85% 2.07% 6.36% 0.72% 0.52%
TT 80.98% 5.89% 1.72% 7.17% 7.71% 1.65%
G25 80.90% 16.92% 13.42% 11.90% 18.75% 5.22%
G26 83.31% 14.66% 13.27% 15.01% 16.41% 9.37%

0.6

1.0

1.4

BFS PR CC BF

Sp
ee
du
p

L1 L2 L3 L4 L5

Fig. 12: Speedup for graph analysis on dataset Graph500-26

when adding edge lists from different start levels. L1 denotes

adding edge lists for tree nodes with a level >= 1 and lower

start levels mean more DRAM space is used.

V. RELATED WORK

Large-Scale Dynamic Graph Processing. Dynamic graphs

refer to the fact that graph structures are continuously chang-

ing at very high rates. Therefore, dynamic graph processing

systems often prefer to work in main memory to achieve high

performance, scalability, as well as high memory efficiency

[4, 3, 23, 24, 6, 2, 5]. However, memory requirements for

storing these data can be much larger than DRAM size

[25]. Many distributed graph systems have been proposed to

overcome this limitation through partitioning and placing the

graph data on clusters of machines, but they often encounter

challenges due to networking latency [26, 27, 28]. In addition,

some graph systems store data on external storage devices

(e.g., hard disks or SSDs) [29, 30]. However, the high I/O cost

of internal and external memory interaction limits their per-

formance. To address the issues, we propose FTGraph, which

exploits NVMs to provide larger storage capacity and superior

performance for large-scale dynamic graphs. Notably, there

are also some frameworks designed for GPU architectures

[31, 32, 33]. These frameworks often target at high update

rates and efficient memory management techniques on GPUs.
To the best of our knowledge, the novel suffix bit tree

was first proposed by us for graph processing. We believe

that the suffix bit tree offers promise for building high-

performance dynamic graph representations. There are some

existing approaches that use suffix trees to handle graph-

related work [34, 35]. However, it is crucial to note that the

traditional suffix tree is completely different from the suffix bit

tree. The former is often used in text search and information

retrieval, where each text or document is associated with a

suffix tree, and each edge is labeled with a substring of the

text or the document.
Persistent Index. Several techniques applied in FTGraph

derive from previous work in the domain of persistent indexes.

Earlier studies have proposed various ways to maintain crash

consistency, such as logging [36, 37], shadowing [38], PMw-

CAS [39], and NVM atomic writes [13, 40]. Recent works

often target using lightweight NVM atomic writes to avoid

serious performance degradation caused by logging and shad-

owing. The bitmap, which is widely used to implement NVM

atomic writes [19, 17, 21, 18, 20, 13], can be updated with a

single 8-byte failure-atomic write instruction, saving the data

consistency cost. In FTGraph, we also use the bitmap to ensure

crash consistency. Moreover, since the read/write latency of

NVM is relatively higher and slow persistent instructions in

a critical section may block the execution of other threads,

special data structures are often required to support effective

synchronization. FPTree [20], LB+Tree [19], and RNTree [18]

use HTM (hardware transactional memory) for concurrent

48

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

control, which allows concurrent read operations to proceed at

the same time. More relaxed concurrency access mechanisms,

such as read-write lock [17], version lock [21], and lock-

free design [39], also allow more operations to be executed

concurrently. Distinct from existing methods, we integrate the

graph structure with NVM characteristics, utilizing a dual

bitmap and NVM atomic writes to achieve crash consistency

and optimistic version-based concurrency control.

VI. CONCLUSION

In this paper, we proposed FTGraph, a persistent memory

data structure for large-scale dynamic graph processing, which

highlights the update performance of dynamic graphs while

simultaneously supporting high-performance queries and ana-

lytics. In FTGraph, neighborhoods of each vertex are stored

in separate per-vertex degree-aware suffix bit trees, leveraging

the structure of power-law graphs to reduce the edge probe

distance and the number of NVM writes when updating an

edge. FTGraph integrates the design of consistency and con-

currency through the dual bitmap, avoiding redundant writes

and reducing the potential synchronization overhead in NVM.

Results show that FTGraph outperforms state-of-the-art graph

processing systems by up to 21.2× in graph updates and 85.4×
in graph analysis. The next steps of FTGraph include reducing

the DRAM/NVM space usage and exploring a hybrid DRAM-

NVM approach for both graph updates and graph analysis.

