26 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

A Comprehensive Survey of Dynamic Graph Neural
Networks: Models, Frameworks, Benchmarks,
Experiments and Challenges

ZhengZhao Feng ™, Rui Wang ¥, TianXing Wang

Abstract—Dynamic Graph Neural Networks (GNNs) combine
temporal information with GNNs to capture structural, temporal,
and contextual relationships in dynamic graphs simultaneously,
leading to enhanced performance in various applications. As the
demand for dynamic GNNs continues to grow, numerous models
and frameworks have emerged to cater to different application
needs. There is a pressing need for a comprehensive survey that
evaluates the performance, strengths, and limitations of various
approaches in this domain. This paper aims to fill this gap by offer-
ing a thorough comparative analysis and experimental evaluation
of dynamic GNN:s. It covers 91 dynamic GNN models with a novel
taxonomy, 17 dynamic GNN training frameworks, and commonly
used benchmarks. We also evaluate the experimental results of
ten representative dynamic GNN models and five frameworks on
six datasets. Evaluation metrics focus on convergence accuracy,
training efficiency, and GPU memory usage, enabling a thorough
performance comparison across various models and frameworks.
From the analysis and evaluation results, we identify key challenges
and offer principles for future research to enhance the design of
models and frameworks in the dynamic GNNs field.

Index Terms—Graph neural networks,
dynamic GNN models, training frameworks.

dynamic graphs,

I. INTRODUCTION

RAPHS are essential for representing, analyzing, and
predicting real-world phenomena [1], [2], [3], [4]. Graph

Received 16 August 2024; revised 17 March 2025; accepted 30 Septem-
ber 2025. Date of publication 14 October 2025; date of current version 25
November 2025. This work was supported in part by the Hangzhou Joint Fund
of the Zhejiang Provincial Natural Science Foundation of China under Grant
LHZSD24F020001, in part by the Zhejiang Province “Jianbing” Key R&D
Project of China under Grant 2025C01010, in part by the Zhejiang Province
High-Level Talents Special Support Program “Leading Talent of Technological
Innovation of Ten-Thousands Talents Program” under Grant 2022R52046, and in
part by the Fundamental Research Funds for the Central Universities under Grant
2021FZZX001-23 and Grant 226-2025-00067. Recommended for acceptance
by A. Bonifati. (Corresponding author: Rui Wang.)

ZhengZhao Feng, TianXing Wang, and Shuibing He are with the Zhe-
jiang University, Hangzhou 310027, China (e-mail: fengzhengzhao @zju.edu.cn;
tianxingwang @zju.edu.cn; heshuibing @zju.edu.cn).

Rui Wang and Sai Wu are with the Hangzhou High-Tech Zone (Binjiang)
Institute of Blockchain and Data Security, Zhejiang University, Hangzhou
310027, China (e-mail: rwang21 @zju.edu.cn; wusai@zju.edu.cn).

Mingli Song is with the Shanghai Institute for Advanced Study, Zhejiang
University, Hangzhou 310027, China (e-mail: brooksong @zju.edu.cn).

Our code is made publicly available at https://github.com/fengwudi/DGNN_
model_and_data. This repository contains a comprehensive collection of code
links for DGNN models and frameworks discussed in our survey paper, along
with commonly used graph datasets for evaluating these works. It also includes
the experimental scripts and instructions utilized in our evaluation process for
comparing representative dynamic GNN models and frameworks.

Digital Object Identifier 10.1109/TKDE.2025.3621291

, Mingli Song

, Sai Wu'”, and Shuibing He "™, Member, IEEE

neural networks (GNNs), such as GCN [5], GraphSAGE [6]
and GAT [7], combine traditional graph computation with deep
learning techniques, achieving success in tasks like link predic-
tion [8], node classification [9], and attribute prediction [10]. Re-
cently, dynamic graphs incorporating temporal information have
unveiled hidden insights. To improve the extraction of real-world
dynamic graph insights, dynamic GNNs (DGNNs), also known
as temporal GNNs (TGNNs), merge temporal information with
GNNss to capture structural, temporal, and contextual relation-
ships within dynamic graphs [11], such as EvolveGCN [12],
T-GCN [13], JODIE [14], and TGN [15]. These dynamic GNN
models outperform static GNN models in various tasks and hold
promise for applications in social network analysis [16], time
series prediction [14], and traffic flow forecasting [13].

DGNNSs have gained significant attention in the literature [17].
A plethora of DGNN models and frameworks have been created
to address various applications [18], [19], [20], [21], [22], [23],
enhance inference accuracy [12], [24], [25], [26], and improve
training efficiency [27], [28], [29], [30], [31]. While several
surveys on dynamic GNN models exist, they primarily focus
on algorithms that fit the encoder-decoder architecture [32].
For instance, [17] review representation learning techniques
for dynamic graphs, [33] explores the application of DGNN
models in dynamic graph analysis, and [34] proposes a three-
stage recursive temporal learning framework based on dynamic
graph evolution theory. Furthermore, [35] exclusively concen-
trates on spatio-temporal graphs, while [36] presents a unique
classification approach for DGNN models but with a limited
scope. Although these surveys offer valuable insights, they
are constrained to a narrow subset of the DGNN development
landscape, exhibiting certain limitations:

LI1: Outdated coverage of research. The surveys conducted
by [17], [33], [34] are somewhat outdated, as they do not
encompass the numerous new DGNN models that have emerged
since their publication. On the other hand, while [35] and [36]
offer more recent perspectives, the former focuses exclusively
on spatio-temporal graphs, and the latter examines only a limited
range of DGNN models.

L2: Absence of discussion on DGNN frameworks. Apart from
a brief mention in [36] regarding TGL, none of the surveyed
works discuss DGNN frameworks. Yet, these frameworks are
essential for integrating models, optimizing training, and im-
proving performance and scalability. They serve as a centralized
platform for crafting various DGNN architectures, integrating

1041-4347 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0002-0900-6786
https://orcid.org/0000-0001-8915-4169
https://orcid.org/0009-0009-4155-1638
https://orcid.org/0000-0003-2621-6048
https://orcid.org/0000-0002-1866-9197
https://orcid.org/0000-0002-7075-4153
mailto:fengzhengzhao@zju.edu.cn
mailto:tianxingwang@zju.edu.cn
mailto:heshuibing@zju.edu.cn
mailto:rwang21@zju.edu.cn
mailto:wusai@zju.edu.cn
mailto:brooksong@zju.edu.cn
https://github.com/fengwudi/DGNN_model_and_data
https://github.com/fengwudi/DGNN_model_and_data

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 27

efficient data processing, parallel computation, and tailored
optimization algorithms for dynamic graph data. Moreover,
DGNN frameworks facilitate advanced functionalities such as
distributed training, crucial for handling large-scale datasets and
real-world applications.

L3: Oversight of evaluation benchmarks. These surveyed
works lack a detailed overview of evaluation benchmarks. While
such benchmarks may be known to experienced researchers,
newcomers may benefit from a comprehensive explanation.
It is essential to introduce evaluation benchmarks thoroughly,
including definitions and usage methods, to assist readers in
understanding these criteria.

LA4: Lack of experimental comparisons. Existing surveyed
works serve as a foundational overview of DGNN models
but lack experimental comparisons among these models. Such
comparisons are vital for grasping performance discrepancies
across various models. Challenges arise in unequivocally rank-
ing DGNN models due to differences in datasets and evaluation
metrics. Some models excel on specific datasets but may falter on
others, lacking scalability. Moreover, variations in experimental
settings can yield different results. Therefore, a standardized
experimental setup with comprehensive and fair comparisons is
necessary to tackle these issues.

L5: Meeting emerging application demands and new chal-
lenges. As technology advances, DGNN models have the poten-
tial to revolutionize various emerging fields, albeit not yet fully
leveraged. Previous research has addressed existing challenges
to some extent; however, the emergence of new demands brings
new challenges to dynamic GNNs.

In response to the limitations mentioned above, we aim to
offer a comprehensive and up-to-date overview of dynamic
GNNs, encompassing recent research advancements. We intro-
duce new classification methods to adapt to the evolving land-
scape of dynamic GNN models and explore existing frameworks
and evaluation benchmarks. Additionally, we conduct thorough
experimental comparisons of prominent DGNN models and
frameworks, and examine emerging application demands and
challenges in the field of dynamic GNNs. Our main contributions
are outlined as follows:

Cl: Comprehensive survey and novel taxonomy of DGNN
models. Addressing the limitation mentioned in L1, we con-
ducted an extensive survey of 82 recent DGNN models and
introduced a novel classification approach (Section III). This
taxonomy provides unique insights and perspectives in the cur-
rent research field. By categorizing DGNN models according
to their structures, features, and dynamic modeling methods, we
facilitate a better understanding and comparison of the strengths
and weaknesses of each model.

C2: Overview of existing DGNN frameworks. In addressing
limitation L2, we provide a detailed overview of the current 13
DGNN frameworks, exploring their features and improvements
in model optimization (Section IV). Our focus on the flexibility,
scalability, and performance of these frameworks highlights
their fundamental attributes.

C3: Introduction of evaluation benchmarks for DGNN. For
L3, we present a diverse set of commonly used evaluation graph
datasets and metrics for the models discussed (Section V). This

TABLE I
LIST OF NOTATIONS

Notation Meaning

V, V] Edges sets of graphs, the number of edges

E, |E| Nodes sets of graphs, the number of nodes

X Feature embedding of graph
G=(V,E,X) Static graph structure
AeRIVIXIV] Adjacency matrix of graph G = (V, E, X)
Edgeinges € R2XIE Edge index matrix of graph G = (V, E, X))

Tn = [t1: tn] Timestamp divided into n time intervals

Gy = (Vi, By, Xt)
Gr = (Gty, Gty ., Gt,)
e=(i,7,t
GT = (Etl,EtQ,...,Etn)

Dynamic graph snapshot at time ¢
DTDG with a sequence of graph snapshots within 77,
Edge established at time ¢ from node 7 to node j
CTDG with a stream of events

S, |S] The set, the number of sets
TOPg Number of top k hits
Hy Information of time t
A Intensity function

N; The neighbor of node i
time_partition,(-) Divide the graph into snapshots at x time intervals

batch(-) Divide the graph into batch
encoder(-) The encoder function
rank; The average recommended ranking

extensive coverage aims to facilitate comprehensive evaluations
and enhance reproducibility in various experiments.

C4: Experimental comparison of selected works. To address
L4, we conduct a comprehensive experimental comparison
of various DGNN models and frameworks under consistent
experimental settings, datasets, and metrics (Section VI). We
evaluate the training accuracy, efficiency, and memory usage
of these models and frameworks. We also assess multi-GPU
scalability within the frameworks, examining their performance
and efficiency in handling increased computational loads.

C5: Analysis of challenges in DGNN. To address limitation
LS5, we analyze the new challenges encountered by DGNN
and suggest potential research directions for practitioners
(Section VII).

II. BACKGROUND

In this section, we first explore the different application
scenarios and learning tasks related to dynamic graphs. Then,
we discuss the learning techniques utilized for graph structures
and time series data. Finally, we will describe the workflow of
dynamic GNNs. The main notations of this paper can be found
in Table I.

A. Applications of Dynamic Graph Learning

1) Dynamic Graph Scenarios: Real-world graphs display
dynamic characteristics and are applied across diverse domains
due to their versatility, including:

Temporal Interaction Graphs in Social Networks: Temporal
interaction graphs capture the evolving relationships and inter-
actions between social network users over time [14], offering
insights into social dynamics and network evolution.

Real-Time Transaction Graphs in E-Commerce: Transaction
graphs model the flow of transactions between users and prod-
ucts in real-time [37], facilitating fraud detection, recommenda-
tion systems, and personalized marketing strategies.

Spatio-Temporal Graphs (STG): These graphs integrate spa-
tial and temporal dimensions, with nodes representing spatial
locations and edges denoting spatial relationships [38], [39].

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

28 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

Temporal time series learning

G. G,
{%‘ RNN/TCN. | Y

RNN/TCN...{ -+ O3

AR,

gl

___________ Snapshot-based graph representation

Graph structure learning

(a) Discrete-time dynamic graph

Fig. 1. A toy example of dynamic graph representation and learning.

They enable the analysis of movement patterns, traffic flow, and
environmental changes, aiding urban planning, transportation
management, and environmental monitoring. Temporal infor-
mation for nodes and edges can enhance the understanding of
time-dependent spatial relationships.

Temporal Knowledge Graphs (TKG): Knowledge graphs de-
pict structured information, with entities as nodes and relation-
ships as edges [40]. Adding a temporal dimension in the triplets,
TKGs allow to track the changes in entities and relationships
over time, essential for applications like online social networks
and trend analysis.

Temporal Citation Graphs (TCG): TCGs track the evolution
of citations and references in scholarly publications over time,
enabling analyses of research trends, influence dynamics, and
knowledge dissemination patterns within academic fields [41].

2) Learning Tasks in Dynamic Graphs: Dynamic graph
learning is instrumental in addressing a wide array of tasks
within the aforementioned application domains, including:

Link Prediction: Involves predicting the likelihood of con-
nections between two nodes in a network that do not yet have
edges based on existing network nodes and structure [42]. In
dynamic graph learning, link prediction focuses on forecasting
the probability of edges appearing at a specific time.

Node Classification: Entails assigning labels to nodes with
unknown labels in a graph by utilizing the connections between
nodes and a limited number of labeled nodes [12]. This task aims
to predict the labels of nodes at a given time.

Other Tasks: Other tasks include temporal node embedding
for capturing temporal dynamics and structural changes in the
graph, temporal graph embedding for learning graph representa-
tions at different time steps, and event prediction for forecasting
future incidents within dynamic graphs [33].

B. Representation of Dynamic Graphs

1) Graph Structure Representation: We now delve into the
evolution of graph structure representation, transitioning from
traditional static graphs to dynamic graphs that capture temporal
changes and evolving relationships over time.

Static Graph Representation: Static graphs are typically rep-
resented by nodes, edges, and features: G = (V, E, X), where
V is the node set, I is the edge set, and X represents the feature
embeddings of the graph. An adjacency matrix A € RIVI*IV1 s
commonly used to depict a static graph. In the matrix, a value
of 1 at A[é][j] indicates an edge from node 7 to node j. An edge

o Bt

|
| /"
RSN
||O--€.—.§-\-o|
Iy o Etile !
_- NO"xio, Etx

|

|

|

|

\ - |
\@ Temporal sample @ Temporal aggregate:
|

|

|

|

|

|

Etx
| ©) Temporal propagate

S

Event-stream graph representation
Continous graph learning

(b) Continous-time dynamic graph

index Edge;nges € R2*IEl is also utilized for graph data, with
each column representing an edge in the graph. For example,
nodes Edge;nde:[0][i] and Edge;nqe.[1][i] define the ith edge.

Dynamic Graph Representation: Dynamic graphs add a tem-
poral dimension to static graphs. At the time ¢, the graph is
represented as Gy = (V;, By, Xy), with V, E;, and X repre-
senting nodes, edges, and features at that time. Two common
approaches to dynamic graph representation are discrete-time
dynamic graphs (DTDG) and continuous-time dynamic graphs
(CTDG). The difference between DTDG and CTDG is illus-
trated in Fig. 1. In DTDG, the timestamp T,, = [¢; : ¢,,] is di-
vided into n time intervals, and the dynamic graph is represented
as a sequence of graph snapshots within 7;, denoted as G =
(G, Gty - . ., Gt,,). Each Gy, captures the graph structure up to
time ¢;. On the other hand, in CTDG, graph information is treated
as an event stream Gp = (e4,,€,, . . ., &,). An edge created at
time ¢ from node ¢ to node j is represented as &, = (i, j, t).
CTDG maintains a single graph structure at any given time ¢ by
incorporating all event stream data to form Gy.

2) Temporal Time Series Representation: In the context of
dynamic graphs, temporal time series data can be represented
using explicit or implicit time methods. These two approaches
provide different ways of capturing and modeling the temporal
dimension of dynamic graphs over time.

Explicit Time Representation: Explicit time involves incor-
porating time as a separate feature in the model for computa-
tion. This approach integrates time series data directly into the
model as an input feature, influencing the model’s calculations
and allowing it to leverage time information for tasks such as
prediction or learning.

Implicit Time Representation: Implicit time signifies that the
model understands the temporal progression within its structure
without explicitly treating time as an input feature. Instead of
requiring specific time values, the implicit models learn tem-
poral relationships through the sequential arrangement of data.
This enables the model to capture temporal evolution from the
temporal data without emphasizing timestamps or explicit time
features.

