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DepAsync: An Asynchronous SNN Accelerator
Based on Core-Dependency
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Abstract—Spiking Neural Networks (SNNs) are widely used
in brain-inspired computing and neuroscience research. Several
many-core accelerators have been built to improve the run-
ning speed and energy efficiency of SNNs. However, current
accelerators generally need explicit synchronization among all
cores after each timestep of SNNs, which poses a challenge
to overall efficiency. This paper proposes DepAsync, an asyn-
chronous architecture that eliminates inter-core synchronization,
facilitating fast and energy-efficient SNN inference with com-
mendable scalability. The main idea is to exploit the dependency
of neuromorphic cores predetermined at compile time. We design
a DepAsync scheduler for each core to trace the running state
of its dependencies and control the core to safely forward to
the next timestep without waiting for other cores to complete
their tasks. This approach prevents the necessity for global
synchronization, allowing DepAsync to minimize core waiting
time facing inherent core and time imbalance in SNN workloads.
The comprehensive evaluations using five SNN workloads show
that DepAsync achieves 2.47x speedup and 1.55x energy efficiency
compared to the state-of-the-art synchronization architectures.

Index Terms—Accelerators, spiking neural networks, neuro-
morphic computing.

1. INTRODUCTION

RAIN-INSPIRED computing, or neuromorphic comput-
B ing, aims to simulate brain behavior to achieve artificial
intelligence energy-efficiently [1], [2], [3], [4]. Spiking neural
networks (SNNs) are widely used models for neuromorphic
computing and neuroscience research. Rather than conventional
artificial neural networks (ANNs) use only rate coding, SNNs
are more similar to biological neural networks, using various
coding with richer spatial-temporal information. Neurons in
SNNs are supposed to model simplified dynamics like bio-
logical neurons, mathematically equivalent to discrete-updated
differential equations (Fig. 1).

Several neuromorphic accelerators have been proposed to
exploit the great potential in low power consumption of SNNs.
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Fig. 1. Different neuron models between (a) ANN and (b) SNN.

They can be divided into two categories. The first kind of SNN
accelerators [5], [6] adopts an architecture similar to existing
ANN accelerators, which composes a 2-D systolic array of neu-
romorphic cores and a large shared global buffer. Several stud-
ies on optimizing datapath [5], SNN pruning [7] are dedicated
to improving performance. However, the ANN-accelerator-like
architecture separates computation and memory units, which
is unsuitable for SNNs. On the other hand, a near-memory
many-core architecture can dramatically eliminate redundant
data movement, which is adopted by some industrial neuro-
morphic chips, such as TrueNorth [3], SpiNNaker [8], Loihi [1]
and Darwin [9]. They comprise many neuromorphic cores with
built-in memories for computation, and an on-chip network
(NoC) for spike communication. There are many researches
[10], [11] on improving performance, flexibility, and energy
efficiency. In this work, we focus on this architecture.

Although recent many-core SNN accelerators can reduce
memory access to lower power consumption, they suffer from
low utilization caused by periodic all-core synchronization. The
synchronization procedure is necessary for the SNN compu-
tation mode mentioned before, where each core in an accel-
erator updates neuron states step-by-step. Each neuromorphic
core should wait for all other cores and spike transfers at
each timestep to ensure the correctness of the result, wast-
ing considerable time. Many solutions have been proposed
to improve SNN accelerator performance by eliminating or
relaxing synchronization. Unfortunately, they either use im-
mature technologies [12], support a limited range of neuron
dynamics [13], [10], or reduce the synchronization frequency by
speculative execution mechanism meanwhile bringing rollback
overheads [11].

In this work, we propose that DepAsync tackle the low
utilization problem caused by global synchronization. We first
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Fig. 2. Deploy pipeline on SNN accelerators.

explain synchronization from the perspective of data depen-
dency among neuromorphic cores in SNN accelerators. Then,
we introduce core dependency determined at compilation time
(Fig. 2) as prior information into time-driven architectures and
design a mechanism to trace running states of dependencies
for each core dynamically. With static core dependency and
dynamic running states, DepAsync can control cores to safely
forward to the next timestep, reducing redundant waiting time.
Our asynchronous mechanism eliminates all-core synchroniza-
tion without speculative execution. Making fine-grained con-
trol in core-imbalance and time-imbalance workloads is more
flexible, achieving higher speedup and energy efficiency. Our
experiments use five different SNNs to evaluate DepAsync.
The results show that DepAsync improves performance and
energy cost by 2.47x and 1.55x over plain time-driven
accelerators, and 1.87x, 1.40x over speculative-execution
architectures.

The main contributions of this work are three-fold:

o We identify that the synchronization in time-driven SNN
accelerators derives from data dependencies between neu-
romorphic cores and review time-driven architectures by
analyzing core dependencies.

e We introduce core dependencies as prior information to
time-driven SNN hardware accelerators and propose De-
pAsync to eliminate all-core synchronization to solve the
low utilization problem.

e We evaluate our architecture with five different SNN
workloads and demonstrate its advantages over existing
accelerators.