ACKNOWLEDGMENT

We are thankful to the anonymous reviewers for their

valuable feedback. This work is supported in part by the

National Science Foundation of China (62372450), the Na-

tional Key Research and Development Program of China

(2021ZD0110700), the National Science Foundation of China

(62172361), and the Major Projects of Zhejiang Province

(LD24F020012).

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and

S. Muthukrishnan, “One trillion edges: Graph processing

at Facebook-scale,” Proceedings of the VLDB Endow-
ment, vol. 8, no. 12, pp. 1804–1815, 2015.

[2] D. De Leo and P. Boncz, “Teseo and the analysis of

structural dynamic graphs,” Proceedings of the VLDB
Endowment, vol. 14, no. 6, pp. 1053–1066, 2021.

[3] D. Ediger, R. McColl, J. Riedy, and D. A. Bader,

“STINGER: High performance data structure for stream-

ing graphs,” in the IEEE Conference on High Perfor-
mance Extreme Computing. IEEE, 2012, pp. 1–5.

[4] W. Jaiyeoba and K. Skadron, “GraphTinker: A high

performance data structure for dynamic graph process-

ing,” in the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2019, pp. 1030–1041.

[5] P. Kumar and H. H. Huang, “GraphOne: A data store for

real-time analytics on evolving graphs,” ACM Transac-
tions on Storage (TOS), vol. 15, no. 4, pp. 1–40, 2020.

[6] X. Zhu, G. Feng, M. Serafini, X. Ma, J. Yu, L. Xie,

A. Aboulnaga, and W. Chen, “LiveGraph: A transac-

tional graph storage system with purely sequential adja-

cency list scans,” Proceedings of the VLDB Endowment,
vol. 13, no. 7, pp. 1020–1034, 2020.

[7] P. Celis, P. A. Larson, and J. I. Munro, “Robin hood

hashing,” in the 26th Annual Symposium on Foundations
of Computer Science, 1985.

[8] P. Pandey, B. Wheatman, H. Xu, and A. Buluc, “Ter-

race: A hierarchical graph container for skewed dynamic

graphs,” in Proceedings of the 2021 International Con-
ference on Management of Data, 2021, pp. 1372–1385.

[9] (2019) Intel Optane DC persistent memory

architecture overview. [Online]. Available: https:

//www.intel.com/content/www/us/en/products/details/

memory-storage/optane-dc-persistent-memory.html.

[10] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and

S. Swanson, “An empirical guide to the behavior and

use of scalable persistent memory,” in Proceedings of the
USENIX Conference on File and Storage Technologies,

2020, pp. 169–182.

[11] K. Huang, Y. He, and T. Wang, “The past, present and

future of indexing on persistent memory,” Proceedings of
the VLDB Endowment, vol. 15, no. 12, pp. 3774–3777,

2022.

[12] M. A. Bender and H. Hu, “An adaptive packed-memory

array,” ACM Transactions on Database Systems (TODS),
vol. 32, no. 4, pp. 26–es, 2007.

[13] S. Chen and Q. Jin, “Persistent B+-Trees in non-volatile

main memory,” Proceedings of the VLDB Endowment,
vol. 8, no. 7, pp. 786–797, 2015.

[14] (2012) Orkut dataset. [Online]. Available: https://snap.

stanford.edu/data/com-Orkut.html.

[15] (2010) Twitter dataset. [Online]. Available: https://github.

com/ANLAB-KAIST/traces/releases/tag/twitter rv.net.

[16] R. Wang, S. He, W. Zong, Y. Li, and Y. Xu, “XPGraph:

XPline-friendly persistent memory graph stores for large-

scale evolving graphs,” in the IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2022, pp.

1308–1325.

[17] Z. Li, B. Jiao, S. He, and W. Yu, “PHAST: Hierar-

chical concurrent log-free skip list for persistent mem-

ory,” Transactions on Parallel and Distributed Systems
(TPDS), vol. 33, no. 12, pp. 3929–3941, 2022.

[18] M. Liu, J. Xing, K. Chen, and Y. Wu, “Building scalable

NVM-based B+ tree with HTM,” in Proceedings of the
48th International Conference on Parallel Processing,

2019, pp. 1–10.

[19] J. Liu, S. Chen, and L. Wang, “LB+-trees: optimizing

persistent index performance on 3DXPoint memory,”

Proceedings of the VLDB Endowment, vol. 13, no. 7,

pp. 1078–1090, 2020.