The difference between explicit events and implicit time is
depicted in Fig. 2. Explicit time focuses on the timestamps of
each edge in the graph, whereas implicit time looks at the se-
quential order of events. For example, implicit time only requires
recognizing that snapshot 1 precedes snapshot 2. Generally,
DTDG models often rely on implicit time, where time infor-
mation is indirectly learned through the evolution of snapshots

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 29

=] t=1 L=
: — =3
— (=3 ; —
t=2 t=2 P tEe =8

T<2 T<4 | T=I T<%>
snapshot 1 snapshot 2 | snapshot 1 < snapshot 2
(a)Explicit time (b)Implicit time

Fig. 2. The difference between explicit and implicit time.

over time. Conversely, CTDG models highlight explicit time by
directly encoding timestamps in the model to capture the exact
timing of interactions

C. Learning of Dynamic Graphs

1) Graph Structure Learning: Diverse methods have been
developed to handle various types of graph structures, ranging
from neural networks, attention mechanisms to random walks:

Graph Neural Networks (GNNs): GNNs are neural network
models tailored for processing graph data, allowing for the effec-
tive capture of intricate relationships within graph structures and
enabling node and graph learning and inference. A fundamental
aspect of GNN design is the utilization of message passing
mechanisms, which typically involves three key steps: message,
aggregate, and update. Specifically, each vertex first collects
feature embedding messages from its neighboring vertices then
aggregates the collected feature messages using an aggregation
function, and finally updates the vertex’s feature embedding
using neural network model.

Structural Attention (SA): Attention-based graph learning
utilizes attention mechanisms in GNNss to prioritize information
flow between nodes in a graph. This allows the model to focus
on key nodes or edges dynamically, adjusting their importance
during message passing and feature aggregation.

Random Walk: Random walk-based graph learning employs
random walk algorithms on graphs to capture structural relation-
ships between nodes. In this method, walkers move between
nodes based on predefined rules (e.g., edge probabilities) to
explore the graph. By performing several random walks and
examining the sequences of nodes visited, we can create node
embeddings that capture the local graph structure and connec-
tivity patterns.

2) Temporal Time Series Learning: Next, we introduce the
learning method for temporal time series information:

Recurrent Neural Networks (RNN): RNN is a classic neural
network architecture for processing sequential data like time
series and texts. It excels at capturing sequence context and
adapting to different sequence lengths. Advanced RNN varia-
tions like long short-term memory (LSTM) [43] and gated recur-
rent unit (GRU) [44] address challenges like gradient vanishing
and exploding. In addition, special RNNs such as Echo state
network (ESN) [45] are also well suited for machine learning
tasks involving time series data in certain scenarios.

Temporal Point Process (TPP): TPP is a statistical model
used to analyze event patterns over time, focusing on event
occurrence moments rather than event count or intensity [46].
The conditional intensity function A(t) describes the intensity

of future events based on historical event information H; before
time ¢.

Temporal Convolutional Network (TCN): TCN [47] is a
deep learning model for time series data modeling. Unlike
RNNs, TCN employs a convolutional neural network structure to
capture dependencies in time series, effectively capturing local
dependencies within sequential data.

Temporal Attention (TA): Temporal attention is utilized for
processing temporal data, enabling the DGNN models to assign
varying importance to information at different time steps when
handling sequential data.

Time Encoding: Time encoding involves representing tem-
poral information as features for model training. One common
approach is using parameterized Fourier features [48].

D. Dynamic Graph Neural Networks

1) DGNN Models on DTDG and CTDG: In Section II-B,
we explored how dynamic graphs are represented using DTDG
or CTDG, leading to distinct DGNN models. The training dif-
ferences for DGNN models in DTDG and CTDG are depicted
in Fig. 1. While DTDG and CTDG vary in terms of snapshots
and event streams, the key contrast lies in the granularity of
time representation and learning: coarse-grained time in DTDG
and fine-grained time in CTDG. In DTDG, a fixed time interval
like a month or a year is often selected to partition the graph into
multiple snapshots when edges are added over time. Conversely,
CTDG spans an infinite time range, capturing all event streams in
asingle snapshot graph with precise time ordering and sequential
event processing.

2) Generous Definition of DGNN: For a time-varying graph
structure G4, the first step is to partition it into 1 snapshots using
(1), where time_partition,(-) denotes the division of the graph
by a time interval x € (0, +00).

snapshotsy, n, = time_partition,(G;) (1)

Given the possibility of a snapshot being too large, it may be
necessary to further divide each snapshot into ng batches:

batchesi ., = batch(snapshot;), where i =1,...,n4
(2)
Finally, a unified encoder function encoder(-) is used to
process both structural and temporal information, generating the
final output graph data G:

G, = (Vi, By, X;) = encoder(batches;), where i =1,..,n9
3)

III. TAXONOMY OF DYNAMIC GNN MODELS

This section offers a detailed overview of the most recent
DGNN models, covering 53 DTDG models and 38 CTDG
models. We introduce a new classification method that catego-
rizes these dynamic GNN models according to their structural
features, use of methods, and dynamic modeling techniques.

A. Discrete-Time Dynamic Graph Models

DTDG models are specifically designed for analyzing
discrete-time dynamic graphs. These models can be classified

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

30 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

RISDI78] ; 9]| [MegaCRN[55] | [EvolveGCN[12 (—|DEFT[89]
- [TFE-GNN[22] [EvoNet([49]]| [MegaCRN55] | | EvolveGCN[12] :lDySAT[SI]
STWavel79] [TNAL27]]| wp-Genp241 [ssannso)| [LrGengs3j| [Reersiy] EAGLED2]
TodyNe(66] [ENerse]| STGCN[18]

RT-GCN[21] et GN — [HTGNRs)| NetWalk 20]]
DynGEM[83]
WinGNN[77] RETIA[50] Y |
STADGNN[84]
VEDGNN(S) [srmisn)
SGNN-GR{71] DyGNNExplainer[95]
SpikeNet[31] Comprenhensive-Specific < @
MDGNN[70] T-SIRGN[S5]
PI-GNNJ[26
oo , [DREAMD1]
SIGNN[64]) i
i Structural-Specific
olang TEDIC[93]
SILD[75] [HDGNN[68]| [E-LST™M-D[62]] [DyHATR[69]]
Fig. 3. The taxonomy for DTDG models in our survey.

into four groups based on their methods for handling graph
structure and temporal data, as outlined in Fig. 3. Typical GNN
and RNN models utilize GNNs for processing graph structure
data and RNNs for temporal time series data. Other DTDG
models fall into the categories of structural-specific, temporal-
specific, and comprehensive-specific models, depending on
their reliance on non-GNN methods for graph structure process-
ing, non-RNN methods for temporal data processing, or neither
GNN nor RNN, respectively.

1) Typical GNN and RNN Models: The conventional ap-
proach of utilizing GNN for processing graph structures and
RNN for handling temporal information is considered the most
intuitive and prevalent method in DGNN modeling.

Enhancing Accuracy. WD-GCN [24] was one of the pio-
neering algorithms that merged GNN and RNN for dynamic
graph processing, combining GCN and LSTM models. After
that, several typical GNN and RNN models have been de-
veloped to enhance accuracy compared to previous methods.
EvolveGCN [12] addresses the challenge of frequent changes
in the node set by introducing a technique to adapt graph con-
volutional network (GCN) models over time, without relying
on node embeddings. This method captures the dynamics of
graph sequences by evolving the GCN parameters using RNNSs,
with variations in architecture like LSTM [43] and GRU [44].
TeMP [25] incorporates temporal message passing for improved
predictions, blending the structural aspects of Relational GCN
and GRU. EvoNet [49] integrates graph-level propagation with
GNN and RNN components to comprehensively capture tempo-
ral graph information. RETIA [50] considers adjacent relation-
ships in addition to aggregating neighboring entities, leading to
a more holistic learning approach. Incorporating GNN, GRU,
and novel units RCU and PCU, RPC [51] explores relational
correlations and periodic patterns, enhancing the model’s ex-
pressiveness.

Improving Training Efficiency and Scalability. TNA [27]
enhances training stability beyond traditional GCN and GRU
structures. HTGN [28] maps the temporal graph onto hyper-
bolic space and introduces specific modules to constrain the
model, ensuring stability and generalization of embeddings.
SEIGN [29] utilizes a three-part structure involving GCN-like
message passing, GRU parameter adjustments over time, and
a self-attention mechanism inspired by transformers [52] for

learning the final representation. SSGNN [30] utilizes echo state
networks (ESN) [45] to enhance scalability for large networks.
This strategy enhances scalability and efficiency, enabling ef-
fective training on large-scale graphs.

Specialized Applications. Several typical models are tailored
for specific applications or domains. T-GCN [13] is a traffic
prediction method based on neural network. The model uses
GCN to learn complex topology, GRU is used to learn the
dynamic changes of traffic data to capture time dependence,
which can capture both spatial and temporal dependence, and ob-
tain spatio-temporal correlation from traffic data. LRGCN [53]
incorporates LSTM based on Relational R-GCN [54] for path
fault prediction. MegaCRN [55] introduces the GCRN unit
for processing spatio-temporal graphs, utilizing a hybrid ar-
chitecture of GCN and GRU. TFE-GNN [22] processes graph
structure using multi-layer GNNs. HNC [56] manages satellite
communication status within a satellite network, aiding in the
development of a global satellite joint program. STRIPE [57] is
the first to incorporate memory networks for anomaly detection
in spatio-temporal graphs. STGNPP [58] combines GCN and
transformer for predicting traffic congestion time using neural
process priors (NPP).

2) Structural-Specific Models: This category of DTDGs uti-
lizes non-GNN methods for processing graph structural data and
still uses RNN for temporal time series data processing.

Enhancing Accuracy. Several structural-specific models focus
on enhancing accuracy. GCRN [59] combines GraphCNN [60]
to learn spatial structure, and RNN is used to find dynamic
patterns. By simultaneously utilizing graph spatial and dynamic
information about the data, the accuracy and learning speed can
be improved. VGRNN [61] builds upon GCRN by transitioning
to GRNN and introducing the dynamic graph auto-encoder
model. E-LSTM-D [62] is the first to utilize LSTM and an
encoder-decoder architecture for link prediction in dynamic
networks. TTGCN [63] introduces a dynamic graph represen-
tation learning method based on k-truss decomposition, effec-
tively capturing multi-scale topological structure information
in graphs. SiGNN [64] integrates the temporal dynamics of
SNN [65] with the graph processing power of GNN through a
novel temporal activation mechanism. TodyNet [66] introduces
a hierarchical temporal pooling to surpass the limitations of flat
pooling and improve performance.

Improving Training Efficiency. DRAIN [67] has constructed
a recurrent graph generation scenario to represent a dynamic
GNN that learns across different time points. It captures the
time drift of model parameters and data distributions, and can
predict future models in the absence of future data.

Specialized Applications. Some structural-specific models are
specifically designed to effectively handle the heterogeneous
graphs. HDGNN [68] employs multi-head attention and random
walk techniques for processing structural information, whereas
DyHATR [69] integrates a hierarchical attention mechanism to
learn heterogeneous information. MDGNN [70] comprehen-
sively models the complex relationships between stocks and
their temporal dynamics, leveraging the Transformer archi-
tecture to effectively encode the evolution of these multiplex
interactions.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 31

3) Temporal-Specific Models: This category of DTDG mod-
els employs GNN for processing graph structural data and
non-RNN methods for temporal time series data processing.

Enhancing Accuracy. SGNN-GR [71] utilizes GAN [72] to
generate synthetic time information, addressing catastrophic
forgetting issues without additional data storage. Paired with
GraphSAGE [6], it establishes a framework for DGNN. PI-
GNN [26] employs parameter isolation for dynamic graphs to
capture emerging patterns without compromising older ones.
STGNP [73] introduces the spatio-temporal graph neural pro-
cess, incorporating neural processes [74] for modeling spatio-
temporal graphs. SILD [75] first explores distribution shifts in
the spectral domain of dynamic graphs.

Improving Training Efficiency and Scalability. ROLAND [76]
introduces embedding update modules to handle adjacent time
snapshots, enabling the extension of static graphs to dynamic
graphs. WinGNN [77] replaces time encoders with random
sliding windows and adaptive gradients, effectively reducing
the number of parameters. SpikeNet [31] replaces RNN with
spiking neural networks (SNN) [65], reducing model and
computational complexity through the leaky integrate-and-fire
(LIF) model of SNN.

Specialized Applications. RT-GCN [21] predicts stocks using
relationship and time convolution, employing GCN for rela-
tionship convolution and TCN for time convolution. RISD [78]
is designed for heterogeneous graphs, utilizing heterogeneous
GCN to learn graph representations and construct sampling
graphs. STWave [79] is a framework for traffic prediction,
incorporating GAT for spatial dimensions and a transformer for
temporal dimensions to identify spatio-temporal correlations.
VI-DGNN [80] presents a model tailored for trajectory predic-
tion tasks in the intelligent transportation domain.

4) Comprehensive-Specific Models: The final category in-
cludes models that neither use GNN nor RNN for dynamic graph
information processing.

Enhancing Accuracy. DySAT [81] computes node represen-
tations using joint self-attention across both structural neigh-
borhoods and temporal dynamics. Compared to state-of-the-
art recurrent methods for modeling graph evolution, dynamic
self-attention is not only efficient but also consistently achieves
superior performance. Dyngraph2vec [82] is an early Dynamic
GNN model capable of capturing temporal dynamics. Dyn-
GEM [83] initializes snapshot embeddings from previous time
steps before gradient training, avoiding learning from scratch.
STADGNN [84] employs a spatiotemporal attention mechanism
to dynamically capture local correlation shifts across sequences
and temporal dependencies within sequences, eliminating the
need for predefined priors.

Improving Scalability. T-SIRGN [85], inspired by SIR-
GN [86], extends the capabilities of existing approaches to
handle efficiency and scalability issues in dynamic graphs.

Path-based Methods. The idea of DynamicTriad [87] is to
impose triad [88] to model the dynamic changes of the network
structure. Through this triadic closure process, DynamicTriad is
able to capture the dynamic changes of the network and learn
the representation vector of each vertex at different time steps.
Netwalk [20] employs a deep auto-encoder model to reconstruct

node representations and effectively group embeddings along
intricate walking paths within the graph.

Capturing Global Information. DEFT [89] employs learn-
ing spectral wavelets [90] to capture global features, ef-
fectively learning dynamic evolution graph representations.
DREAM [91] captures long-term evolution through a tempo-
ral self-attention network. EAGLE [92] utilizes the modeling-
inferring-discriminating-generalizing paradigm to enhance ex-
trapolation capabilities in the future.

Specialized Applications. STGCN [18] proposes a new deep
learning framework to solve the problem of time series pre-
diction in the transportation field. Instead of applying regular
convolutions and recurrent units, it formulates the problem on
the graph and builds a model with a full convolutional structure,
making training faster and with fewer parameters. TEDIC [93]
models information flow using enhanced graph convolution
and extracts fine-grained patterns over time for dynamic social
interaction pattern extraction. DEGC [19] addresses recom-
mendation system challenges with an isolation-based approach
to handle obsolescence. FiFrauD [94] is an unsupervised and
scalable method for detecting suspicious traders and behav-
ioral patterns efficiently. DyGNNExplainer [95] introduces a
causality-inspired generative model based on structural causal
models to explore the philosophy of DyGNN prediction by
identifying trivial, static, and dynamic causal relationships.

5) Discussion: From Fig. 3 it is evident that the most
common approach in DTDG models is the combined use
of GNNs and RNNs to encode both structural and temporal
information. Additionally, utilizing either GNN or RNN in
conjunction with other specialized modeling techniques, such
as temporal-specific and structural-specific methods, is another
viable option. Finally, there are several models that do not
utilize GNNs or RNNs but instead employ alternative modules
like Self-Attention (SA) and Temporal Attention (TA) to encode
structure and time.

While leveraging established methods to inform DTDG mod-
els remains prevalent, there are both advantages and disadvan-
tages to this approach. In many cases, conventional GNN and
RNN architectures prove effective in solving tasks and achieving
high performance. However, the combination of GNN and RNN
can result in complex models and lengthy training times, which
may not be ideal for specific tasks or data characteristics. Some
datasets may require more adaptable or customized architectures
to effectively capture their unique attributes. For instance, in
scenarios involving relational or heterogeneous graphs, standard
GNNs may not suffice, necessitating novel graph structure learn-
ing approaches. RNNs can encounter issues like gradient van-
ishing or exploding gradients when processing long sequences,
while also demanding significant computational resources. As
an alternative, replacing RNNs with attention mechanisms rep-
resents a promising direction to address these challenges.