II. BACKGROUND
A. Time-Driven SNN Inference

Neurons in SNNs, acting as biological neurons, keep updat-
ing internal states (i.e., membrane potential) and output a spike
when the voltage reaches the preset threshold as illustrated in
Fig. 1, which gives SNNs the ability to model richer spatial-
temporal information than ANNs. For example, the Leaky
Integrate-and-Fire (LIF) model is prevalent nowadays in SNNs
because of its good balance between biological plausibility
and computing complexity. In mathematics, the internal state
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Algorithm 1 SNN inference in the time-driven manner

Input: neurons {x;}Y ,, synapse weight {w;; }nxn
Input: threshold vy, reset potential v,.5
Input: maximum timestep ¢4
Output: spikes {8;; } Nxt,nas
1: while t < t,,,, do
2. for all z; € {z;}}¥, do

3: x;.states = neuron_model(z;.states, ;.acc)
4: Sit = x;.states > vy,

5: if s;; then

6: x;.states = Uy

7: for all z; € ;. fanout do

8: Tj.0CC = Tj.0CC + Wi

9: end for

10 end if

11:  end for

12: t=t+1

13: end while

updating procedure can be represented as a differential equation
like Equation 1:

g =~V = Vo) + - M
where V' is the membrane potential, [ is the external input, and
Vist, Tm, g1, are parameters, representing resetting potential,
membrane time constant, and leak conductance, respectively.

However, it is complex and inefficient to calculate exact
analytical solutions using digital circuits. Thus, to efficiently
simulate an SNN on digital circuits, mainstream SNNs [14] use
discrete methods to solve differential equations in Equation 1,
where the discrete time dt is usually called tfimestep. Fig. 2
shows an example of SNNs, where x; denotes neurons and the
arrows represent connections between them (i.e., synapses) and
the overall SNN inference can be written as Algorithm 1.

B. Many-Core Time-Driven SNN Accelerators

Compared with GPU-based acceleration [15], [16] and
systolic-array-based SNN accelerators [5], [6], a custom-
designed near-memory architecture can leverage more energy-
efficient advantages of SNN as it eliminates intense data move-
ment between global and local memory and therefore has been
adopted by industrial neuromorphic chips [1], [3], [8], [9]. This
architecture usually comprises many individual neuromorphic
cores and an on-chip network, as illustrated in Fig. 3. The
neuron unit in each neuromorphic core calculates neuron state
updating step-by-step and the in-core memory stores neuron
states and synapse weights. For simplicity, we still use time-
driven accelerators to represent many-core architectures in the
subsequent sections without specific clarification.

A compilation step is required to deploy SNNs to time-driven
accelerators, as shown in Fig. 2. After compilation, the core de-
pendencies are fixed. Notably, most prevalent forms of synaptic
plasticity, such as STDP, focus on changing synapse weights
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Fig. 4.  SNN inference on time-driven SNN accelerators. (a) The topology

of core dependencies. (b) SNN inference workflow.

rather than adding or removing the connection themselves [17],
so they do not affect core dependencies after compilation.

The primary contribution to accelerating SNN inference is
exploiting inter-core parallelism within the single timestep.
Neuromorphic cores can safely parallelize neuron internal state
updating since there is no data dependency at this stage. Then,
all cores go through a synchronization stage to wait for spikes
generated in this timestep to arrive at destination cores via the
NoC. Fig. 4(a) illustrates the topology of a typical SNN infer-
enceona4 x 4 time-driven accelerator with black arrows repre-
senting core dependency, and Fig. 4(b) shows the corresponding
SNN inference workflow: cores perform neuromorphic com-
puting (black dots) in parallel before synchronization (in a red
rectangle), then work in a timestep-by-timestep manner. The
whole system can only simulate SNNs step-by-step, restricted
to per-timestep synchronization.

To implement a synchronization mechanism, TrueNorth uses
a 1 kHz synchronization trigger signal [3]. When receiving
this tick arrival, the neuromorphic core will be triggered to
read the spike buffer and forward to the next timestep. SpiN-
Naker adopts a similar strategy, defining a timer event by a
fixed number of clock cycles [8]. It also provides a catch-up
mechanism to handle time imbalance in SNN workloads. Loihi
[1] realizes synchronization more adaptively. After the neuron
state updates, cores in Loihi will send special packets that will
drill up spike packets remaining in NoCs. Darwin uses both
synchronization methods to give users more options [9].

Fig. 5(a) illustrates a more detailed workflow in each timestep
with adaptive global synchronization. In the NEURON state, the
core performs neuron updates and weightsum accumulation in
parallel. When a neuron firing, it will send a spike packet via

(a) all COMMIT received
all neuron all SYNC
State NEURON |URdated (giie SYNG  Lreceived,[giare commiT

: Weightsum
Weights|
G Accumulator

Synapse neuron state

MIT - State

SYNC
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send COMMIT:8 £ send SYNC

1 1
recv COMMIT‘ ‘recv SYNC

Fig. 5. Workflow of a timestep with adaptive global synchronization.

the NoC; when a spike packet arriving, it will be consumed by
the weightsum accumulator. When the core finished its com-
putational task of a timestep, it turns to a SYNC state, and
sends SYNC packets to its neighbors (Fig. 5(c)). If the core has
finished and received SYNC from its neighbors, it turns to the
COMMIIT state and sends COMMIT packets back (Fig. 5(d)).
These barrier packets will flush all in-flight spike packets in
the NoC. When a core has received all COMMIT packets, all
neuron computations and spike transmissions are finished. Then
the core can forward to the next timestep. Fig. 5(b) shows the
detailed global synchronization mechanism in each core.

C. Under-Utilization Problem

Although time-driven SNN accelerators dispatch neuron-
updating computation to parallel neuromorphic cores, the spar-
sity nature of spiking data in SNN workloads is not adequately
considered. Compared with dense multiply-and-accumulate op-
erations in ANNSs, highly sparse spikes imbalanced work-
loads among timesteps and cores, hindering overall hardware
acceleration.