[20] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and

W. Lehner, “FPTree: A hybrid SCM-DRAM persistent

and concurrent B-tree for storage class memory,” in Pro-
ceedings of the International Conference on Management

49

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

of Data, 2016, pp. 371–386.

[21] W.-H. Kim, R. M. Krishnan, X. Fu, S. Kashyap, and

C. Min, “PACTree: A high performance persistent range

index using PAC guidelines,” in Proceedings of the 28th
Symposium on Operating Systems Principles (SOSP),
2021, pp. 424–439.

[22] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A.

Ang, “Introducing the graph 500,” Cray Users Group
(CUG), vol. 19, pp. 45–74, 2010.

[23] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph

processing framework for shared memory,” in Proceed-
ings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2013,

pp. 135–146.

[24] N. Sundaram, N. R. Satish, M. M. A. Patwary, S. R. Dul-

loor, S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat:

High performance graph analytics made productive,”

Proceedings of the VLDB Endowment, vol. 8, no. 11,

pp. 1214–1225, 2015.

[25] S. Lim, T. Coy, Z. Lu, B. Ren, and X. Zhang, “NV-

Graph: Enforcing crash consistency of evolving network

analytics in NVMM systems,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 31, no. 6,

pp. 1255–1269, 2020.

[26] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and

H. Chen, “PowerLyra: Differentiated graph computation

and partitioning on skewed graphs,” ACM Transactions
on Parallel Computing (TOPC), vol. 5, no. 3, pp. 1–39,

2019.

[27] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and

C. Guestrin, “PowerGraph: Distributed graph-parallel

computation on natural graphs,” in the 10th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2012, pp. 17–30.

[28] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,

and J. M. Hellerstein, “Distributed graphlab: A frame-

work for machine learning in the cloud,” arXiv preprint
arXiv:1204.6078, 2012.

[29] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi:

Large-scale graph computation on just a PC,” in the 10th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012, pp. 31–46.

[30] H. Liu and H. H. Huang, “Graphene: Fine-grained IO

management for graph computing.” in Proceedings of the
15th USENIX Conference on File and Storage Technolo-
gies (FAST), 2017, pp. 285–300.

[31] F. Busato, O. Green, N. Bombieri, and D. A. Bader, “Hor-

net: An efficient data structure for dynamic sparse graphs

and matrices on GPUs,” in the IEEE High Performance
extreme Computing Conference (HPEC), 2018, pp. 1–7.

[32] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and

M. Steinberger, “FaimGraph: high performance man-

agement of fully-dynamic graphs under tight memory

constraints on the GPU,” in Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2018, pp. 754–

766.

[33] D. Sengupta and S. L. Song, “Evograph: On-the-fly

efficient mining of evolving graphs on GPU,” in Inter-
national Conference on High Performance Computing
(ISC), 2017, pp. 97–119.

[34] M. Lux, S. M. zu Eissen, and M. Granitzer, “Graph

retrieval with the suffix tree model,” in the 3rd Inter-
national Workshop on Text-Based Information Retrieval
(TIR-06), 2006, p. 30.

[35] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and

D. Shasha, “Enhancing graph database indexing by suffix

tree structure,” Pattern Recognition in Bioinformatics, pp.

195–203, 2010.

[36] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and

P. Schwarz, “ARIES: A transaction recovery method

supporting fine-granularity locking and partial roll-

backs using write-ahead logging,” ACM Transactions on
Database Systems (TODS), vol. 17, no. 1, pp. 94–162,

1992.

[37] A. A. R. Islam and D. Dai, “DGAP: Efficient dynamic

graph analysis on persistent memory,” in Proceedings of
the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2023.

[38] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee, “Better I/O through byte-

addressable, persistent memory,” in Proceedings of the
ACM SIGOPS Symposium on Operating Systems Princi-
ples, 2009, pp. 133–146.

[39] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson,

“BzTree: A high-performance latch-free range index for

non-volatile memory,” Proceedings of the VLDB Endow-
ment, vol. 11, no. 5, pp. 553–565, 2018.

[40] Z. Liu and S. Chen, “Pea Hash: A performant extendible

adaptive hashing index,” Proceedings of the ACM on
Management of Data, vol. 1, no. 1, pp. 1–25, 2023.

50

Authorized licensed use limited to: Zhejiang University. Downloaded on December 27,2024 at 15:10:23 UTC from IEEE Xplore. Restrictions apply.