B. Continuous-Time Dynamic Graph Models

In the realm of CTDG models, we categorize them into
instant node update model, neighbor aggregation-update model,

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

32 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

‘ Interaction node O Neighbor node
— Update embedding --» Propagate embedding

e T

(a) Instant node update model (b) Neighbor aggregation-update model

e

(c) Update-propagation neighbor model (d) Aggregation-update-propagation model

Fig. 4. Node update methods based on event streams.
TDGNN[96]
DHGAS[102] yitond | JODIE[14]
SimpleDyG[100] node

SUPA[126]

DyGFormer[101]
GraphNOTEARS|[99]
Ada-DyGNN[103]

Temporal-aware: update

weighting

AER-AD[98] DyGNN[125]
DUFLIT) Ve TP-GNN[128]
R Neighbor

HierTCN[105 ! 0 -

D ‘;(r}ESN[[lOG]] aggregation GDCF[127]

5 update APAN[124]

TGAT[42]
TGRank[110]

Aggregation
update
propagation

CDGP[129]
MemMap[130]

FreeDyG[111] Time £
DGCF[108] = cavn2
Fig. 5. The taxonomy for CTDG models in our survey.

update-propagation neighbor model, and aggregation-update-
propagation model according to their methods for updating
nodes using event streams. The distinctions between these four
node update methods are depicted in Fig. 4. The taxonomy of
CTDG models in our survey is shown in Fig. 5.

1) Instant Node Update Models: These models update the
node embedding based solely on the current event and directly
involved nodes, without considering the influence of neighbors,
as depicted in Fig. 4(a). JODIE [14] is a coupled RNN model
that uses two RNNs to update the embeddings of users and
items for each interaction. Moreover, it introduces a new pro-
jection operator to model the future embedding trajectories of
users/items. Know-E [40] is pioneering in employing TPP for
CTDG and is capable of predicting potential event occurrence
times. It updates node embeddings based on incoming events
and recent relationships and time series.

2) Neighbor Aggregation-Update Models: These models
leverage a combination of event data, historical node infor-
mation, and neighbor information to update node embeddings,
as shown in Fig. 4(b). This approach is frequently employed
in CTDG models and represents a conventional method for
dynamic graph embedding. Within this category, classification
can be further refined based on the methods used to integrate
time information for graph updates:

Temporal-Aware Weighting Models. TDGNN [96] introduces
a dynamic network representation learning framework that ef-
fectively captures node representations by incorporating node
characteristics and edge time information using the TDAgg
aggregation function. DGEL [97] outlines three key processes

(inherent interaction potential, time attenuation neighbor en-
hancement, and symbiotic local learning) to comprehensively
update dynamic node embeddings with rich graph information.
AER-AD [98] focuses on inductive anomaly detection in at-
tribute and non-attribute dynamic graphs, utilizing anonymous
edge representation for detecting anomalies in dynamic bipartite
graphsin aninductive setting. GraphNOTEARS [99] first studies
the learning problem of directed acyclic graphs and develop
a score-based learning method. SimpleDyG [100] proposes
a novel strategy that maps dynamic graphs to sequences to
enhance scalability. DyGFormer [101] presents a transformer-
based dynamic graph learning architecture that effectively cap-
tures node correlations and long-term temporal dependencies.
DHGAS [102] introduces the first dynamic heterogeneous graph
neural architecture search method, featuring a unified dynamic
heterogeneous graph attention (DHGA) framework that allows
each node to focus on its heterogeneity and dynamic neigh-
bors simultaneously. Ada-DyGNN [103] introduces a robust
knowledge adaptation framework for dynamic GNNS using
reinforcement learning, enabling it to adaptively select which
nodes to update.

Sequential RNN Models. RE-Net [104] models time, rela-
tionships, and interactions between nodes by utilizing RNN to
capture the dynamics of time and relationships. Its neighborhood
aggregation module combines information from neighboring
nodes to handle multiple concurrent interactions at the same
timestamp. HierTCN [105] employs RNN at the high-level to
learn long-term interests, while TCN [47] is used at the low-level
to predict the next interaction based on long-term interests and
short-term interactions. DynGESN [106] introduces echo state
networks (ESN) [45] for dynamic graph modeling. DyHGTCR-
Cas [107] proposes a unified dynamic heterogeneous graph
for information cascade prediction aimed at extracting uniform
spatio-temporal features.

Time Encoding Models. Models in this category incorporate
time information as part of the embedding to influence the
calculation process. TGAT [42] is a standard temporal neighbor
sampling method, which jointly encodes the hidden layer em-
beddings of neighbors and the time difference information, and
similarly passes the information of nodes and neighbors through
the transformer to obtain the final embedding for downstream
tasks. DGCF [108] effectively models dynamic user-project
relationships, capturing both collaborative and sequential con-
nections. OTGNet [109] extends TGAT’s application to open
graphs, enabling the handling of open-time dynamic graphs.
TGRank [110] boosts the model’s link prediction expressive-
ness, allowing for the prediction of crucial structural informa-
tion. FreeDyG [111] introduces a node interaction frequency
encoding module that explicitly captures common neighbor pro-
portions and node pair interaction frequencies to address the shift
phenomenon. DCSTN [112] employs a cross-attention-based
fusion mechanism, leveraging dynamic causal relationships to
guide integration across time.

Memory Models. A part of CTDG models employs a mem-
ory mechanism to retain historical information for facilitating
embedded updates. TGN [15] leverages memory to store his-
torical node data, enabling updates upon the arrival of event

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 33

streams. When the forward propagation is coming, the historical
messages will be transformed into historical embeddings to
participate in the operation. NAT [113] introduces a unique
dictionary-based neighborhood representation and N-cache data
structure to enable parallel access and updates of these dictio-
nary representations on GPUs. TIGER [114] introduces a dual
memory module to address the limitations of TGN. PRES [115]
utilizes gaussian mixture models for correction and predicts
new memory based on historical time series gradients. While
this memory mechanism based CTDG approach inevitably leads
to obsolescence issues, recent work [116] has computationally
limited the information loss per training batch to maintain model
effectiveness.

TPP Models. TPP is a valuable tool for modeling temporal dy-
namics, as discussed in Section II-C. Several works [117], [118],
[119],[120], [121] utilize TPP in their frameworks. DyRep [117]
views representation learning as a process that Bridges topology
evolution and inter-node activity. It captures the interlacing
dynamics of these two processes through a two-time scale deep
time point process model, and uses a temporal attention mecha-
nism to encode the structural information of time evolution into
the node representation, thereby driving the nonlinear evolution
of graph dynamics. M>DNE [118] introduces macro constraints
to scale the network through equations, complemented by micro-
level time attention aggregation. GHN [119] utilizes the Hawkes
process to capture entity interaction time dynamics in TKGs and
introduces a novel time knowledge graph connection prediction
ranking metric. LDG [120] enhances previous approaches by
addressing issues related to long-term edge information quality.
DynShare [121] designs an interval-aware personalized projec-
tion operator using TPP to enable diverse user mode selections
within the same time interval. While these algorithms all lever-
age TPP, variations exist in their implementations. For instance,
DyREP, GHN, LDG, and DynShare directly incorporate TPP
in the entire forward propagation calculation, whereas M>DNE
use TPP for objective function computations.

Random-Walk-Based Models. Random walk has proven to
be effective in graph learning, as discussed in Section II-C.
CAW [122] is a technique for representing network dynamics,
which automatically extracts temporal motifs through a temporal
random walk, avoiding the complex selection and counting pro-
cess in traditional methods. It employs an anonymization strat-
egy that replaces node identities with hit counts to maintain in-
ductive bias and establish inter-topic correlation. CTDNE [123]
is a pioneering algorithm in dynamic graph embedding that
incorporates time embeddings into network embeddings. This
model introduces a comprehensive framework that integrates
time dependencies into node embeddings and employs a depth
map model through random walks.

3) Update-Propagation Neighbor Models: These models
only utilize event and historical node information to update,
embed, and propagate data to neighbors, as depicted in Fig. 4(c).
APAN [124] designs a special mailbox module to store the
information of historical neighbors, and adopts the attention
mechanism of Transformer [52] to aggregate the information
of neighbors. After that, the batch of interactive information
is transmitted to the neighbor’s mailbox in an asynchronous

way to update the mailbox. DyGNN [125] can model dy-
namic information as the evolution of a graph. It continuously
updates node information by coherently capturing the order
information of edges (interactions), the time interval between
edges and information propagation. SUPA [126] generates
a sample graph for the event-involved nodes, updates them
with event flow data, and propagates the updated information
throughout the sample graph. GDCF [127] focuses on crowd
flow modeling and employs a memory module to enhance
update speed. TP-GNN [128] captures long-term dependencies
through an innovative messaging approach that is based on the
information flow between nodes.

4) Aggregation-Update-Propagation Models: Models in
this category rely on historical neighbor information for embed-
ding updates, followed by propagating the updated information
to neighbors. CDGP [129] and MemMap [130] are examples of
models in this category. CDGP focuses on popularity prediction
in community dynamic graphs by identifying the community
for the event, aggregating nodes within the community, and
extending the community’s influence to other nodes. MemMap
introduces a memory structure called Memory Map to capture
node correlations within a grid and aggregates and propagates
information based on these correlations. This model type is
less common because, typically, aggregating or propagating
information from neighbors alone is adequate for learning or
acquiring information. Models in this category perform both
aggregation and propagation, which can lead to redundant com-
putation. The mentioned methods utilize these processes for var-
ious functions in specific applications; for instance, CDGP [129]
uses aggregation to capture community intensity and propaga-
tion to represent social influence within the community.

5) Discussion: Fig. 5 illustrates that most CTDG models
belong to the neighbor aggregation-update category, which
captures how historical event neighbors influence new events
in a fresh event stream. However, there are situations where
neighbors have minimal impact on new events, making the in-
stant node update model more appropriate. Alternatively, when
considering the reciprocal influence between events and their
neighbors, the update-propagation neighbor model may be a
more effective solution. In cases where events and neighbors mu-
tually influence each other, the aggregation-update-propagation
model is recommended.

For researchers focusing on CTDG models, there is a clear
need to explore alternative methods beyond aggregating neigh-
bors, presenting an avenue for further investigation. Similarly,
for developers working on DGNNSs, constructing the overall
architecture based on neighbor aggregation and propagation
processes can be a fruitful approach. For instance, integrating a
memory component into the neighbor aggregation module and a
mailbox component into the neighbor propagation module could
enhance the model’s capacity to capture and propagate relevant
information effectively.

IV. DYNAMIC GNN TRAINING FRAMEWORKS

In this section, we offer a survey of the latest dynamic GNN
frameworks, encompassing 7 DTDG and 10 CTDG frameworks.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

34 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

We start by outlining the requirements for dynamic GNN frame-
works, then delve into the existing DTDG frameworks and
CTDG frameworks, respectively.

A. Needs for DGNN Frameworks.

Despite significant progress in dynamic GNNGs, their practical
use is limited by challenges in training scalability and compu-
tational efficiency. Current models excel in accuracy and appli-
cation diversity but struggle with scalability on large, evolving
graphs due to their complexity. This calls for frameworks that
optimize system execution, particularly in distributed training,
but several challenges arise. First, dynamic load balancing is
complex due to the interconnected nature of graph data, requir-
ing continuous rebalancing different batches of subgraphs across
trainers to avoid underutilization. Second, DGNN-specific tem-
poral modules, like memory states and mailboxes, increase
communication costs in distributed settings, adding to the al-
ready high overhead of static GNN training. Third, chrono-
logical dependencies in DGNNs limit parallelization, leading
to sequential processing of timesteps and underutilization of
hardware resources. Finally, the rise of heterogeneous systems
(e.g., CPUs, GPUs, FPGAs) adds complexity, as coordinating
workloads across diverse types of accelerators exacerbates load
imbalance, communication bottlenecks, and synchronization
challenges. Collectively, these challenges highlight the need
for system-level innovations that optimize distributed execution,
reduce communication, handle temporal constraints, and adapt
to hardware diversity to facilitate efficient DGNN training on
large dynamic graphs.

Recently, specialized GNN training frameworks like
PyG [147] and DGL [148] have been developed to simplify
programming and enhance training efficiency for various GNN
models. Many optimizations are proposed on top of fundamental
training modules. For instance, NeuGraph [149] and Roc [150]
optimize vertex access and load balancing through improved
graph partitioning. AliGraph [151] and DUCATI [152] reduce
data transmission by caching embeddings and intermediate
training results. P3 [153] and PipeGCN [154] employ accel-
erated parallel training. Optimizations are also made in hetero-
geneous systems. NeutronOrch [155] improves GNN training in
CPU-GPU environments through hierarchical task scheduling.
GraphACT [156] optimizes GCN training on a CPU-FPGA
platform by reducing data communication overhead. GALA-
GNN [157] uses a heuristic graph partitioning algorithm to
address missing neighborhoods in subgraphs, optimize task
allocation, and improve resource utilization on heterogeneous
platforms. However, these frameworks primarily cater to train-
ing static graphs and lack essential mechanisms for updating
graphs and modeling temporal information in dynamic GNNs.
Key modules like dynamic graph loading, temporal neighbor
sampling, and temporal message passing are missing. The tem-
poral dependency of dynamic graphs also complicates parallel
computing. Therefore, users must develop these modules them-
selves to construct dynamic GNN models and carefully handle
dynamic graphs to ensure the temporal consistency, resulting in
heavy development costs for users.

In the past two years, several dynamic GNN training frame-
works have emerged, aiming to better support dynamic GNN
training, including both discrete-time and continuous-time dy-
namic graph models. However, due to variations in training
processes between these model types, most frameworks are
tailored for either one. We conducted a study on the existing
17 dynamic GNN training frameworks and compiled a detailed
comparison of their universality, expandability, and supported
functionalities, as outlined in Table II.

B. Discrete-Time DGNN Frameworks

Discrete-time DGNNSs typically treat the dynamic graph as
a sequence of graph snapshots. PyGT [131], an extension of
PyG, introduces three snapshot-based dynamic graph types and
provides a unified data loader for each type of dynamic graph
to support training DTDG models. However, it is limited to
full-batch training on a single GPU for small-scale graphs.
ESDG [132] utilizes snapshot partitioning to distribute multiple
graph snapshots to different devices for parallel GNN training,
and after finishing the GNN computation, redistributes them to
colocate the same vertices from different snapshots on the same
device for parallel RNN computation. PiIPAD [133], based on the
similarity of the structures between adjacent graph snapshots,
reduces data transmission by transmitting the common parts of
a set of consecutive graph snapshots and the individual parts
of each graph snapshot, ensuring that these snapshots can be
computed in parallel on GPU. DynaGraph [134] proposes a
time fusion mechanism to concatenate node features of mul-
tiple snapshots in a single graph convolution operation to fully
utilize the GPU resource. BLAD [135] explores fine-grained
operator-level parallelism to fully leverage GPU resources by
simultaneously executing memory-intensive graph operators
and compute-intensive neural network operators on a single
GPU. DGC [136], unlike other frameworks, divides dynamic
graphs into chunks for distributed training. It employs a chunk
generation algorithm based on graph coarsening, considering
spatio-temporal non-uniformity to balance training workload
and reduce communication costs, improving DGNN training
efficiency. STGraph [137] seamlessly integrates with dynamic
graph data structures for enhanced DTDG processing. By con-
structing snapshots on demand during training, it reduces mem-
ory overhead while maintaining efficiency.