1) Imbalance in SNN Workloads: We perform an SNN
inference with several workloads to demonstrate workload im-
balance. The evaluation details are discussed in Section V-Al.
The SNN runs 100 timesteps on a 4 x 4 accelerator. Fig. 6(a)
shows that generated spikes exhibit significant variability across
timesteps, and Fig. 6(b) renders 4 x 4 neuromorphic cores with
different colors and numbers in each circle representing nor-
malized firing rates of each core. Timestep imbalance is from
temporal sparsity in SNNs, that is, neurons don’t fire at all
timesteps. On the other hand, the core imbalance is from spatial
sparsity, which means not all neurons fire at each timestep.
Thus, the total number of spikes is different.

2) Under-Utilization Caused by Synchronization: The under-
utilization problem in time-driven accelerators has been ob-
served in [11], [8]. It’s difficult for a rigid synchronization
mechanism to simulate imbalanced workloads. Fix synchro-
nization signals cannot be changed dynamically, which is un-
suitable for temporal-variant spike rates. Synchronization mes-
sages after the timestep finish make some cores always wait
for the slowest core in the system, which cannot tackle inter-
core imbalance. What makes it worse is that spike transfer time

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 01:26:52 UTC from |IEEE Xplore. Restrictions apply.



192

=)

(%]

$

308

%)

206

Q

Q

Eo4

z

E0.2

(s}

z

005626 40 60 80 100
Timestep
(a)

Fig. 6. (a) Time-imbalance and (b) Spatial-imbalance in SNN workloads.

o e
% 0.8 207 . e
o o b
0.6 S ‘
2 £0.6 o
[ N e
2o0.4 =
= 5
> % 0.5
s
0.2 o
2 5 v
=) 0.41 "~

o
o

16 32 64 128 256 0 100 200 300
Number of Neuromorphic Cores Firing Rate (Hz)

(a) (b)

Fig. 7. Under-utilized cycle ratio of time-driven accelerators. The under-
utilization increases with (a) scale and (b) firing rate.

in NoC grows as the number of cores scales up, and workloads
with higher firing rates generate more spikes, which cause more
NoC congestion. Both of these factors deteriorate the under-
utilization problem.

Fig. 7(a) illustrates that the utilization ratio decreases with the
growth of spike transfer time caused by increasing scales. Then,
we adjust the average firing rate of SNN workloads. The results
in Fig. 7(b) show that the under-utilization problem becomes
worse as the firing rate increases, due to more generated spikes
slowing down the transmission ability of the NoC.

D. Related Work

There are several approaches to reduce synchronization.

Firstly, leverage novel devices. Memristors are efficient em-
ulators of biological neurons and synapses, because of the sim-
ilarity in using ion migration as the fundamental mechanism.
Analog circuits with memristors can directly simulate neu-
ron dynamics [18], [19]. Thus, timesteps become unnecessary
in such total neuromorphic chips. Recently, Chen et al. [12]
used a passive electrochemical memory (ECRAM) array to
improve programming accuracy for analog circuits. However,
these emerging devices are still in the research stage and are
less mature than large-scale integrated circuit technology.

Secondly, use spike event queues. Minitaur [13], PEASE [20]
and NeuroEngine [10] use ordered event queues to manage
spikes and get rid of global barrier-based synchronization. The
event-driven neuromorphic core merges timestep-by-timestep
computations and performs computations only at spike arrivals.
This behavior skips some computational details in Equation 1,
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Fig. 8. Synchronous SNN accelerators with speculative execution. (a) SNN

workflows with SE mechanism. (b) RR overheads.

making it unsuitable for some mechanisms such as time-variant
leak mechanism, dynamic synaptic conductance and second-
order neuron models like the Izhikevich neuron model [21].
For the leak mechanism, Minitaur [13] fuses step-by-step leaks
into one, and PEASE [20] simplifies the step-by-step leak by
considering the leak at each timestep as a constant. Both lead
to different results compared to the timestep-driven counterpart,
where the leak at each timestep depends on the current neuron
states. For second-order neuron models, an input spike can
affect the next several timesteps when the input current (I in
Equation 1) decays over timesteps. In this case, updating neu-
rons only at spike arrivals may make neurons generate spikes
from the past timesteps, leading to inconsistent results with
Algorithm 1.

Thirdly, additional mechanisms are incorporated to miti-
gate synchronization. NeuroSync [11] proposes a speculative-
execution (SE) and rollback-recovery (RR) mechanism to
reduce synchronization frequency. However, periodical all-
core synchronization is still inevitable, and the rollback-and-
recovery overheads grow with the firing rate increases. Fig. 8(a)
gives a 4-core example of the SE mechanism: cores run specula-
tively with rollback and recovery until the period synchroniza-
tion. Fig. 8(b) shows RR cycles of time-driven accelerators with
speculative execution, identifying RR overheads become grad-
ually inevitable when more spikes are generated. Speculative
execution mechanisms cannot fully leverage their advantages
without the cooperation of predictors. SpikeNC [22] proposes
a software agent-based asynchronous scheme. However, it does
not leverage core dependencies and is limited at the SNN layer
level. It also lacks hardware design. In this work, a novel time-
accurate architecture is proposed to eliminate synchronization.
We consider inter-cores dependencies as an additional control
mechanism to achieve our design goals. Then, we realize De-
pAsync by adding a scheduler into each core and extending the
spike communication mechanism via message passing.