C. Continuous-Time DGNN Frameworks

Traditional static graph storage formats like compressed
sparse row (CSR) struggle with efficient handling of edge and
vertex insertions and deletions in dynamic graphs. Dynamic
graph storage also needs to handle temporal graph sampling
effectively, considering only edges up to the current timestamp.
TGL [138] addresses these challenges by introducing a
framework with components such as temporal sampler, temporal
message mailbox, vertex history memory, memory updater,
and message passing engine. It utilizes the T-CSR format for
dynamic graph storage, along with parallel samplers and random
block scheduling techniques to enhance training efficiency.
GNNFlow [144] introduces a time-indexed block-based data

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 35

TABLE II
THE COMPARISON BETWEEN THE EXISTING DYNAMIC GNN TRAINING FRAMEWORKS. “SMSG” MEANS “SINGLE-MACHINE SINGLE-GPU”, “SMMG” MEANS
“SINGLE-MACHINE MULTI-GPUS”, “MMMG” MEANS “MULTI-MACHINES MULTI-GPUS”

Features Universality Hardware Support Supported functionalities
m DTDG | CIDG | SMSG | SMMG | MMMG neig-l;uebngf?;g]mge exlraclif)f)al(::zmizing par;e]:;l)l:;?tling Open-sources
PyGT [131] v X v X X Store snapshots X X v
ESDG [132] v X v v 4 Store snapshots X Snapshot parallelism X
PiPAD [133] v X v v X Store snapshots Extract common snapshots Snapshot parallelism X
DynaGraph [134] v X v v 4 Store snapshots X Snapshot partition parallel X
BLAD [135] v X v v 4 Store snapshots X Operator parallelism X
DGC [136] 4 X v 4 4 Store chunks Vertex embeddings cache Subgraphs partition parallel X
STGraph [137] v X v X X Store snapshots State stack X 4
TGL [138] v 4 v v X Store sorted neighbors X Small-batch parallelism v
DistTGL [139] v v v v v Store sorted neighbors X Memory parallelism 4
DisTGL [140] v 4 v v v Store event stream Static feature cache Two-stage parallel fetch X
TGLite [141] v v v X X Store sorted neighbors | Deduplication optimization Temporal neighbor sampling v
SPEED [142] X v v v X Store event stream X Subgraph partition parallel v
NeutronStream [143] X 4 v X X Store event stream X Event group parallelism v
DyGLib [101] X v v X X Store event stream X X v
GNNFlow [144] X v v v v Store event stream Vectorized cache X v
MSPipe [145] X v v v v Store event stream X Staleness-aware pipeline 4
Sven [146] X 4 4 v v Store event stream X Hierarchical pipeline Parallelism X

structure for dynamic graph storage to facilitate edge sampling
and updates. It also implements caching mechanisms to optimize
CPU-GPU data transfer performance by caching frequently
used edge features. TGLite [141] proposes a lightweight pro-
gramming framework that integrates optimizations of TGL for
temporal graphs, and designs cache, preload, and TGOpt [158]
based Deduplication to accelerate training. Its greatest
contribution lies in providing user-friendly programming.
CTDG models view dynamic graphs as sequences of events with
temporal dependencies, making parallelization challenging.
TGL uses mini-batch parallelism but overlooks dependencies
within individual mini-batches, potentially impacting training
accuracy. NeutronStream [143] employs an adaptive sliding
window training approach to capture temporal dependencies
and identify parallelizable event groups while maintaining
temporal order. DistTGL [139] extends TGL by introducing
distributed training methods, such as epoch parallelism and
memory parallelism, to enhance scalability across multiple
GPUs. DisTGL [140] utilizes a time-aware partitioning scheme
and a range of enhanced communication technologies to ensure
efficient distributed computing and minimize communication
overhead. SPEED [142] customizes partitioning strategies
for parallel training to ensure load balance and minimize
replication factors while preserving temporal information.
DyGLib [101] offers a library for dynamic graph learning,
featuring standardized training processes, scalable coding
interfaces, and thorough evaluation protocols. MSPipe [145]
is a versatile and efficient memory-based TGNN framework
that maximizes training throughput while maintaining model
accuracy. Sven [146] is a library of co-designed algorithms
designed to accelerate TGNN training on multi-GPU platforms.

V. DYNAMIC GNN BENCHMARKS
A. Datasets

Table III shows a summary of commonly used datasets in
dynamic GNN evaluation. It includes details on application

TABLE III
SUMMARY OF COMMON GRAPH DATASETS, WHERE |V'| AND | E| STAND FOR
THE NUMBER OF NODES AND EDGES, Range(t) DENOTES THE TIMESTAMP
RANGE, AND Sizes SPECIFIES THE TOTAL FILE SIZES

Datasets V] [E] Range(t) Sizes
Reddit [159] 10984 672447 0~2678390 2.2GB
DGraphFin [160] 4889537 4300999 1~821 649MB
Enron [161] 184 125,235 0~113740399 35MB
Facebook [162] 63731 1269502 1157454929~1232576125 26MB
Social Evolution [163] 74 2,099,520 1188972131~1247740843 148MB
UCI [164] 899 33720 1084560796~1098772901 668KB
Wikipedia [159] 9227 157474 0~2678373 534MB
MOOC [159] 7144 411749 0~2572086 40MB
ML25M [165] 221588 25000095 789652009~1574327703 647TMB
LastEM [159] 1980 1293103 0~137107267 37MB
FB-FORUM [166] 899 33720 1084585996~1098798101 612KB
DBLP [167] 28,086 162,451 1~27 375MB
Yelp [168] 2138275 6990280 1108495402~1642592925 5.0GB
ICEWSO05-15 [169] 10,094 461,329 1104537600~1451520000 30MB
ICEWS14 [169] 6,869 96,730 1388534400~1419984000 6MB

ICEWS18 [170] 23,033 741820 1514764800~1546214400 184MB
GDELT [171] 16682 191290882 0~175283 82.3GB
Bitcoin-OTC [172] 5881 35592 1289241942~1453684324 988KB
Bitcoin-Alpha [172] 3782 24186 1289192400~1453684324 492KB
AS-733 [172] 7716 11965533 939340800~946771200 115MB
Flights [161] 13169 1927145 0~121 32MB

domains, node and edge counts and dimensions, timestamp
ranges, label information, and dataset sizes. The datasets se-
lected for evaluation are highlighted in bold (Section VI).

1) Social Networks: Reddit [14] consists of one month of
user posts on subreddits, with users and subreddits as nodes
and timestamped posting requests as links. DGraphFin [37]
is the real social network in the financial industry provided by
Finvolution Group, with nodes representing Finvolution users
and edges indicating emergency contacts. Enron [173] is a
mail dataset capturing interactions among Enron Inc. employees,
where communication links denote email exchanges among core
employees. Facebook [174] is a user interaction network where
nodes represent users and edges signify interactions between
users. Social Evolution [175] comes from MIT Human Dy-
namics Lab, focusing on social relationship evolution and the
degree of closeness between individuals. UCI [176] is an online
community of students from UC Irvine, with links representing
messages exchanged between users.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

36 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

2) Interaction Networks: Wikipedia [14] is a bipartite in-
teraction graph capturing user edits on Wikipedia pages over a
month, with nodes representing users and pages, and links rep-
resenting editing behaviors. MOOC [14] records student behav-
iors in Massive Open Online Courses (MOOC:s), such as watch-
ing videos and submitting answers. ML25 M [177] contains
user ratings of movies, reflecting their preferences and levels of
interest in various movies. LastFM [14] provides information
on user-listened songs over a month. FB-FORUM [178]is the
Facebook-like forum network from the same online community
as the social network dataset, focusing on user activities in the
forum. DBLP [179] captures an academic collaboration network
dataset with nodes representing authors and edges denoting
co-authored papers. Yelp [81] is a business review website where
users can review businesses and discover interested ones based
on others’ comments.

3) Event Networks: ICEWS [180] and GDELT [181] are
event networks where nodes represent actors and edges represent
point-time events derived from news and articles, such as yield,
threaten and make public statements, providing a dynamic view
of real-world interactions and occurrences.

4) Trade Networks: Bitcoin-OTC [182] and Bitcoin-
Alpha [183] are who-trust-whom networks of users trading on
the bitcoin-otc platform and bitcoin-alpha platform.

5) Traffic Networks: AS-733 [184] is a communication net-
work composed of routers used to exchange traffic with peers.
Flights [185] is a network where nodes represent airports and
edges represent flights between these airports.

B. Metrics

Here is an overview of common evaluation metrics to assess
the performance of various dynamic GNN models and frame-
works. Table IV shows the detailed calculation equations.

1) Binary Classification Performance: The confusion matrix
for binary classification tasks is shown in Table V, where rows
represent predicted classes and columns represent actual classes.
Precision measures the proportion of correctly predicted posi-
tive samples among all predicted positives. Accuracy indicates
the proportion of correctly predicted samples out of all samples.
Recall assesses the proportion of actual positive samples cor-
rectly predicted. F1 Score is the harmonic mean of precision and
recall, offering a balanced measure of classification performance
for both positive and negative cases. AUC (Area under the
curve) typically denotes the area under the ROC curve, a tool for
assessing binary classification models using True Positive Rate
(TPR) and False Positive Rate (FPR). AP (Average Precision) is
a common metric used to evaluate the performance of classifiers
or retrieval systems. AP is the area under the Precision-Recall
curve.

2) Multi Classification Performance: In multi-class classifi-
cation tasks, key performance metrics include: Micro-F1 Score
computes the F1 score considering total true positives, false
positives, and false negatives across all categories. Macro-
F1 Score computes the average of F1 scores for individual
categories. Micro-AUC is calculated by micro-averaging true
positive rates and false positive rates for all categories.

TABLE IV
COMMON EVALUATION METRICS IN DYNAMIC GNNs
Applications Metrics Equations
Precision %
TP+TN
Accuracy TPIFPLFNTTN
Recall %
Binary 2x Precisionx Recall
classification F1 score Precision t Recall
TPR = 755, FPR = 7555
TP+FN FP+TN
AUC N N
AUC is the area under the TPR-FPR curve
AP AP is the area under the Precision-Recall curve
. TP
(1) Precisionmicro = 725},#1:3
. TP
Micro-F1 (2)Recallmicro = %
2X Precisionmicre X Recallmicro
Multi Precisionmicro+Recallymicro
classification
: TP,
(1) Precisonmacro = 7 >y TP IFP
ACTO- TP
Macro-F1 (2) Recallmacro = % > TP RN,
2X Precisonmacro X Recallymacro
Precisonmacrot Recallmacro
Precision@K %
TPAQK
Recall@K 77“1)@,‘,“,,‘\,@,\,
1 IS
Recommendation MR IEl Zzzl rank;
system 1 15| 1
MRR T5T 2im1 Tank;
1 Sl T I (oL
HITS@K 51 S TP (rank; < k)
n —4:)2
RMSE =y (i/; Ji)
Regression
Model MAE i lvi— il
Performance s ‘”y =7
MAPE “:1%

TABLE V
CONFUSION MATRIX IN BINARY CLASSIFICATION TASKS

Prediction
Positive Negative
Actual True True Positive(TP) | False Negative(FN)
False | False Positive(FP) | True Negative(TN)

Macro-AUC is obtained by macro-averaging AUC values for
each category.

3) Recommendation System Performance: In recommenda-
tion system tasks, Precision @K measures the proportion of the
top K recommended items to the total number of recommended
items. Recall@K measures the proportion of the top k£ recom-
mended items to the total number of relevant items. MR (Mean
Rank) measures the average recommended ranking rank; of all
users S. MRR (Mean Reciprocal Rank) measures the average
reciprocal of the recommended ranking of all users. HITS@K
measures the accuracy of the top K recommendation results by
assessing how many of them align with users’ genuine interests.
Function IF(-) outputs 1 if the condition is true and 0 otherwise.

4) Regression Model Performance: In recommendation sys-
tems, RMSE (Root Mean Squared Error) quantifies the differ-
ence between predicted and actual values, while MAE (Mean
Absolute Error) calculates the average error between predicted
and actual values. MAPE (Mean Absolute Percentage Error)

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 37

measures the average percentage difference between predicted
and actual values.

5) Efficiency and Scalability: Throughput measures the
number of tasks processed within a specific time frame. In
deep learning, it typically refers to the number of samples that
the model can handle per unit of time, providing insights into
processing speed. Training time refers to the duration time
the model spends in the training phase. GPU memory usage
indicates the amount of memory occupied during training or
inference on a GPU. Efficient memory management is crucial for
optimizing model performance and scalability. Parameter size
quantifies the total number of learnable parameters in the model.
The parameter size directly impacts the model’s complexity,
storage requirements, and computational efficiency, influencing
scalability and performance.

VI. EXPERIMENTAL COMPARISON

We thoroughly evaluate various dynamic GNN models and
frameworks in terms of training accuracy, efficiency, and mem-
ory usage. We first compare several classic DTDG and CTDG
GNN models (Section VI-B), then compare models imple-
mented on optimized frameworks (Section VI-C), and analyze
multi-GPU scalability (Section VI-D). In addition, we explore
the impact of hyperparameter settings on performance and effi-
ciency(Section VI-E), and finally discuss the node classification
task(Section VI-F).

A. Experiment Setting

Test Setup: We perform our experiments on two Ubuntu
22.04.3 LTS machines, each featuring an Intel Xeon Gold 6342
CPU@2.80 GHz and four Nvidia A40 48 GB GPUs, equipped
with 1 TB of memory and 40 TB of disk space.

Hyperparameter setting: The default configuration for all
CTDG models includes one GNN layer and a batch size of 1000,
which is a commonly used setting in dynamic GNN. Addition-
ally, to ensure consistency, the models adhere to the same early
stopping condition (3 epochs) as AP. For DTDG models, uniform
snapshot intervals are maintained across datasets. The standard
train/validation/test dataset split of 70%/15%/15% is followed.
Remaining parameters are set to default values. These settings
are widely adopted and generally yield optimal performance. We
also evaluate performance on different hyperparameter settings
in Section VI-E.

Baseline Models and Frameworks: We compare seven CTDG
GNN models (JODIE, TGAT, TGN, APAN, CAW, DyREP,
DyGFormer) and three DTDG GNN models (EvolveGCN,
Roland, DySAT), along with five dynamic GNN frameworks
(TGL, DistTGL, SPEED, DyGLib, TGLite). For JODIE and
DyREP models, we use the implementation provided by
TGN. We utilize the most efficient version, TGN-attn, for the
TGN model. EvolveGCN has two versions EvolveGCN-H and
EvolveGCN-O, using GRU and LSTM as components of learn-
ing time, respectively.

Datasets and Metrics: We select six graph datasets for eval-
uation based on their common usage in existing works. The
datasets include Wikipedia, Reddit, MOOC, Flights, ML25 M,
and DGraphFin. Among these, Wikipedia, Reddit, and MOOC

—— JODIE TGN —— DyREP —— DyGFormer EvolveGCN-O
—— TGAT —— APAN —— CAW —— EvolveGCN-H —— DySAT
1.0 f/—— 1.0 1.0 1.0
% 0.8 ﬁ 0.8
. . 081
s 0.8 @AJ———
< 0.6 1— E-
> 061/ —_ 0.6 q
/ 06 ~~ 041/ R
0 20 40 0 10 20 0 10 0 5 10
Wikipedia Reddit MOOC Flights
Fig. 6. Val.ap after each training epoch.
o 20000
gzooo 10000 - 5000
= 10000
o 5000 A
c
£ 4 O_L ol&— N
©
= 0 50 0 20 0 10 0 10
Wikipedia Reddit MOOC Flights
Fig. 7. Total training time cost after each epoch.
A JODIE TGN v CAW | DyGFormer EvolveGCN-O vy DySAT
< TGAT x APAN + DyRep @ EvolveGCN-H @ Roland
1.0 — 1.0 : v 1.0 1.0 T
- ‘: Y * ¢ & x "l
SEEN 08 0.8 I 4 08
z s .
0.6 s 0.6 0.6{4 0.6
0 100 0 500 0 200 0 2000
Wikipedia Reddit MOOC Flights
Fig. 8. The AP(%) metric and average training time(s) per epoch.

are most frequently utilized, while Flights, DGraphFin, and
ML25 M are larger datasets chosen specifically to assess the
scalability of dynamic GNN models and frameworks. Addi-
tional details about the datasets can be found in Table III. For
Wikipedia, Reddit, ML25 M, and DGraphFin, we use the default
feature dimension. For MOOC and Flights, we initialize the
feature size to 172 dimensions. In the case of DTDG methods,
we employ different time intervals for each dataset: 100,000 for
Wikipedia, Reddit, and MOOC:; 7 for Flights; 50 for DGraphFin;
and 32,000,000 for ML25 M.

When evaluating training accuracy, we focus on four key
metrics (AUC, AP, Recall, and Accuracy) that are commonly
used by the selected models and frameworks. Additionally,
we analyze time cost and memory usage to evaluate training
efficiency and scalability, which are essential indicators of a
framework’s performance. Our main emphasis is on the link
prediction task, the most prevalent task for dynamic GNNs. We
also assess the node classification task in Section VIII.