The similar idea has been exploited for code generation
with less barriers in compilers for distributed shared
memory systems [23], task scheduling in real-time
systems [24], etc. They assume that the execution time
or computation cost of a computation task or operator
is piror information, so that some algorithms such as
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DAG-based analysis or dynamic programming can be
applied to obtain a static schedule. However, the execution
time of each timestep in neuromorphic computing is
dynamic. Thus, we need DepAsync to realize a dynamic
schedule mechanism. This paper is the first to propose
a dependency-aware, message passing mechanism to
eliminate global synchronization in many-core neuromorphic
architectures.

ITII. DEPASYNC DESIGN
A. Ignored Inter-Core Dependencies

Line 6-9 in algorithm 1 demonstrates that synapses con-
nect data dependencies between neurons. At timestep ¢, post-
synapse neurons update their internal states, requiring spikes
generated by pre-synapse neurons at timestep ¢ — 1. When we
dispatch neurons to many-core SNN accelerators, dependencies
between neurons are inherited by core dependencies. Similarly,
we call core A a pre-dependency of core B if A sends spikes
to B; versus the post-dependency.

Although these dependencies are Read-After-Writes
(RAWSs), synchronization becomes necessary in time-driven
architectures for the correctness of results. In most SNN
accelerators, synchronization is rigid, since it requires all cores
to wait together, like a barrier primitive. However, each core
is supposed to wait for only part of the cores on which it
depends. When all pre-dependencies of a core finish timestep
t and all spikes are received, it can safely forward to the next
timestep without waiting for other unfinished cores.

Fig. 9 illustrates a 4-core example, where grey arrows denote
data dependencies like the topology at the left. Meanwhile,
black, green, and red dots represent core workloads at finished,
running, and unfinished timesteps, respectively. At this mo-
ment, core 0 is running at timestep ¢o, core 1-2 are at ¢, and
core 3 is at tg. For core 0, no pre-dependency means it can keep
forwarding to the next, while cores 1 and 2 rely on spikes from
core 0. Thus, they can only safely proceed ¢, after the current
timestep finishes without waiting for the slowest core 3. Finally,
core 3 only has a forward window [tg, 1], since core 1 and 2
are its pre-dependencies.

On the other hand, post-dependencies limit the size of the
forward window (red rectangles in Fig. 9(b)), which means
how many timesteps a core can forward without waiting for
its post-dependencies. In neuromorphic cores, the memory size

assigned for buffering input spikes is finite, which means there
may be no more empty buffer for spikes generated at far future
timesteps. Here, we set the size of the forward window is 2
for visualization. For example, with core 1 and 2 constraints
to buffering input spikes from 2 more timesteps, the forward
window of core 0 will be [to, t3]. In this case, if core 0 runs
over t3 fast enough that core 1 or 2 is still working on ¢4, it has
to wait for them to release some spike buffers when starting to.

B. Tracing Dependencies and Running States

The dependency analysis above gives neuromorphic cores the
ability to eliminate whole-system synchronization. To imple-
ment such a mechanism, the main challenge is that each core
has to trace dependencies and their running states.

Storing dependencies. For most SNNs, connections (not
weights) between neurons are determined once the network is
defined. When deployed to accelerators, SNNs are first par-
titioned into several groups, each corresponding to a logic
neuromorphic core. Then, these logic cores are mapped to
physical cores in real hardware by mapping algorithms [25],
[26] designed for reducing spike transfer latency and on-chip
network communication congestion. After mapping, fixed real
core dependencies can be stored at in-core memories as other
neuron parameters.

Tracing running states. Unlike static dependencies, running
states dynamically change during the whole SNN inference,
which is traced by NoCs in our proposed architecture. NoCs in
most SNN accelerators are mainly used to transfer generated
spikes. As the communication component of the system, they
are also responsible for transferring meta information, such as
input parameters [9], core statistics [8], and synchronization
messages [1]. Naturally, we allow neuromorphic cores to trans-
mit running states to their dependencies.

Generally, packets in NoCs compose packet headers, includ-
ing meta information like packet type and routing information
and packet bodies containing different message payloads. As
shown in Fig. 10, we add a new kind of packet, DEP, for trans-
mitting running states. The DEP packet body has three compo-
nents. The identifier entry denotes the dependency the packet
belongs to. The timestep entry records the running progress
of dependencies. The flag entry is for distinguishing running
states. In this work, flag is only 1 bit, with O for a timestep
finish (FINISH packet), and 1 for a timestep start (START
packet). Then, the core procedure in DepAsync is changed to
Algorithm 2, where red lines highlight the differences.

In each neuromorphic core, two tables are prepared for run-
ning states of dependencies, which will be updated at the ar-
rival of START/FINISH packets. Assume a core can accept
spikes from m future timesteps, its safe forwarding conditions
at timestep ¢ is two-fold: 1) all its pre-dependencies finish ¢;
2) all its post-dependencies start ¢ — m + 2. If any condition is
unsatisfied, the core turns to a wait state and keeps receiving
and monitoring new packets. Once new DEP packets arrive
and carry relevant information, the core is triggered to forward
to the next timestep. When m =1, cores holding the output
layer of the SNN, which have no post-dependencies, will first
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Algorithm 2 Neuromorphic core procedure in DepAsync
1: while t < t,,,, do
2 if not allowed to forward to ¢ then
3 waiting
4:  end if
5:  send START packets to its pre-dependencies
6
7
8
9

calculate weight sum, apply learning rules
for all x; in this core do
update z;.states
: if x; fires a spike then
10: send spike packets to post-dependencies

11: end if
12: end for
**Ulitiﬂ g ij[ﬂehfeﬂi 7{1{]‘ eﬁ

13:  send FINISH packets to its post-dependencies
14: =t+1
15: end while

forward to ¢ + 1, then wake up other cores in a cascading way.
In this case, the whole system falls back to the synchronization
mechanism. Otherwise, if m > 1, DepAsync can provide fine-
grained control of neuromorphic cores with output correctness
at every timestep.

Formally, the safe forwarding condition at Line 2 in Algo-
rithm 2 is calculated by Equation 2:

cond = pre-cond A post-cond

Npre Npost
= A\ &es=tmal A\ 2 >t —mt 1
i=1 i=1

@)

where Np,e, Npose are the number of pre- and post-
dependencies, ¢ t"°*" denote the timestep from received
FINISH/START packets, and t““" represents the current
timestep of each neuromorphic core.

Fig. 11 gives an example of the DepAsync workflow. The
topology is the same as Fig. 9, and the spike buffer can hold
spikes from 2 timesteps (i.e., m = 2). Table headers pre, post
and cur denote tables for pre-dependencies, post-dependencies,
and the current timestep, respectively. The ¢; within the paren-
theses at the beginning represents core dependency topology
corresponding to Fig. 9. Solid arrows represent safe forwarding
and dash arrows are DEP packets sent by neuromorphic cores.
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At the start moment o, we also assume running states of cores
align to Fig. 9 and timestep ¢35 is the end. In detail, core c( has
finished timestep to, c; is running at ¢;, while c5 is at the end
of t1, finally, cg is still working at ¢y. In this case, the contents
of the tables for pre- and post-dependencies are determined. cg
is stopped after t5 (filled in the red cell) because of the post-
condition (illustrated as a red font), and ¢y is stuck at t; for
the same reason. At moment @, c5 safely forwards to its next
timestep t1. Since ¢; and ¢y are pre-dependencies of c3, START
packets at ¢; from c3 are generated and sent to them. After a
transmit latency in the NoC, ¢; and ¢, receive the packets and
update their post-tables. In particular, the update in ¢, satisfies
the post-condition, thus ¢, is wakened up to work on to, which
also sends a START @2 packet to cg. When it comes to moment
9, c3 surpasses the progress of ¢1, which means it has to wait
for pre-dependency c; to finish ¢; first. Then, at the moment 9,
c1 accomplishes ¢; and successfully goes to the next timestep,
therefore it sends a FINISH@1 to ¢3 and a START@2 to c¢.
Simultaneously, co ends t5 and waits c3 again. The FINISH@ 1
from ¢; and FINISH@2 from co arrive c3 at time e, then
replace the timesteps recorded in the pre-table and trigger c3 to
proceed to to. Then c3 triggers co after a while. Finally, at the
moment @, c3 goes to the last timestep, sending FINISH@2,
which satisfies pre-cond of cz. Overall, neuromorphic cores
in DepAsync alternately proceed until the simulation end, and
leverage dependencies to ensure correct results without all-core
synchronization.

IV. DEPASYNC IMPLEMENTATION

In this section, we implement DepAsync by three critical
components in neuromorphic cores. Fig. 12 gives an overview
of our architecture. We first introduce the novel DepAsync
Scheduler, which plays a core role in dependency analysis.
Then, we design our spike buffers used for storing future
spikes, making it possible to proceed neuromorphic core with-
out whole-system waiting. Next, we enhance the packet gener-
ator to support new DEP packets that cooperate with the De-
pAsync scheduler. Finally, routers in NoCs are modified, ensur-
ing correctness during the DEP packet transmission. It is worth
noting that the DepAsync mechanism is suitable for a wide
range of neuron and synapse models, and we adopt the compu-
tation (including neuron update and synapse accumulation) and
firing control components similar to current accelerators [1],
[5]. For example, the LIF model needs a multiplier to implement
the leak mechanism, an adder to add on the accumulation that
is accumulated after spike arrivals, and a comparator to detect
whether the membrane voltage exceeds the threshold (i.e. firing
a spike).

A. DepAsync Scheduler

The main component for core dependency is the DepAsync
Scheduler with a working mechanism illustrated as Fig. 13. The
scheduler is responsible for tracing dependency running states
and controlling core forwarding.

Tracing dependency. The scheduler keeps monitoring in-
come packets from the network interface. When DEP packets
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Fig. 11. A 4-core example of the DepAsync workflow with two spike buffers.
(7 V) buffer for spikes generated at far future timesteps. Hence, post-
Network Interface dependencies limit the size of the forward window (m). All
e / timesteps stored in the post-dependency table are compared
_ with ¢ — m, ensuring all post-dependencies have enough space
Synapse - |Weight Sum| Circular 3 . . ‘e .
Memory  Accumulator  Spike Buffer 5 for buffering spikes. These two conditions can be formularized
3 .
o - as Eq. 2. The DepAsync checker has a bitmap for all depen-
% :r:;. ’ dencies and a comparator to determine the conditions.
= o~ . (— . . . .
g Neuron Weight | (DepAsync Scheduler The scheduler is parallel to the neuron unit, and is activated
State Sum . . .
Dependency ] when DEP packets arrive or a new timestep begins. The core
Updater . .
of receives one packet per cycle, therefore only one entry will be
§§ Preden o updated and checked at a time. When starting a new timestep,
i1 [P— i the bitmap is updated by iterating through the dependency
Teble tables. This traversal always completes before the new timestep
) ends, as the number of neurons within a core is generally much
greater than the core dependencies.
Fig. 12.  Overview of DepAsync architecture.
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Fig. 13.  Datapath in the DepAsync scheduler.

arrive, the DepAsync updater will store the carried timestep
into the pre- or post-dependency table decided by the flag
entry, with the address given by dep id.