B. Comparison of Dynamic GNN Models

We conducted an extensive comparison of ten dynamic GNN
models by training them to convergence, with the accuracy
results detailed in Table VI. Most models encountered out-of-
memory (OOM) issues on the large DGraphFin and ML25 M
datasets, except for APAN and CAW. Even APAN and CAW
exhibited significant slowness and failed to complete within
48 hours, so the results on these two datasets are excluded.
Furthermore, we illustrate the convergence curves of validated
AP, the time cost after each epoch, the relationship between the
average training time and AP, and the GPU memory usage in
Figs. 6, 7 8, and 9 respectively. Note that, Roland’s distinctive
training method allows it to converge after just one epoch, hence
its results are not included in Figs. 6 and 7.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

38 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

TABLE VI
CONVERGE ACCURACY (%) ON DYNAMIC GNN MODELS FOR LINK PREDICTION TASK

Type Model Wikipedia Reddit MOOC Flights
P AUC AP Recall | Accuracy | AUC AP Recall | Accuracy | AUC AP Recall | Accuracy | AUC AP Recall | Accuracy
JODIE 93.25 | 93.13 86.57 85.15 96.36 | 96.10 | 91.55 90.19 62.43 | 59.20 68.05 59.42 91.16 | 90.49 93.95 78.62
TGAT 82.02 | 83.39 78.38 73.51 95.85 | 96.10 | 91.51 88.77 56.37 | 57.20 84.19 54.60 70.08 | 68.00 65.89 63.73
TGN-aun | 97.81 | 97.88 | 90.76 | 9191 | 9861 | 9862 | 9450 | 9410 | 8288 | 80.78 | 67.15 | 7403 | 97.63 | 97.22 | 9833 | 89.27
CTDG APAN 96.50 | 95.73 95.79 90.94 99.69 | 99.65 98.86 97.77 99.35 | 98.83 | 98.96 98.59 89.95 | 89.04 94.11 78.18
CAW 98.19 | 98.54 91.51 94.30 98.35 | 98.59 92.10 93.93 7424 | 77.24 87.99 62.18 96.26 | 96.63 88.43 90.53
DyRep 91.71 92.14 81.95 82.93 96.67 | 96.54 89.34 90.67 69.97 | 65.05 43.25 60.07 92.14 | 91.09 98.42 70.94
DyGFormer 98.29 | 98.53 91.71 93.49 98.69 | 98.88 92.54 95.31 78.23 | 79.21 62.56 70.17 98.01 | 98.15 92.92 93.84
EvolveGCN-H | 56.96 | 5891 38.25 56.04 58.31 | 59.13 56.28 55.93 49.26 | 49.51 27.74 49.65 50.36 | 50.59 89.08 50.06
DIDG | EYOIveGCN-0 | 57.19 | 60.67 | 37.63 | 5588 | 5874 | 6099 | 8478 | 5278 | 5088 | 5215 | 1001 | 5104 | 5035 | 5047 | 6383 | 5016
Roland 85.84 | 87.48 74.73 81.45 93.29 | 95.11 78.94 84.54 94.09 | 95.71 79.81 75.82 85.12 | 85.99 36.40 51.68
DySAT 86.68 | 89.87 92.93 65.13 91.79 | 93.45 94.71 71.95 45.51 43.36 55.96 48.62 OOM
BN JODE [TGN DN DyREP W DyGFormer [EvolveGCN-O NN DySAT we use their implementations of JODIE, DyRep, TGAT, TGN,
I TGAT I APAN EE CAW [EvolveGCN-H I Roland . . .
a3 27 3 151 and CAW for comparison with the model. TGLite uses the
8 15 ‘ : : .
T already given JODIE, APAN, TGAT, TGN models. For TGL’s
£ 101 DySAT implementation (TGL-DySAT), we maintain the same
g s 9 time interval size as the model for each dataset. We set topy, = 10
£ . . . :
2 5l for SPEED to explore potentially higher evaluation metrics.
Wikipedia Reddit mooc Flights Accuracy Metrics Comparison: We show the three accu-
Fig.9. Memory usage of training dynamic GNN models. racy metrics of models trained to converge on frameworks in

Table VI highlights the consistent top performance of CTDG
models on various datasets and metrics. CAW stands out on
the Wikipedia dataset, showcasing superior performance across
all metrics due to its unique anonymous causal walk approach.
APAN shines on the Reddit and MOOC datasets, demonstrat-
ing versatility beyond financial scenarios into user interac-
tion datasets. DyGFormer excels in AUC/AP/Accuracy on the
Flights dataset. The gap between the TGAT accuracy reported
in our experiments and the results on the original paper is due
to us using only one layer of the TGAT network. We report
the results of the two-layer TGAT in Section VI-E. Figs. 7 and
9 show that the high training accuracy of CAW, APAN, and
DyGFormer comes with significant time and memory costs,
especially for CAW. TGN maintains commendable performance
with acceptable training times. DySAT and EvolveGCN exhibit
lower accuracy metrics while consuming considerable mem-
ory, making them less efficient. Fig. 6 indicates that higher
validation metrics usually lead to superior test results. From
Fig. 8, we know that the TGAT model of one layer, although
the performance of the AP metric is suboptimal, consumes less
time. Although CAW always achieves better performance, TGN
and APAN, which can achieve relatively high accuracy with less
time, would be preferred for researchers. In summary, the CTDG
models often outperform the DTDG models. This is because the
CTDG models are elaborately designed with a structure tailored
for dynamic graphs, whereas the DTDG models merely stack
GNN and RNN modules.

C. Comparison of Models on Frameworks

In this section, we evaluate these models trained on dedicated
optimized dynamic GNN frameworks with open-source code,
including TGL, DistTGL, SPEED, DyGLib, and TGLite. TGL
implements JODIE, TGAT, TGN, APAN, and DySAT models,
while DistTGL only focuses on the TGN model. SPEED covers
TGN, TGAT, JODIE, DyREP, and TIGE models. For DyGLib,

Table VII. Situations facing issues such as out-of-memory
(OOM), or overtime are indicated in the corresponding bar.
In general, frameworks tend to achieve better accuracy than
the origin models in most cases, because of the system opti-
mizations used in these frameworks. DyGLib doesn’t provide
any performance improvements on the models. This is due to
the fact that it provides a unified library without any better
optimizations. Frameworks have an advantage over models in
their ability to handle large datasets effectively. Models often
struggle with training on large datasets, whereas frameworks
are tailored to support such scenarios efficiently. Among TGL,
SPEED, DistTGL, DyGLib, and TGLite comparisons, TGLite
frequently demonstrates higher accuracy. In particular, the TGN
version of TGLite achieves the vast majority of optimal and
suboptimal performance.

Training Time Comparison: The training times of these mod-
els to reach convergence on various frameworks were compared,
with results displayed in Fig. 10. It indicates that frameworks
generally require less training time compared to the origin
models, DyGLib is excluded, for the same reasons mentioned
above. This trend is especially prominent in TGL, where it con-
sistently outperforms the original on most datasets and models.
DistTGL, as a distributed version of TGL, despite having lower
evaluation metrics than TGL, shows a reduction in training time.
SPEED exhibits a significantly longer training time, with up
to 10 times longer than TGL, although this disparity is due to
the top, = 10 setting in SPEED. DyGLib only implements a
unified benchmark, without much improvement in efficiency.
TGLite, as arecent work, has further performance and efficiency
improvements over TGL and is one of the best frameworks
to date. GPU Memory Usage Comparison: The GPU memory
usage during the training of these models on various frameworks
was compared, with results displayed in Fig. 11. Generally,
the origin models tend to consume more memory compared
to frameworks, indicating that frameworks are optimized for
dynamic GNN training. However, in ML25 M and DGraphFin

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS

TABLE VII

COMPARISON OF ACCURACY METRICS(%) OF TRAINING MODELS TO CONVERGE ON FRAMEWORKS. “ACC” MEANS “ACCURACY”, “OOM” MEANS “OUT OF
MEMORY”. WE PRESENT THE OPTIMAL AND SUBOPTIMAL RESULTS IN BOLD AND UNDERLINED

39

Model | Version Wikipedia Reddit MOOC Flights ML25M DGraphFin
AUC | AP [Acc [AUC [AP [Acc | AUC | AP | Acc | AUC [AP [Acc | AUC | AP | Acc | AUC [AP [Acc
-Origin | 9325 [93.13 | 85.15 | 96.36 | 96.10 | 90.19 | 6243 | 59.20 [5942 | 91.16 [9049 | 78.62 OOM OOM
-TGL | 98.12 [97.63 | 94.34 [99.43 | 99.27 [9727 | 99.26 [98.66 | 99.04 [90.29 | 89.01 | 74.00 | 98.64 [98.30 [94.83 | 74.88 [75.14 | 69.73
JODIE | -SPEED [90.66 | 90.47 [81.75 | 97.38 [97.29 | 91.59 | 71.81 | 6699 | 64.93 | 89.05 | 87.22 | 67.26 | 9648 | 9594 | 9115 OOM
-DyGLib | 91.44 | 91.56 | 83.30 | 97.34 | 97.33 [91.33 | 7854 | 73.69 | 73.05 | 90.96 | 89.38 | 77.94 OOM OOM
-TGLite | 97.80 | 97.19 | 93.98 | 99.63 | 99.55 | 97.66 | 99.39 | 98.98 [99.03 | 93.07 | 92.35 | 84.60 | 98.54 | 9825 [94.51 | 78.94 | 81.38 | 73.53
-Origin | 82.02 | 83.39 | 7351 | 95.85 | 96.10 | 88.77 | 5637 | 57.20 [54.60 | 70.08 [68.00 | 63.73 | 7231 | 68.92 | 66.33 | 57.76 | 55.94 | 55.18
-TGL | 88.56 [8577 | 81.21 | 9574 | 95.62 | 88.32 [62.91 | 59.73 | 5841 | 7123 | 6546 | 67.10 | 63.09 | 62.95 | 58.87 | 5728 | 5475 | 56.59
TGAT | -SPEED | 7495 | 76.67 | 67.52 | 9471 | 94.87 | 87.00 | 66.66 | 6338 | 62.47 [80.49 | 79.41 | 7249 | 89.44 | 86.55 | 83.05 OOM
-DyGLib | 6540 | 70.55 | 59.89 | 93.38 | 93.46 [8543 | 56.23 | 54.24 | 52.63 | 7342 [68.69 | 67.74 | 89.32 | 8639 | 8322 [7143 [75.03 [66.53
-TGLite | 9296 | 91.16 | 8651 | 99.76 | 99.73 | 98.04 | 9527 | 93.88 [85.87 | 97.55 | 97.41 | 92.38 | 93.61 | 91.97 | 86.71 | 7446 | 77.01 | 7052
-Origin_ | 97.81 | 97.88 | 91.91 | 98.61 [98.62 | 94.10 | 82.88 | 80.78 | 74.03 [97.63 | 97.22 | 89.27 0OM 00M
-TGL | 98.16 | 98.70 | 94.99 [99.67 | 99.59 [97.64 | 99.51 [99.13 | 99.32 [92.69 | 92.41 | 7831 | 97.55 [97.10 | 92.18 | 78.77 | 8040 | 73.01
1GN |_-SPEED | 98.04 | 98.16 [92.62 | 9644 | 9642 | 8746 | 8698 [84.73 | 79.00 | 93.51 | 9295 | 69.03 | 95.66 | 9478 | 87.08 OOM
-DistTGL | 96.79 | 97.19 | 88.87 [97.61 | 97.66 | 87.48 | 84.78 | 8273 | 67.19 [96.83 | 96.24 [90.24 | 98.53 | 98.32 | 88.97 | 72.62 | 72.38 [56.76
-DyGLib | 97.06 [9732 | 90.88 [98.33 | 98.33 [93.54 | 60.62 | 5441 | 60.06 | 97.36 | 96.78 | 90.62 OOM OOM
-TGLite | 99.12 | 98.82 [96.50 [99.76 | 99.69 | 98.16 | 99.54 | 99.23 [99.13 [96.80 | 96.51 | 91.02 | 98.74 | 98.61 [95.07 [70.57 [67.80 | 66.75
-Origin | 9650 | 95.73 | 90.94 | 99.60 [99.65 | 97.77 | 99.35 | 98.83 [98.59 | 89.95 [89.04 | 78.18 Overtime Overtime
APAN -TGL | 97.29 [9595 | 94.12 [99.18 | 99.94 [9653 | 99.32 [98.71 | 9841 [92.64 | 91.61 | 70.79 | 94.20 [92.10 [86.99 [76.23 | 77.27 [70.71
-TGLite | 96.88 | 95.51 | 93.93 | 99.50 [99.39 | 97.47 [99.33 | 98.83 [99.21 | 91.48 | 90.56 | 78.77 | 96.00 | 95.88 | 87.49 | 6143 | 56.73 | 57.43
caw |_Origin [98.19 [98.54 | 9430 | 9835 | 98.59 | 93.93 | 7424 | 7724 | 62.18 | 96.26 | 96.63 | 90.53 Overtime 71.22 | 75.96 | 66.93
-DyGLib | 98.06 | 9837 | 94.22 [98.36 | 98.58 [94.16 | 65.74 | 67.69 | 5825 | 96.28 | 96.58 | 90.48 Overtime 72.19 [75.80 | 67.63
-Origin | 91.71 | 92.14 | 8293 | 96.67 | 9654 | 90.67 | 69.97 | 65.05 [60.07 | 92.14 [91.09 | 70.94 OOM OOM
DyREP | -SPEED | 90.87 [9148 | 82.76 | 96.47 | 96.50 | 88.88 | 76.17 | 72.44 | 7022 | 88.41 [86.85 | 74.01 | 96.30 | 95.82 [91.03 OOM
-DyGLib | 88.28 | 88.91 | 79.97 | 97.24 [97.24 [91.28 | 62.68 | 5820 | 57.26 | 89.05 | 85.68 | 81.53 OOM OOM
DySAT | Origin_| 86.68 | 89.87 | 65.13 | 9179 [9345 | 7195 | 4551 | 4336 [48.62 OOM OOM OOM
Y -TGL | 9046 | 9040 | 8439 [97.37 [97.61 | 92.74 | 52.07 | 52.94 | 5150 | 76.11 [6839 [73.25 | 56.78 | 55.13 | 55.63 | 73.54 [72.17 | 67.28
I -origin EEE -TGL [-SPEED [EEH -DistTGL [-DyGLib HEE -TGLite
Wikipedia Reddit 10 MOOC 6
4 i
1
I
21 I
— } N
< ! I
g 0-
T
g ¢®
'; Flights DGraphFin
£ i i i i
g 229
©
= MM M
2 1
{a Ll i
0 1
Q2
e
Fig. 10. Comparison of average per epoch training time of models and frameworks.
[-origin M -TGL [-SPEED [-DistTGL [-DyGLib HEE -TGLite
Wikipedia 21.7 -6 Reddit MOOC 151 7.1
i i i i i i
1 1 1] 1
1 I 1 I 1
1 I 1] 1
1 1 1 [l 1
- I e B o !
o8 H R |iva || "t
1 N > Q S »
o © O < e
2 SR S
i DGraphFin 17.1
2 x r x r x
o 1 1 1 1 1
£ 1 I A
1 I 1 I 1
= ! § :§ :§ §§ :§ !
1 I 1 I 1
C L YLD
N S 5 S
9 XS < \a
R S SRS

Fig. 11.

Comparison of GPU memory usage of models and frameworks, with the GPU memory capacity equals 48 GB.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

40 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

—e— TGL-JODIE TGL-TGN —%— TGL-DySAT —*— SPEED-TGN —— SPEED-JODIE
—¥— TGLTGAT —— TGL-APAN —r— DistTGL-TGN SPEED-TGAT —— SPEED-DyREP

1.00 —

0.8—4\’*\Eg
0.7 =

1GPU 2GPU 4GPU 8GPU

1GPU 2GPU 4GPU

8GPU

Average precision(%)
o
~
wv

ML25M DGraphFin
Fig. 12. Average precision for different numbers of GPUs.
= 150 207.52
T
£ 2000 100 /
- 1000
o 1 50 <
E ¢
= 03 T f T 0 T T T
= 1GPU 2GPU 4GPU 8GPU 1GPU 2GPU 4GPU 8GPU
ML25M DGraphFin
Fig. 13. Average training time per epoch for different numbers of GPUs.
o
9,] 70 Ay
> 60 e
©
w
524 1 T/ T
g hé/
go% * : . 043 —
g 1GPU 2GPU 4GPU 8GPU 1GPU 2GPU 4GPU 8GPU
ML25M DGraphFin
Fig. 14. GPU memory usage for different numbers of GPUs.

datasets, SPEED exhibits higher memory usage, possibly due
to its graph partitioning approach. Frameworks often utilize
specific techniques like TGL/DistTGL’s T-CSR and SPEED’s
graph partitioning to accommodate large datasets. Despite this,
the memory usage of TGL/DistTGL remains lower than that
of SPEED, suggesting the efficiency of TGL/DistTGL’s T-CSR.
It’s noteworthy that while ML25 M and DGraphFin have similar
file sizes (as shown in Table III), training DGraphFin requires
significantly more memory than ML25 M due to GNN sensitivity
to node-related factors. TGLite integrates the T-CSR format
of TGL with the deduplication optimization of TGOpt and
therefore leads to a much smaller memory usage. Additionally,
these frameworks do not maximize GPU memory usage, with
most cases using only up to 4 GB.

D. Multi-GPU Scalability

Frameworks generally offer a key advantage over the origin
models by incorporating a multi-GPU extension for faster par-
allel training. In this section, we analyze the performance of
different frameworks with varying numbers of GPUs. We assess
performance using 1 GPU, 2 GPUs on one machine, 4 GPUs
on one machine, and 8 GPUs on two machines. Our analysis
is based on the DGraphFin and ML25 M datasets, focusing
on converged AP, average training time per epoch, and GPU
memory usage. Results are presented in Figs. 12, 13, and 14,
respectively. The lack of data for the 8GPU scenario is due to
a lack of multi-machine training support, while the absence of
1GPU is due to out-of-memory issues. Note that among the
five frameworks, only TGL, DistTGL, and SPEED are able to
support multiple GPUs, and we report the corresponding results.