Controlling. The DepAsync checker in the scheduler gen-
erates control signals to direct the neuromorphic core, whether
forwarding to the next. Firstly, the timesteps stored in the pre-
dependency table are compared with the current timestep t,
checking whether the next timestep requires potential unar-
rived spikes. This condition guarantees the data dependencies.
On the other hand, the memory assigned for buffering input
spikes is limited, which means there may be no more empty

B. Circular Spike Buffer

The spike buffer in DepAsync is circular, storing incoming
spikes for subsequent processing. At the end of each timestep,
buffers are rotated one slot. Circular spike buffers are generally
adopted for supporting synapse delay [8], which means spikes
received at ¢ are used at ¢ + delay. In this work, other slots store
future spikes from pre-dependencies, which are logically the
same as spikes with some delay. DepAsync works with synapse
delay as well, subject to:

Ngjor = maz_delay +m — 1 3)

Fig. 14 shows how to store a spike in the circular buffer.
The timestep entry added by the delay determines which slot
to access. As constrained by the scheduler, the slot destination
never conflicts with the used slot. The occurrence of conflicts
is due to excessive core forwarding, which causes the slots to
loop back. However, in DepAsync, we track how many slots
are available for dependencies through post-dependency tables,
and if none are available, the core will pause and wait for new
START packets. Thus, the destination slot in the circular spike
buffer never conflicts.
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C. Packet Generator

To work with dependency analysis performed by the sched-
uler, the packet generator is supposed to correctly send packets
of DEP type.

As illustrated in Fig. 15, entry flag and timestep in the
DEP packet are trivial, directly determined by the DEP packet
type and the current timestep. On the other hand, we need
an additional mechanism to generate the correct dep id. As
mentioned before, dep id is for addressing dependency tables.
Thus, a neuromorphic core ought to be aware of its reversed
index in pre- and post-dependencies, which is static and de-
termined along with dependency relationships. In DepAsync,
we store them at dependency tables. Fig. 15 gives an example
corresponding to the topology in Fig. 9. The entry DEP ID
stored in one core points to the index in its dependencies. Then
the destination core of a DEP packet can decide which line in
the dependency table to write.

D. Multi-VC NoC Router

The basic assumption in DepAsync is that START/FINISH
packets precisely represent the start and finish of a timestep
of neuromorphic cores. This implies that the START/FINISH
packets must arrive at destination cores in order, and the FIN-
ISH packet at timestep ¢t must be later than all spike packets.
It is naturally satisfied if the on-chip network orderly transfers
packets.

Recently, prevalent NoCs have adopted the virtual channel
technique to improve network performance. Each router port
has more than one physical channel and concurrently transmits
several packets by multiple channels. Each input port in a router
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has an arbiter to grant a request from multiple virtual channels
at each cycle in a round-robin strategy [27], which makes the
packet transmission out of the original order and violates the
assumption in DepAsync.

To cooperate DepAsync with virtual channels, the spike
packets should be prior to the FINISH packets with the same
source, destination, and timestep. Fortunately, routers with vir-
tual channels generally mask out invalid channels before arbi-
trating one to transmit [27]. Thus, an additional mask is attached
as shown in Fig. 16. In this case, FINISH packets always
wait for spikes transfer first, and START packets are orderly
transmitted as well. Noticing that the out-order of spikes within
the same timestep is insignificant for correctness, DepAsync is
capable of benefiting from performance improvement due to
virtual channels.

The NoC is responsible for both synchronization packets and
spike packets. Upon receiving a SPIKE packet, the core stores it
in the spike buffer, where it awaits processing by the weightsum
accumulator. Conversely, DEP packets are handled directly by
the DepAsync scheduler. From the perspective of the NoC, the
only difference between these packets during transmission is
their payload (Fig. 10). In a typical Network-on-Chip (NoC),
the transmission of a packet involves several stages: route com-
putation, virtual channel allocation, switch arbitration, and link
traversal [27]. Throughout these steps, the NoC only utilizes
information from the packet’s header flit. For instance, it uses
the src and dst entries (Fig. 10) for routing, and the V C entry to
determine the channel for the next hop. During this process, the
payload information is transparent to the NoC. Building on this
foundation, we have extended a priority arbitration mechanism
for two specific packet types: DEP and SPIKE.

Aside from adding a priority level to DEP packets, our NoC
uses 2-cycle pipeline with lookahead XY routing as the router
microarchitecture. And we use the flit-based flow control with
virtual channels to mitigate head-of-line blocking and maximize
bandwidth utilization. For buffers in the NoC, we choose the
credit-based buffer backpressure mechanism. The NoC protocol
in this paper adopts a classic NoC design [27] that is widely
used in neuromorphic cores [1], [2], [8].
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TABLE 1
AREA (mm?)

Component [ Sync [ DepAsync
Neuron 391 391
Synapse 13.36 13.36

Communication 3.22 4.08
Spike Buffer 0.91 1.82
Scheduler - 0.31
Total 21.39 23.48

V. EVALUATION

A. Experimental Setup

1) Experimental Platform: To model performance, we
develop a cycle-accurate simulator written in C++ to obtain
workload latency. Neuromorphic cores execute instructions in
Algorithm 2 cycle by cycle, and the topology of the NoC is 2D-
mesh, and the routing algorithm is XY routing. This work pri-
marily focuses on the synchronization mechanism within many-
core architectures. It is important to note that DepAsync does
not enhance the computational capacity (such as the maximum
throughput); instead, it improves the utilization. Thus, each core
in our simulator updates one neuron and sends/receives one
packet per cycle for DepAsync and its baselines. The NoC
component is implemented with reference to gemS5 [28] in order
to provide cycle-accurate packet communication. The logic in
each core is implemented as pipelines to align as closely as
possible with the hardware.