In ML25 M datasets, the AP values demonstrate stability with
minimal variation as the number of GPUs increases, suggesting
that multi-GPU parallel training has a limited impact on model

—e— TGAT —¥— APAN JODIE —— TGN —*— CAW —r— DrREP
v —v—v e —
— 0.95 0.98 _*Qb’-*‘* 094w
P> Y\’\,\j 5
& 0.90 096d———F | 08
< os .
.85
e e ILLL MEN—— L PR S)
100 500 1000 2000 100 500 1000 2000 100 500 1000 2000
Wikipedia Reddit Flights
Fig. 15. Average precision for different batch sizes.

accuracy. An exception is seen with TGL, where a potential
decrease in AP occurs as the number of GPUs rises, particularly
noticeable in the DGraphFin dataset. This decline is attributed
to TGL’s reliance on mini-batch parallelism, which may over-
look dependencies within one-time mini-batches, leading to
decreased training accuracy when the total size of one-time
mini-batches is doubled. While DistTGL generally shows re-
silience to changes in GPU numbers, there is a risk of per-
formance deterioration when multiple machines are utilized, as
evidenced in the DGraphFin results with 8 GPUs spread across
two machines. the utilization of multiple machines will lead to
accuracy challenges more easily. This suggests that DistTGL
is relatively unaffected by GPU variations, potentially due to
memory staleness and outdated information resulting from graph
partitioning in distributed multi-machine environments. On the
other hand, memory usage for models in the three frameworks
generally increases with more GPUs, while the reduction in
average per epoch training time is not as significant, except in
cases like transitioning from 1 GPU to 2 GPUs in the ML25 M
dataset. This trend is attributed to the impact of multi-GPU
communication, which can contribute to an overall increase
in training time. Interestingly, DistTGL experiences a rise in
average per epoch training time when moving from 4 GPUs
(within one machine) to 8 GPUs (across two machines), partic-
ularly with a threefold increase in the case of the DGraphFin
dataset. This is primarily due to the high communication cost
between multiple machines, resulting in longer training times for
DistTGL under these configurations. Additionally, dynamic load
imbalance from suboptimal graph partitioning strategies leads
to increased synchronization waiting times, further extending
overall training times. In future multi-machine endeavors, en-
hancing framework efficiency necessitates addressing key chal-
lenges such as implementing dynamic load balancing to reduce
synchronization waiting times, optimizing remote data fetch
to minimize communication overhead, and enhancing model
structure for increased reliability in distributed environments.

E. Hyperparameter Settings

This section focuses on configuring different hyperparameters
to assess their impacts on model training performance.

Impact of Batch Size: We experimented with different batch
sizes (100, 500, 1000, and 2000) while maintaining a single
GNN layer for the six CTDG models. Fig. 15 displays the
models’ AP results for the different batch sizes, revealing that
a batch size of 100 consistently yields better performance. This
suggests that, in general, smaller batch sizes can lead to improved
indicator results by enabling more efficient feature learning.
However, this efficiency may be counterbalanced by longer
training times, as depicted in Fig. 16. Fig. 16 also indicates

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 41

— —e— TGAT —¥— APAN JODIE —— TGN —%— CAW —r— DrREP
w
7 4 7500
OE) 300 2000
[= 200 A | 5000
D100 1000 2500
Y i ———— 0 lE—
g 100 500 1000 2000 100 500 1000 2000 100 500 1000 2000
Wikipedia Reddit Flights
Fig. 16. Average training time per epoch for different batch sizes.
E —e— TGAT —¥— APAN JODIE —— TGN —%— CAW —r— DrREP
o 15
D 104
% 10 10
w
S 5 5 5
>
2 _———+ —
o 0+ 01¥= ¥ ¥ —V 01%¥= ¥ ¥ —V
% 100 500 1000 2000 100 500 1000 2000 100 500 1000 2000
= Wikipedia Reddit Flights
Fig. 17. GPU memory usage for different batch sizes.
—— TGAT —¥ TGN APAN —— DyREP
FEE——— ———
—
_0.95 Jy—————7| 091
S 0.98 /
& 0.901 0.8
< 0.96
0.85 | / 074 /
1 20 1 21 20
Wikipedia Reddit Flights
Fig. 18. Average precision for different GNN Layers.
—— TGAT —¥- TGN APAN —v— DyREP
a
0150 4 7501 p00O -
£
=100 500 1
1.000 -
250 250 —
£ W
© 0-7 — 07 T 0-5 T
oo 21 1 21 1 21
Wikipedia Reddit Flights
Fig. 19. Average training time per epoch for different GNN Layers.

that an optimal batch size lies between excessively large and ex-
cessively small values, representing a compromise. The choice
of batch size is typically a trade-off between the number of
batches (for smaller sizes) and the computational load per batch
(for larger sizes), impacting operational speed. Although TGN,
DyRep, and JODIE exhibit decreasing trends up to a batch size
of 2000, it is anticipated that training time will escalate beyond
a certain batch size threshold. Additionally, as shown in Fig. 17,
there is a direct correlation between batch size and memory
usage, with memory requirements increasing as the batch size
Srows.

Impact of GNN Layers: To investigate the impact of different
numbers of GNN layers on model performance, we conducted a
two-layer experiment with the TGAT, TGN, APAN, and DyREP
models. JODIE was excluded due to the absence of layer con-
cepts, and CAW was prone to OOM issues with two layers.
The experiments were conducted with a batch size of 1000.
The results in Fig. 18. The findings suggest that increasing the
number of GNN layers can enhance performance. However, as
illustrated in Figs. 19 and 20, this improvement comes at the
cost of increased training time and memory consumption. The
objective is to increase the number of GNN layers to improve
performance within a reasonable epoch time while mitigating
excessive time and OOM concerns. Notably, APAN appears less
sensitive to the number of layers, as its model architecture is

_ —— TGAT —¥— TGN APAN —~— DyREP
38 151 151
g 154
& 10
g 104 104
> 57 5 51
)
£ 017 0% — 043 T
2 1l 21 1l 21 1l 21
Wikipedia Reddit Flights
Fig. 20. GPU memory usage for different GNN Layers.

TABLE VIII
THE NODE CLASSIFICATION TASK ON CTDG AND DTDG. WE USE AUC(%)
TO EVALUATE THE TASK

Wikipedia | Reddit | MOOC
Type Model AUC AUC | AUC
JODIE 8021 | 6392 | 60.99
TGN 8685 | 6321 | 5386
CTDG DyREP 8357 | 53.10 | 6561
TGAT 8571 | 6724 | 6311
APAN 8701 [5500 | 64.12
DG | EYoeGCNH | G081 | 597 | 6792
EvolveGCN-O | 7920 | 50.64 | 67.82

not heavily dependent on this factor. Consequently, augmenting
the number of layers does not substantially inflate training time
or memory usage for APAN. While the results for the three
layers are not presented, TGAT, TGN, and DyREP encountered
OOM issues with three layers, whereas APAN did not. This
discrepancy can be attributed to APAN’s model architecture
exhibiting minimal correlation with the number of GNN layers.

F. Node Classification Evaluation

In this section, we assess the performance of various dynamic
GNN models for the node classification task. Specifically, we
consider the JODIE, TGN, DyREP, TGAT, and APAN of CTDG
models, as well as the EvolveGCN of the DTDG model. These
models are evaluated on the Wikipedia, Reddit, and MOOC
datasets, using appropriate labels for node classification. A
single GNN layer with a batch size of 1000 is utilized for
consistency across all models. The results of the evaluation
are presented in Table VIII. Interestingly, the AUC metric
values for these dynamic GNN models are notably lower in
node classification tasks, particularly for the Reddit and MOOC
datasets. This disparity in performance may be attributed to the
fact that these models were primarily designed for the more
prevalent link prediction task in dynamic graphs. Surprisingly,
there does not appear to be a significant discrepancy between the
performance of DTDG and CTDG models in node classification
tasks, suggesting that both kinds of dynamic GNN models are
equally effective in this context.

VII. OPEN CHALLENGES

Compared to static graphs, dynamic graphs introduce
temporal information, necessitating additional time modules
in models, which increases complexity and poses challenges
for downstream tasks. For example, dynamic link prediction
requires precise timing considerations, making it more difficult
compared to static graphs. However, effectively capturing
real-world data evolution over time requires overcoming this
challenge. Despite progress in dynamic GNN models and

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

42 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

training frameworks, open challenges persist, with ongoing
exploration needed to address limitations in diversity, accuracy,
efficiency, and scalability.

Diversity in Application Domains. Dynamic graph learning is
applied in diverse domains such as social networks, transporta-
tion networks, epidemic transmission, and recommendation
systems, as discussed in Section II-A. However, each specific
application has unique dynamic graph characteristics, highlight-
ing the need for specialized methods to effectively address the
diverse requirements of individual scenarios.

Requirement for a Unified Framework. Existing dynamic
graph algorithms utilize various methods to capture time de-
pendencies within graph structures, making it challenging to
establish a unified framework. While efforts like TGL [138] have
strived to create a unified graph operator, they typically cover
only a restricted range of models. Furthermore, the implementa-
tion of the model is determined by the configuration file. In con-
trast, TGLite provides functions that can be used, and is the direc-
tion expected. Developing a comprehensive unified graph opera-
tor capable of encompassing a majority of algorithms is a crucial
yet formidable endeavor in the field of dynamic graph learning.

Challenges in Processing Dynamic Graph Updates. While
existing dynamic GNN frameworks provide functional support
for training modules essential for dynamic graph models, their
assistance is constrained, especially in dynamic graph data stor-
age. Current frameworks commonly utilize structures like CSR
or T-CSR, which encounter difficulties in promptly supporting
graph updates to real-time dynamic graph updates. This con-
straint also restricts the adaptability of dynamic graph models.
A more practical and efficient dynamic graph storage format is
needed.

Challenges in Storing Large-Scale Dynamic Graphs. The data
volume of dynamic graph data evolving over time is consider-
ably larger than that of static graphs. Dynamic GNN models also
necessitate the storage of additional long-term and short-term
memory information related to the evolution of graph data,
resulting in significant storage and computational requirements.
Many existing models are limited in their ability to handle large
graphs, and when confronted with such scenarios, they often re-
quire substantial GPU resources for processing, indicating scal-
ability challenges. As the size of graphs increases, distributed
processing becomes a viable solution [139]. Therefore, there is
an urgent need to advance distributed and parallel computing
methodologies to effectively manage and process large-scale
dynamic graph data.

Inefficient Training Data Extraction. In dynamic GNN train-
ing, the extraction of training data involves not only feature data
but also historical memory information, which can impede GNN
training efficiency. In distributed parallel training frameworks,
data extraction also includes data transmission among multiple
GPUs and machines, adding to the inefficiency of the process.
Furthermore, updating this memory information post-training
further reduces the effectiveness of data extraction in dynamic
GNN training. On the other hand, our experiments reveal in-
stances of under-utilization of GPU memory, presenting an op-
portunity to leverage this available memory space to accelerate
the data extraction process.

Challenges in Distributed Parallel Training Efficiency. Cur-
rent frameworks are limited to training on a single machine
with single or multiple GPUs, lacking support for distributed
environments across multiple machines. This restricts scalability
in parallel training large dynamic graphs. The complexity of dy-
namic GNN models and temporal dependencies pose obstacles
to efficient parallel training. Existing frameworks may overlook
dependencies within mini-batches or focus solely on temporal
dependencies, leading to suboptimal efficiency.

Challenges in Supporting Accelerator-Heterogeneity. Inte-
grating different types of accelerators in distributed systems
poses hurdles for optimizing dynamic GNN training. Vary-
ing computational capabilities and memory constraints lead to
workload imbalances. Mixed interconnects also cause commu-
nication bottlenecks, hindering data synchronization. Acceler-
ators operating at different speeds create inefficiencies. Adap-
tive workload schedulers, hybrid communication protocols, and
hardware-agnostic abstractions are needed to unify execution
across accelerators while maintaining temporal integrity in
DGNN training.

VIII. CONCLUSION

This paper provides a comprehensive comparative analysis
and experimental evaluation of dynamic GNNs. It covers 91
dynamic GNN models with a novel taxonomy, compares 17
dynamic GNN training frameworks, and includes commonly
used benchmarks for evaluating dynamic GNNs. The paper also
includes extensive experiments on ten representative models and
five frameworks across six standard graph datasets using unified
benchmarks and evaluation metrics. Performance evaluation
covers metrics related to convergence accuracy, training effi-
ciency, and GPU memory usage, considering both single-GPU
and multiple-GPU scenarios. The analysis and evaluation results
highlight various open challenges in the dynamic GNN field to
offer valuable principles for future researchers to enhance the
generality, performance, efficiency, and scalability of dynamic
GNN models and frameworks.

ACKNOWLEDGMENT

The author gratefully acknowledges the support of Zhejiang
University Education Foundation Qizhen Scholar Foundation.

REFERENCES

[1] S. Shreif, B. Angela, V. Hannes, and I. Alexandru, “The future is big
graphs: A community view on graph processing systems,” Commun.
ACM, vol. 64, no. 9, pp. 62-71, 2021.

[2] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, Sep. 2018.

[3] W.Fanetal., “A graph neural network framework for social recommen-
dations,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 5, pp. 2033-2047,
May 2022.

[4] H. Yuan et al., “Comprehensive evaluation of GNN training systems: A
data management perspective,” Proc. VLDB Endowment, vol. 17, no. 6,
pp. 1241-1254, 2024.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations,
2017, pp. 1-14.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 43

[6]

(7]

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[31]

[32]

W.Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 1025-1035.

P. Velickovié¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn. Repre-
sentations, 2018, pp. 1-12.

M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2018, pp. 5171-5181.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4-24, Jan. 2021.

B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko, “A gentle
introduction to graph neural networks,” Distill, vol. 6, 2021, Art. no. e33.
A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in Proc. ACM Int. Conf. Web Search Data Mining, 2017,
pp. 601-610.

A. Parejaetal., “EvolveGCN: Evolving graph convolutional networks for
dynamic graphs,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 5363-5370.
L. Zhao et al., “T-GCN: A temporal graph convolutional network for
traffic prediction,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9,
pp. 3848-3858, Sep. 2020.

S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding
trajectory in temporal interaction networks,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2019, pp. 1269-1278.

E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
in Proc. Int. Conf. Mach. Learn., 2020, pp. 1-16.

S. Deng, H. Rangwala, and Y. Ning, “Learning dynamic context graphs
for predicting social events,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2019, pp. 1007-1016.

S. M. Kazemi et al., “Representation learning for dynamic graphs: A
survey,” J. Mach. Learn. Res., vol. 21, no. 1, pp. 2648-2720, 2020.

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” in Proc. Int.
Joint Conf. Artif. Intell., 2018, pp. 3634-3640.

B. He, X. He, Y. Zhang, R. Tang, and C. Ma, “Dynamically expandable
graph convolution for streaming recommendation,” in Proc. ACM Web
Conf., 2023, pp. 1457-1467.

C. Zhang et al., “A deep neural network for unsupervised anomaly
detection and diagnosis in multivariate time series data,” in Proc. AAAI
Conf. Artif. Intell., 2019, pp. 1409-1416.

Z. Zheng, J. Shao, J. Zhu, and H. T. Shen, “Relational temporal graph
convolutional networks for ranking-based stock prediction,” in Proc.
IEEE Int. Conf. Data Eng., 2023, pp. 123-136.

H. Zhang et al., “TFE-GNN: A temporal fusion encoder using graph
neural networks for fine-grained encrypted traffic classification,” in Proc.
ACM Web Conf., 2023, pp. 2066-2075.

Y. Wang, P. Li, C. Bai, V. Subrahmanian, and J. Leskovec, “Generic
representation learning for dynamic social interaction,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020, pp. 1-9.

F. Manessi, A. Rozza, and M. Manzo, “Dynamic graph convolutional
networks,” Pattern Recognit., vol. 97, 2020, Art. no. 107000.

J. Wu, M. Cao, J. C. K. Cheung, and W. L. Hamilton, “TeMP:
Temporal message passing for temporal knowledge graph comple-
tion,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2020,
pp. 5730-5746.

P. Zhang et al., “Continual learning on dynamic graphs via parameter
isolation,” in Proc. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2023,
pp. 601-611.

S. Bonner etal., “Temporal neighbourhood aggregation: Predicting future
links in temporal graphs via recurrent variational graph convolutions,” in
Proc. IEEE Int. Conf. Big Data, 2019, pp. 5336-5345.

M. Yang, M. Zhou, M. Kalander, Z. Huang, and 1. King, “Discrete-time
temporal network embedding via implicit hierarchical learning in hy-
perbolic space,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2021, pp. 1975-1985.

X. Qin, N. Sheikh, C. Lei, B. Reinwald, and G. Domeniconi, “SEIGN:
A simple and efficient graph neural network for large dynamic graphs,”
in Proc. IEEE Int. Conf. Data Eng., 2023, pp. 2850-2863.

A. Cini, I. Marisca, F. M. Bianchi, and C. Alippi, “Scalable spatiotem-
poral graph neural networks,” in Proc. AAAI Conf. Artif. Intell., 2023,
pp. 7218-7226.

J. Lietal., “Scaling up dynamic graph representation learning via spiking
neural networks,” in Proc. AAAI Conf. Artif. Intell., 2023, pp. 8588-8596.
W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” 2017, arXiv:1709.05584.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

J. Skarding, B. Gabrys, and K. Musial, “Foundations and modeling of
dynamic networks using dynamic graph neural networks: A survey,”
IEEE Access, vol. 9, pp. 79143-79168, 2021.

Y. Zhu, F. Lyu, C. Hu, X. Chen, and X. Liu, “Encoder-decoder ar-
chitecture for supervised dynamic graph learning: A survey,” 2022,
arXiv:2203.10480.

G. Jin et al., “Spatio-temporal graph neural networks for predictive
learning in urban computing: A survey,” IEEE Trans. Knowl. Data Eng.,
vol. 36, no. 10, pp. 5388-5408, Oct. 2024.

A. Longa et al., “Graph neural networks for temporal graphs: State of the
art, open challenges, and opportunities,” 2023, arXiv:2302.01018.

X. Huang et al., “DGraph: A large-scale financial dataset for graph
anomaly detection,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2022,
pp. 22765-22777.

X. Yang, Y. Sun, X. Chen, Y. Zhang, and X. Yuan, “Graph structure
learning for spatial-temporal imputation: Adapting to node and feature
scales,” in Proc. AAAI Conf. Artif. Intell., 2025, pp. 959-967.

L. Cao, B. Wang, G. Jiang, Y. Yu, and J. Dong, “Spatiotemporal-aware
trend-seasonality decomposition network for traffic flow forecasting,” in
Proc. AAAI Conf. Artif. Intell., 2025, pp. 11463—11471.

R. Trivedi, H. Dai, Y. Wang, and L. Song, “Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 3462-3471.

J. Gehrke, P. Ginsparg, and J. Kleinberg, “Overview of the 2003 KDD
cup,” ACM SIGKDD Explor. Newslett., vol. 5, no. 2, pp. 149-151, 2003.
D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive
representation learning on temporal graphs,” in Proc. Int. Conf. Learn.
Representations, 2020, pp. 1-19.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555.

H. Jaeger, “Echo state network,” Scholarpedia, vol. 2, no. 9, 2007,
Art. no. 2330.

S.-H. Yang and H. Zha, “Mixture of mutually exciting processes for viral
diffusion,” in Proc. Int. Conf. Mach. Learn., 2013, pp. 1-9.

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” 2018,
arXiv:1803.01271.

A. Rahimi and B. Recht, “Random features for large-scale ker-
nel machines,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2007,
pp. 1177-1184.

W. Hu, Y. Yang, Z. Cheng, C. Yang, and X. Ren, “Time-series event
prediction with evolutionary state graph,” in Proc. ACM Int. Conf. Web
Search Data Mining, 2021, pp. 580-588.

K. Liu, F. Zhao, G. Xu, X. Wang, and H. Jin, “RETIA: Relation-entity
twin-interact aggregation for temporal knowledge graph extrapolation,”
in Proc. IEEE Int. Conf. Data Eng., 2023, pp. 1761-1774.

K. Liang et al., “Learn from relational correlations and periodic events
for temporal knowledge graph reasoning,” in Proc. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2023, pp. 1559-1568.

A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 6000-6010.

J.Lietal., “Predicting path failure in time-evolving graphs,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2019, pp. 1279-1289.
M. Schlichtkrull et al., “Modeling relational data with graph con-
volutional networks,” in Proc. Eur. Semantic Web Conf., 2018,
pp. 593-607.

R. Jiang et al., “Spatio-temporal meta-graph learning for traffic forecast-
ing,” in Proc. AAAI Conf. Artif. Intell., 2023, pp. 8078-8086.

G. Casadesus-Vila, J.-A. Ruiz-de Azua, and E. Alarcon, “Toward au-
tonomous cooperation in heterogeneous nanosatellite constellations us-
ing dynamic graph neural networks,” 2024, arXiv:2403.00692.

J. Liu, X. Shang, X. Han, W. Zhang, and H. Yin, “Spatial-temporal
memories enhanced graph autoencoder for anomaly detection in dynamic
graphs,” 2024, arXiv:2403.09039.

G. Jin, L. Liu, F. Li, and J. Huang, “Spatio-temporal graph neural point
process for traffic congestion event prediction,” in Proc. AAAI Conf. Artif.
Intell., 2023, pp. 14268-14276.

Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
Proc. Int. Conf. Neural Inf. Process., 2018, pp. 362-373.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2016, pp. 3844-3852.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

44

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]
[75]

[76]

(771

(78]

[791

[80]

[81]

[82]

[83]

[84]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

E. Hajiramezanali, A. Hasanzadeh, K. Narayanan, N. Duffield, M. Zhou,
and X. Qian, “Variational graph recurrent neural networks,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2019, pp. 10701-10711.

J. Chen et al., “E-LSTM-D: A deep learning framework for dynamic
network link prediction,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51,
no. 6, pp. 3699-3712, Jun. 2021.

H. Li, Z. Zhang, D. Liang, and Y. Jiang, “K-truss based temporal graph
convolutional network for dynamic graphs,” in Proc. Asian Conf. Mach.
Learn., PMLR, 2024, pp. 739-754.

D. Chen, S. Zheng, M. Xu, Z. Zhu, and Y. Zhao, “SiGNN: A spike-
induced graph neural network for dynamic graph representation learn-
ing,” Pattern Recognit., vol. 158, 2025, Art. no. 111026.

W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neu-
rons, Populations, Plasticity. Cambridge, U.K.: Cambridge Univ. Press,
2002.

H. Liu et al., “TodyNet: Temporal dynamic graph neural network
for multivariate time series classification,” Inf. Sci., vol. 677, 2024,
Art. no. 120914.

G. Bai, C. Ling, and L. Zhao, “Temporal domain generalization with
drift-aware dynamic neural networks,” in Proc. Int. Conf. Learn. Repre-
sentations, 2023, pp. 1-19.

F. Zhou, X. Xu, C. Li, G. Trajcevski, T. Zhong, and K. Zhang, “A
heterogeneous dynamical graph neural networks approach to quantify
scientific impact,” 2020, arXiv:2003.12042.

H. Xue, L. Yang, W. Jiang, Y. Wei, Y. Hu, and Y. Lin, “Modeling dynamic
heterogeneous network for link prediction using hierarchical attention
with temporal RNN,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl.
Discov. Databases, 2021, pp. 282-298.

H. Qian etal., “MDGNN: Multi-relational dynamic graph neural network
for comprehensive and dynamic stock investment prediction,” in Proc.
AAAI Conf. Artif. Intell., 2024, pp. 14642-14650.

J. Wang, W. Zhu, G. Song, and L. Wang, “Streaming graph neural
networks with generative replay,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2022, pp. 1878—1888.

M. Salvaris, D. Dean, and W. H. Tok, “Generative adversarial net-
works,” in Deep Learning with Azure: Building and Deploying Artificial
Intelligence Solutions on the Microsoft Al Platform. Springer, 2018,
pp. 187-208.

J. Hu, Y. Liang, Z. Fan, H. Chen, Y. Zheng, and R. Zimmermann,
“Graph neural processes for spatio-temporal extrapolation,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2023, pp. 752—
763.

M. Garnelo et al., “Neural processes,” 2018, arXiv:1807.01622.

Z. Zhang et al., “Spectral invariant learning for dynamic graphs under
distribution shifts,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2024,
pp. 6619-6633.

J. You, T. Du, and J. Leskovec, “ROLAND: Graph learning framework
for dynamic graphs,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2022, pp. 2358-2366.

Y. Zhu et al., “WinGNN: Dynamic graph neural networks with random
gradient aggregation window,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2023, pp. 3650-3662.

Q. Yang, C. Ma, Q. Zhang, X. Gao, C. Zhang, and X. Zhang, “Inter-
pretable research interest shift detection with temporal heterogeneous
graphs,” in Proc. ACM Int. Conf. Web Search Data Mining, 2023,
pp. 321-329.

Y. Fang et al., “When spatio-temporal meet wavelets: Disentangled traffic
forecasting via efficient spectral graph attention networks,” in Proc. IEEE
Int. Conf. Data Eng., 2023, pp. 517-529.

M. Yang et al., “Vehicle interactive dynamic graph neural network based
trajectory prediction for internet of vehicles,” IEEE Int. Things J., vol. 11,
no. 22, pp. 35777-35790, Nov. 2024.

A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “DySAT: Deep
neural representation learning on dynamic graphs via self-attention
networks,” in Proc. ACM Int. Conf. Web Search Data Mining, 2020,
pp. 519-527.

P. Goyal, S. R. Chhetri, and A. Canedo, “Dyngraph2vec: Capturing net-
work dynamics using dynamic graph representation learning,” Knowl.-
Based Syst., vol. 187, 2020, Art. no. 104816.

P. Goyal, N. Kamra, X. He, and Y. Liu, “DynGEM: Deep embedding
method for dynamic graphs,” 2018, arXiv:1805.11273.

L. Qian, Q. Zuo, H. Liu, and H. Zhu, “Multivariate time series classifica-
tion based on spatial-temporal attention dynamic graph neural network,”
Appl. Intell., vol. 55, no. 2, pp. 1-18, 2025.

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

(971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

J. Layne, J. Carpenter, E. Serra, and F. Gullo, “Temporal SIR-GN:
Efficient and effective structural representation learning for temporal
graphs,” Proc. VLDB Endowment, vol. 16, no. 9, pp. 2075-2089, 2023.

M. Joaristi and E. Serra, “SIR-GN: A fast structural iterative represen-
tation learning approach for graph nodes,” ACM Trans. Knowl. Discov.
Data, vol. 15, no. 6, pp. 1-39, 2021.

L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 571-578.

H. Huang, J. Tang, L. Liu, J. Luo, and X. Fu, “Triadic closure pattern
analysis and prediction in social networks,” IEEE Trans. Knowl. Data
Eng., vol. 27, no. 12, pp. 3374-3389, Dec. 2015.

A. Bastos, A. Nadgeri, K. Singh, T. Suzumura, and M. Singh, “Learnable
spectral wavelets on dynamic graphs to capture global interactions,” in
Proc. AAAI Conf. Artif. Intell., 2023, pp. 6779-6787.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “The spectral graph
wavelet transform: Fundamental theory and fast computation,” in Vertex-
Frequency Analysis of Graph Signals, Berlin, Germany: Springer, 2018,
pp. 141-175.

S. Zheng, H. Yin, T. Chen, Q. V. H. Nguyen, W. Chen, and L. Zhao,
“DREAM: Adaptive reinforcement learning based on attention mech-
anism for temporal knowledge graph reasoning,” in Proc. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2023, pp. 1578-1588.

H. Yuan et al., “Environment-aware dynamic graph learning for out-of-
distribution generalization,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2024, pp. 49715-49747.

Y. Wang, P. Li, C. Bai, and J. Leskovec, “TEDIC: Neural modeling of
behavioral patterns in dynamic social interaction networks,” in Proc.
ACM Web Conf., 2021, pp. 693-705.

S. Khodabandehlou and A. H. Golpayegani, “FiFrauD: Unsupervised
financial fraud detection in dynamic graph streams,” ACM Trans. Knowl.
Discov. Data, vol. 18, no. 5, pp. 1-29, 2024.

K. Zhao and L. Zhang, “Causality-inspired spatial-temporal explanations
for dynamic graph neural networks,” in Proc. Int. Conf. Learn. Repre-
sentations, 2024, pp. 1-13.

L. Qu, H. Zhu, Q. Duan, and Y. Shi, “Continuous-time link prediction
via temporal dependent graph neural network,” in Proc. ACM Web Conf.,
2020, pp. 3026-3032.

H. Tang, S. Wu, G. Xu, and Q. Li, “Dynamic graph evolution learning
for recommendation,” in Proc. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2023, pp. 1589-1598.

L. Fang, K. Feng, J. Gui, S. Feng, and A. Hu, “Anonymous edge rep-
resentation for inductive anomaly detection in dynamic bipartite graph,”
Proc. VLDB Endowment, vol. 16, no. 5, pp. 1154-1167, 2023.

S. Fan, S. Zhang, X. Wang, and C. Shi, “Directed acyclic graph structure
learning from dynamic graphs,” in Proc. AAAI Conf. Artif. Intell., 2023,
pp. 7512-7521.

Y. Wu, Y. Fang, and L. Liao, “On the feasibility of simple transformer for
dynamic graph modeling,” in Proc. ACM Web Conf., 2024, pp. 870-880.
L. Yu, L. Sun, B. Du, and W. Lv, “Towards better dynamic graph learning:
New architecture and unified library,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2024, pp. 67686-67700.

Z. Zhang, Z. Zhang, X. Wang, Y. Qin, Z. Qin, and W. Zhu, “Dynamic
heterogeneous graph attention neural architecture search,” in Proc. AAAI
Conf. Artif. Intell., 2023, pp. 11307-11315.

H.Li, C.Li, K. Feng, Y. Yuan, G. Wang, and H. Zha, “Robust knowledge
adaptation for dynamic graph neural networks,” IEEE Trans. Knowl. Data
Eng., vol. 36, no. 11, pp. 6920-6933, Nov. 2024.

W. Jin, M. Qu, X. Jin, and X. Ren, “Recurrent event network: Autore-
gressive structure inference over temporal knowledge graphs,” in Proc.
Conf. Empir. Methods Natural Lang. Process., 2020, pp. 6669—-6683.

J. You, Y. Wang, A. Pal, P. Eksombatchai, C. Rosenburg, and J. Leskovec,
“Hierarchical temporal convolutional networks for dynamic recom-
mender systems,” in Proc. ACM Web Conf., 2019, pp. 2236-2246.

D. Tortorella et al., “Dynamic graph echo state networks,” in Proc. 29th
Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach. Learn. (ESANN
2021), 2021, pp. 99-104, Paper i6doc.

C.-Y. Sang, J.-J. Chen, and S.-G. Liao, “DyHGTCR-Cas: Learning
unified spatio-temporal features based on dynamic heterogeneous graph
neural network for information cascade prediction,” Inf. Process. Man-
age., vol. 62, no. 3, 2025, Art. no. 104029.

X. Li, M. Zhang, S. Wu, Z. Liu, L. Wang, and S. Y. Philip, “Dynamic
graph collaborative filtering,” in Proc. IEEE Int. Conf. Data Mining, 2020,
pp. 322-331.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

FENG et al.: COMPREHENSIVE SURVEY OF DYNAMIC GRAPH NEURAL NETWORKS: MODELS, FRAMEWORKS, BENCHMARKS, EXPERIMENTS 45

[109]

[110]

[111]

[112]

[113]
[114]
[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

K. Feng, C. Li, X. Zhang, and J. Zhou, “Towards open temporal graph
neural networks,” in Proc. Int. Conf. Learn. Representations, 2023,
pp. 1-23.

S. Suresh, M. Shrivastava, A. Mukherjee, J. Neville, and P. Li, “Expres-
sive and efficient representation learning for ranking links in temporal
graphs,” in Proc. ACM Web Conf., 2023, pp. 567-577.

Y. Tian, Y. Qi, and F. Guo, “FreeDyG: Frequency enhanced continuous
time dynamic graph model for link prediction,” in Proc. Int. Conf. Learn.
Representations, 2024, pp. 1-20.

D. Chen et al., “Guiding fusion of dynamic functional and effective
connectivity in spatio-temporal graph neural network for brain disorder
classification,” Knowl.-Based Syst., vol. 309, 2025, Art. no. 112856.

Y. Luo and P. Li, “Neighborhood-aware scalable temporal network rep-
resentation learning,” in Proc. Learn. Graphs Conf., 2022, pp. 1-18.

Y. Zhang et al., “TIGER: Temporal interaction graph embedding with
restarts,” in Proc. ACM Web Conf., 2023, pp. 478-488.

J. Su, D. Zou, and C. Wu, “PRES: Toward scalable memory-based
dynamic graph neural networks,” 2024, arXiv:2402.04284.

S. Gao, Y. Li, Y. Shen, Y. Shao, and L. Chen, “ETC: Efficient training of
temporal graph neural networks over large-scale dynamic graphs,” Proc.
VLDB Endowment, vol. 17, no. 5, pp. 1060-1072, 2024.