The energy and area model used in this work originates from
NeuroSim [29]. We extend the NeuroSim to support our SNN
workloads, where the energy cost of a single operation (such as
neuron updates, buffer reads/writes, and NoC hops) is first syn-
thesized and modeled, and then the overall energy consumption
is estimated by multiplying it with the number of operations.
The energy and area models of NeuroSim are calibrated with
the Predictive Technology Model (PTM) [30], which is well-
suited for early-stage design space exploration due to its public
availability and broad technology node coverage, in contrast to
industry transistor models. In this work, DepAsync is evaluated
using 22nm PTM technology.

Each core of DepAsync can accommodate up to 4,096 neu-
rons, 524,288 synapses, and 512 core dependencies. The limi-
tation of the number of dependencies leads to a new constraint
in compilation. Fortunately, 512 core dependencies are enough
for our workloads (Sec V-C2). The size of the spike buffer
is dependent on the parameter m. In our current design, if
the buffer is full, we drop subsequent spikes. Considering that
the spike buffer is much smaller than the neuron and synapse
memories, we set a sufficient spike buffer size (2,048) to avoid
dropping spikes. Thus, the drop never occurs in our evaluation.
In the following experiments, m is 2 unless otherwise specified.
Additionally, we use a 2-cycle router with 4 virtual channels for
communication. For a 128-core setting with m = 2 and 4 virtual
channels, the area of each component is listed in Table I. The
area overhead caused by DepAsync is 9.8%.

TABLE II
WORKLOADS FOR EVALUATION. HERE 64C3 REFERS TO 64
CONVOLUTION KERNELS WITH KERNEL SIZE 3; AP2 REFERS TO
AN AVERAGE POOLING WITH SIZE 2; AND FC REFERS
TO A FULL CONNECTED LAYER

‘Workload
(#Timestep) ‘ #Neuron #Synapse ‘ #Core Structure
Input-16C5-
N(I;\IOI;T 7,298 566,864 16 32C3-AP2-
8C3-10FC
Input-16C5-
N_?;[(I)\(I)I)ST 25,726 1,169,280 16 AP2-32C3-
AP2-10FC
Input-16C5-
] AP2-32C3-
DVS(‘TS(SS)“”W 130,923 | 33,917,568 128 | AP2-64C3-
AP2-512FC-
11FC
Input-16C5-
AP2-32C3-
CIFAR10DVS 32C3-AP2-
(500) 174,218 51,254,400 128 64C3-64C3-
AP2-512FC-
10FC
CIFARIO 753,664 632,332,288 1,024 Resnet18
(500)
Synthetic-1M
(500) ‘ M ‘ 100M ‘ 256 ‘

2) Baselines: We compare DepAsync with two time-driven
architectures, Sync and SE. The Sync is based on a global syn-
chronization mechanism like Loihi [1]. On the other hand, the
SE adopts the speculative-execution and rollback-and-recovery
mechanisms in NeuroSync [11]. For fair comparisons, param-
eters such as core count, spike buffer size, and the number of
virtual channels are the same across the three architectures. We
also validate the output spike results of the two baselines to
guarantee the SNN outputs are exact same as DepAsync.

We do not compare against time-driven accelerators with
fixed synchronization signals such as TrueNorth [3] and SpiN-
Naker [8], because their synchronization frequency relies on
user settings (such as 1 kHz). It is inconvenient to choose a
suitable frequency for all SNN workloads which have different
spike counts. The Sync architecture provides a more adap-
tive synchronization way to make sure all in-flight spikes are
received.

3) Workloads: Firstly, we select five different real-data SNN
workloads to evaluate DepAsync as shown in Table II: two
small-scale workloads on MNIST [31] and N-MNIST [32]
datasets, and two larger-scale worklods on DVS-Gesture [33],
CIFAR10DVS [34], and CIFARI10 [35] datasets. For MNIST,
dense images from the dataset are encoded by a Poisson pro-
cess. For others, they contain real spike trains generated from
digital images or dynamic vision sensor (DVS) cameras. We use
these real-world datasets to train SNNs with a SNN framework
Spikingjelly [16]. The accuracy of the models used in this paper
is 98.7%, 91.8%, 91.3%, 67.7% and 80.4%, respectively. Be-
sides, a larger synthetic SNN workload, consisting of 1 million
neurons and 100 million synapses, is incorporated in our evalu-
ation. All workloads use the LIF model and run 500 timesteps.

We convert different workloads to a common configuration
format containing SNN structures and sample data. The SNNs
are partitioned layer-by-layer where each layer takes several
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Fig. 17.  Overall results. (a) Speedup. (b) Energy efficiency.

logic cores. Then, we adopt an efficient mapping algorithm
[25] to map high-level SNN logic cores to low-level hardware
neuromorphic cores for future simulation.