R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “DyRep: Learning
representations over dynamic graphs,” in Proc. Int. Conf. Learn. Rep-
resentations, 2019, pp. 1-25.

Y. Lu, X. Wang, C. Shi, P. S. Yu, and Y. Ye, “Temporal network embedding
with micro- and macro-dynamics,” in Proc. ACM Int. Conf. Inf. Knowl.
Manage., 2019, pp. 469—478.

Z. Han, J. Jiang, Y. Wang, Y. Ma, and V. Tresp, “The graph
hawkes network for reasoning on temporal knowledge graphs,” 2020,
arXiv:2003.13432.

B. Knyazev, C. Augusta, and G. W. Taylor, “Learning temporal attention
in dynamic graphs with bilinear interactions,” Public Library Sci., vol. 16,
no. 3, 2021, Art. no. e0247936.

7. Zhao et al., “Time-interval aware share recommendation via bi-
directional continuous time dynamic graphs,” in Proc. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2023, pp. 822-831.

Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, and P. Li, “Inductive repre-
sentation learning in temporal networks via causal anonymous walks,”
in Proc. Int. Conf. Learn. Representations, 2021, pp. 1-22.

G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh,
and S. Kim, “Dynamic network embeddings: From random walks to
temporal random walks,” in Proc. IEEE Int. Conf. Big Data, 2018,
pp. 1085-1092.

X. Wang et al., “APAN: Asynchronous propagation attention network for
real-time temporal graph embedding,” in Proc. ACM Int. Conf. Manage.
Data, 2021, pp. 2628-2638.

Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin, “Streaming graph neural
networks,” in Proc. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2020,
pp. 719-728.

C. Wu et al., “Instant representation learning for recommendation over
large dynamic graphs,” in Proc. IEEE Int. Conf. Data Eng., 2023,
pp. 82-95.

L.Han,R. Zhang, L. Sun, B. Du, Y. Fu, and T. Zhu, “Generic and dynamic
graph representation learning for crowd flow modeling,” in Proc. AAAI
Conf. Artif. Intell., 2023, pp. 4293-4301.

J. Liu, J. Liu, K. Zhao, Y. Tang, and W. Chen, “TP-GNN: Continuous
dynamic graph neural network for graph classification,” in Proc. IEEE
Int. Conf. Data Eng., 2024, pp. 2848-2861.

S. Ji et al., “Community-based dynamic graph learning for popularity
prediction,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2023, pp. 930-940.

S. Ji, M. Liu, L. Sun, C. Liu, and T. Zhu, “MemMap: An adaptive and
latent memory structure for dynamic graph learning,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2024, pp. 1257-1268.
B. Rozemberczki et al., “PyTorch geometric temporal: Spatiotemporal
signal processing with neural machine learning models,” in Proc. ACM
Int. Conf. Inf. Knowl. Manage., 2021, pp. 4564—4573.

V. T. Chakaravarthy, S. S. Pandian, S. Raje, Y. Sabharwal, T. Suzumura,
and S. Ubaru, “Efficient scaling of dynamic graph neural networks,” in
Proc. IEEE Int. Conf. High Perform. Comput. Netw. Storage Anal.,2021,
pp. 1-15.

C. Wang, D. Sun, and Y. Bai, “PiPAD: Pipelined and parallel dynamic
GNN training on GPUS,” in Proc. ACM SIGPLAN Annu. Symp. Princ.
Pract. Parallel Program., 2023, pp. 405-418.

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

M. Guan, A. P. Iyer, and T. Kim, “DynaGraph: Dynamic graph neural
networks at scale,” in Proc. ACM SIGMOD Joint Int. Workshop Graph
Data Manage. Exp. Syst., Netw. Data Analytics, 2022, pp. 1-10.

K.Fu, Q. Chen, Y. Yang,J. Shi, C. Li, and M. Guo, “BLAD: Adaptive load
balanced scheduling and operator overlap pipeline for accelerating the
dynamic GNN training,” in Proc. IEEE Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2023, pp. 1-13.

F. Chen, P. Li, and C. Wu, “DGC: Training dynamic graphs with spatio-
temporal non-uniformity using graph partitioning by chunks,” Proc. ACM
Manage. Data, vol. 1, no. 4, pp. 1-25, 2023.

J. M. Cherian, N. P. Manoj, K. J. Concessao, and U. Cheramangalath,
“STGraph: A framework for temporal graph neural networks,” in Proc.
Int. Parallel Distrib. Process. Symp. Workshops, 2024, pp. 496-505.

H. Zhou, D. Zheng, I. Nisa, V. loannidis, X. Song, and G.
Karypis, “TGL: A general framework for temporal GNN training
on billion-scale graphs,” Proc. VLDB Endowment, vol. 15, no. 8,
pp. 1572-1580, 2022.

H. Zhou, D. Zheng, X. Song, G. Karypis, and V. Prasanna, “DistTGL:
Distributed memory-based temporal graph neural network training,” in
Proc. IEEE Int. Conf. High Perform. Comput. Netw. Storage Anal., 2023,
pp. 1-12.

Z. Fang, Q. Sun, Q. Wang, L. Chen, and Y. Gao, “Distributed temporal
graph neural network learning over large-scale dynamic graphs,” in Proc.
Int. Conf. Database Syst. Adv. Appl., 2024, pp. 51-66.

Y. Wang and C. Mendis, “TGLite: A lightweight programming frame-
work for continuous-time temporal graph neural networks,” in Proc. ACM
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2024,
pp. 1183-1199.

X. Chen et al., “SPEED: Streaming partition and parallel acceleration for
temporal interaction graph embedding,” 2023, arXiv:2308.14129.

C. Chen et al., “NeutronStream: A dynamic GNN training framework
with sliding window for graph streams,” Proc. VLDB Endowment, vol. 17,
no. 3, pp. 455-468, 2023.

Y. Zhong, G. Sheng, T. Qin, M. Wang, Q. Gan, and C. Wu, “GNNFlow:
A distributed framework for continuous temporal GNN learning on
dynamic graphs,” 2023, arXiv:2311.17410.

G. Sheng, J. Su, C. Huang, and C. Wu, “MSPipe: Efficient temporal GNN
training via staleness-aware pipeline,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2024, pp. 2651-2662.

Y. Xia et al., “Redundancy-free and load-balanced TGNN training with
hierarchical pipeline parallelism,” /EEE Trans. Parallel Distrib. Syst.,
vol. 35, no. 11, pp. 1904-1919, Nov. 2024.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch geometric,” 2019, arXiv:1903.02428.

M. Y. Wang, “Deep graph library: Towards efficient and scalable deep
learning on graphs,” in Proc. Int. Conf. Learn. Representations, 2019,
pp. 1-18.

L. Ma et al., “NeuGraph: Parallel deep neural network computation on
large graphs,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2019,
pp. 443-458.

Z.Jia,S.Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the accuracy,
scalability, and performance of graph neural networks with ROC,” Mach.
Learn. Syst., vol. 2, pp. 187-198, 2020.

R. Zhu et al., “AliGraph: A comprehensive graph neural network plat-
form,” Proc. VLDB Endowment, vol. 12, no. 12, pp. 2094-2105, 2019.
X. Zhang, Y. Shen, Y. Shao, and L. Chen, “DUCATI: A dual-cache
training system for graph neural networks on giant graphs with the GPU,”
Proc. ACM Manage. Data, vol. 1, no. 2, pp. 1-24, 2023.

S. Gandhi and A. P. Iyer, “P3: Distributed deep graph learning at scale,”
in Proc. USENIX Symp. Operating Syst. Des. Implementation, 2021,
pp. 551-568.

C. Wan, Y. Li, C. R. Wolfe, A. Kyrillidis, N. S. Kim, and Y. Lin,
“PipeGCN: Efficient full-graph training of graph convolutional networks
with pipelined feature communication,” in Proc. Int. Conf. Learn. Rep-
resentations, 2021, pp. 1-24.

X. Aietal., “NeutronOrch: Rethinking sample-based GNN training under
CPU-GPU heterogeneous environments,” 2023, arXiv:2311.13225.

H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN training on
CPU-FPGA heterogeneous platforms,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2020, pp. 255-265.

J. Hu, Y. Zou, X. Song, and Y. Liu, “GALA-GNN: Optimization
for training GNNs of large-scale graphs on heterogeneous platforms,”
in Proc. IEEE Int. Symp. Parallel Distrib. Process. Appl., 2024,
pp. 460—467.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from |IEEE Xplore. Restrictions apply.

46

[158]

[159]
[160]

[161]

[162]

[163]

[164]
[165]

[166]

[167]

[168]

[169]

[170]

[171]
[172]
[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 38, NO. 1, JANUARY 2026

Y. Wang and C. Mendis, “TGOpt: Redundancy-aware optimizations for
temporal graph attention networks,” in Proc. ACM SIGPLAN Annu. Symp.
Princ. Pract. Parallel Program., 2023, pp. 354-368.

A. Pavlisic, “The wikipedia/reddit/mooc/lastfm datasets,” 2009. Re-
trieved Apr. 28, 2024. [Online]. Available: http://snap.stanford.edu/jodie
Anon, “The dgraphfin datasets,” 2022. Retrieved Apr. 28, 2024. [Online].
Auvailable: https://dgraph.xinye.com/dataset

F. Poursafaei, S. Huang, K. Pelrine, and R. Rabbany, “The enron/flights
datasets,” 2022. Retrieved Apr. 28, 2024. [Online]. Available: https:/
zenodo.org/records/7213796#.Y 1cO6y8r300

R. A.Rossi and N. K. Ahmed, “The Facebook datasets,” 2015. Retrieved
Apr. 28, 2024. [Online]. Available: https://networkrepository.com/fb-
wosn-friends.php

A. Madan et al.,, “The social evolution datasets,” 2008. Retrieved
Apr. 28, 2024. [Online]. Available: http://realitycommons.media.mit.
edu/socialevolution.html

J. Kunegis, “The UCI datasets,” 2017. Retrieved Apr. 28, 2024. [Online].
Auvailable: http://konect.cc/networks/opsahl-ucforum/

Anon, “The mI25m datasets,” 2019. Retrieved Apr. 28, 2024. [Online].
Available: https://grouplens.org/datasets/movielens/25m/

R. A. Rossi and N. K. Ahmed, “The fb-forum datasets,” 2015. Retrieved
Apr. 28, 2024. [Online]. Available: https://networkrepository.com/fb-
forum.php

Anon, “The DBLP datasets,” 2022. Retrieved Apr. 28, 2024.
[Online]. Available: https://www.dropbox.com/sh/palzyhSboxluclv/
AACSLHB7PChT-ruN-rksZTCYa?dl=0

Anon, “The yelp datasets,” 2004. Retrieved Apr. 28, 2024. [Online].
Available: https://www.yelp.com/dataset

Y. Liu, H. Li, A. Garcia-Duran, M. Niepert, D. Onoro-Rubio, and D.
S. Rosenblum, “The ICEWS14/05-15 datasets,” 2018. Retrieved Apr.
28, 2024. [Online]. Available: https://github.com/mniepert/mmkb/tree/
master/TemporalKGs

E. Boschee, J. Lautenschlager, S. O’Brien, S. Shellman, J. Starz, and
M. Ward, “ICEWS coded event data,” 2015. [Online]. Available: https:
//doi.org/10.7910/DVN/28075

Anon, “The GDELT datasets,” 2022. Retrieved Apr. 28, 2024. [Online].
Available: https://github.com/amazon-science/tgl/blob/main/down.sh
A. Pavlisic, “The bitcoin-alpah/bitcoin-otc/as-773 datasets,” 2009. Re-
trieved Apr. 28, 2024. [Online]. Available: https://snap.stanford.edu/data
B. Klimt and Y. Yang, “Introducing the enron corpus,” in Proc. CEAS,
2004, pp. 92-96.

B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “‘On the evolution
of user interaction in Facebook,” in Proc. ACM Workshop Online Social
Netw., 2009, pp. 37-42.

A. Madan et al., “Sensing the “health state” of a community,” /EEE
Pervasive Comput., vol. 11, no. 4, pp. 36-45, Fourth Quarter 2012.

P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics of
users’ behavior and interaction: Network analysis of an online commu-
nity,” J. Amer. Soc. Inf. Sci. Technol., vol. 60, no. 5, pp. 911-932, 2009.
F. M. Harper and J. A. Konstan, “The movieLens datasets: History and
context,” ACM Trans. Interactive Intell. Syst., vol. 5, no. 4, pp. 1-19,
2015.

R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Proc. AAAI Conf. Artif. Intell., 2015,
pp. 4292-4293.

J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “ArnetMiner:
Extraction and mining of academic social networks,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2008, pp. 990-998.
Z. Han, P. Chen, Y. Ma, and V. Tresp, “Explainable subgraph reasoning
for forecasting on temporal knowledge graphs,” in Proc. Int. Conf. Learn.
Representations, 2021, pp. 1-24.

K. Leetaru and P. A. Schrodt, “GDELT: Global data on events, location,
and tone, 1979-2012,” ISA Annu. Conv., vol. 2, no. 4, pp. 1-49, 2013.
S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Subrah-
manian, “REV2: Fraudulent user prediction in rating platforms,” in Proc.
ACM Int. Conf. Web Search Data Mining, 2018, pp. 333-341.

S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge weight
prediction in weighted signed networks,” in Proc. IEEE Int. Conf. Data
Mining, 2016, pp. 221-230.

J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: Densifica-
tion laws, shrinking diameters and possible explanations,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2005, pp. 177-187.

F. Poursafaei, S. Huang, K. Pelrine, and R. Rabbany, “Towards better
evaluation for dynamic link prediction,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2022, pp. 32928-32941.

L

2

A

ZhengZhao Feng is currently working toward the
graduate degree majoring in software engineering
with Zhejiang University. His research focuses on dy-
namic graph neural network models and frameworks.

Rui Wang received the PhD degree from the Univer-
sity of Science and Technology of China (USTC) in
2021 and now is a ZJU100 research fellow with the
School of Software Engineering, Zhejiang University
(ZJU). Her research interests lie in graph computing
and storage systems, graph learning frameworks, ma-
chine learning systems, etc.

TianXing Wang is currently working toward the
graduate degree majoring in software engineering
with Zhejiang University. His research focuses on
both graph neural network algorithms and systems.

Mingli Song received the PhD degree in computer
science from Zhejiang University, China, in 2006. He
is currently a professor with the Microsoft Visual Per-
ception Laboratory, Zhejiang University. His research
interests include face modeling and facial expression
analysis. He received the Microsoft Research Fellow-
ship, in 2004.

Sai Wu received the PhD degree from the National
University of Singapore (NUS) in 2011 and now is
a professor with the College of Computer Science,
Zhejiang University. His research interests include
distributed databases, Al for databases, and native Al
database systems. He has won the best paper awards
with VLDB 2014 and SIGMOD 2023. He has served
as a Program Committee member for VLDB, ICDE,
SIGMOD, and KDD.

Shuibing He (Member, IEEE) received the PhD de-
gree in computer science and technology from the
Huazhong University of Science and Technology in
2009. He is now a ZJU100 young professor with the
College of Computer Science and Technology, Zhe-
jiang University, China. His research areas include
Intelligent computing, high-performance computing,
memory, and storage systems. He is a member of the
ACM.

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:45:51 UTC from IEEE Xplore. Restrictions apply.

http://snap.stanford.edu/jodie
https://dgraph.xinye.com/dataset
https://zenodo.org/records/7213796#.Y1cO6y8r30o
https://zenodo.org/records/7213796#.Y1cO6y8r30o
https://networkrepository.com/fb-wosn-friends.php
https://networkrepository.com/fb-wosn-friends.php
http://realitycommons.media.mit.edu/socialevolution.html
http://realitycommons.media.mit.edu/socialevolution.html
http://konect.cc/networks/opsahl-ucforum/
https://grouplens.org/datasets/movielens/25m/
https://networkrepository.com/fb-forum.php
https://networkrepository.com/fb-forum.php
https://www.dropbox.com/sh/palzyh5box1uc1v/AACSLHB7PChT-ruN-rksZTCYa{?}dl$=$0
https://www.dropbox.com/sh/palzyh5box1uc1v/AACSLHB7PChT-ruN-rksZTCYa{?}dl$=$0
https://www.yelp.com/dataset
https://github.com/mniepert/mmkb/tree/master/TemporalKGs
https://github.com/mniepert/mmkb/tree/master/TemporalKGs
https://doi.org/10.7910/DVN/28075
https://doi.org/10.7910/DVN/28075
https://github.com/amazon-science/tgl/blob/main/down.sh
https://snap.stanford.edu/data

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