B. Overall Results

Compared with the two baselines, we show the over-
all speedup and energy efficiency of DepAsync. Fig. 17
illustrates the improvement of SE and DepAsync over Sync
on five workloads. In summary, DepAsync achieves 2.47x and
1.55x harmonic mean speedup and energy efficiency over plain
synchronous time-driven accelerators, meanwhile 1.87x, and
1.40x over speculative-execution architectures. Exploiting more
core parallelism than Sync speeds up DepAsync. DepAsync
performs better than SE because it schedules cores by core
dependencies, avoiding misspeculation and rollback overheads.
The DepAsync approach demonstrates a more modest improve-
ment in energy consumption compared to its speedup gains,
primarily because DepAsync primarily optimizes waiting time
rather than reducing actual neuron computations.

DepAsync leverages core dependencies to eliminate all-core
synchronization. In the worst case, if a core with many post-
dependencies is always the slowest one, these post-cores still
wait at every timestep, formally equivalent to a many-core syn-
chronization. However, this situation is quite unlikely to occur
in a real data SNN workload.

Fig. 18(a) shows the latency breakdown of Sync, SE, and De-
pAsync. The waiting time in both SE and DepAsync decreases
as the level of relaxation to synchronization increases. Although
the idle time of SE cores is less than DepAsync, the cost of
RR operations remains and even slightly grows due to the more
aggressive speculative execution. For fair comparison between
SE and DepAsync, the rest experiments set the synchronization
period the same as the number of spike buffer slots m. Fig. 18(b)
shows the DepAsync scheduler and additional spike buffers
take about 11.4% of total energy consumption, and the DEP
packets communication takes 3.3%. As for the memory cost,
the additional spike buffers and dependency tables take 24 KB
and 2 KB SRAM per core, occupying 4.3% and 0.4% more
memory, respectively.

At circuit level, most many-core neuromorphic chips adopt
a globally-asynchronous-locally-synchronous (GALS) technol-
ogy [11, [2], [3], [8], [9]. The computational circuits use syn-
chronous design and the clock signals are generated locally
in each core. On the other hand, the NoC uses asynchronous
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design. With GALS, the global high-frequency clock is unnec-
essary, tremendously reducing the clock energy consumption.
However, the asynchronous handshake protocol takes 30%-50%
energy cost of the NoC part, because of its frequently signal
flips.

Fig. 19 captures a slice in the MNIST workload, showing the
difference between DepAsync and synchronous architectures,
where colored lines represent neuron computation in a single
timestep. Periodic synchronization can be observed from blanks
lying in two workload lines. Meanwhile, DepAsync makes
neuromorphic cores consecutively execute computations.

C. Sensitivity Analysis

We analyze the impact of spike buffer size, dependency
density, firing rate, and NoC virtual channels on DepAsync.
Furthermore, we also analyze the performance of DepAsync in
the presence of cyclic connections and its sensitivity to different
mapping algorithms in the supplementary materials.

1) Spike Buffer Size: Fig. 20 shows the impact of the
spike buffer size on DepAsync performance. When the spike
buffer size becomes large, more future timestep spikes can
be stored, leading to a larger forwarding window and better
performance. Different workloads have different performance
converge speeds. For instance, DepAsync gains up to 3.79x
speedup than baseline on DVS-gesture workloads. However,
larger spike buffers lead to more energy consumptions. Thus,
it is a trade-off in real applications. Across all workloads, the
best choice of spike buffer size is 2 or 4, leading us to select
m = 2 in the experiment settings.
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Fig. 20. The impact of the spike buffer size. The number in the legends
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2) Dependency Density: The core dependencies in current
workloads are not very dense because the partition algorithm
aggregates neuron connections into neuromorphic cores. We
manually add the density of core dependency (may not occur
in real-data workloads) and evaluate DepAsync at different
density levels. The results in Fig. 22 show that the performance
of DepAsync decreased near linearly when core dependencies
become denser and that DepAsync has advantages until the
density reaches 70%, which is much higher than the density of
normal workloads as shown in Fig. 21. These results suggest
that a well-designed partitioning algorithm should aim to place
connected neurons on the same core as much as possible to
reduce core dependencies.

3) Firing Rate: Furthermore, we compare SE and De-
pAsync at different levels of firing rate. As mentioned, the
more spikes are generated, the more likely rollback and re-
covery (RR) caused by misspeculations occur, which hints at
overall performance. We change neuron parameters 7,,, Vi s
in Equation 1 to control the average firing rate in SNN work-
loads. Fig. 23 demonstrates that the more spikes are generated,
the more DepAsync exceeds SE, as the performance of SE is
limited by the massive RR procedure at a high firing rate. It
is worth noting that practical high-performance SNNs, either
ANN-converted or trained by learning rules behave quite dif-
ferently from real biological neural networks since the sparse
coding and learning mechanism in the human brain is still an
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execution time of DepAsync with different cyclic connections.

open problem. Thus, recent SNNs generally have a higher firing
rate, in which case DepAsync provides faster SNN inference
performance.

4) Cyclic Connections: DepAsync analyzes dependencies
to control core behavior. When there is a cyclic connection,
for example, two cores point at each other, both cores are pre-
dependencies to one another. In this case, there are deadlocks
when m = 1. However, when m > 1, the post-conditions are
always satisfied, and the pre-conditions are broken once all
cores finish the current timestep, which means the slowest core
will trigger others at its end. Eventually, the whole system is
fallback to a synchronous architecture. We exchange part of
neurons between different neuromorphic cores and core Cj to
simulate the cyclic connections because Cy holds neurons in the
input layer and has no pre-dependencies in the default partition.
As shown in Fig. 24(a), Cy has to wait for other cores when
there are cyclic connections. Fig. 24(b) shows that the perfor-
mance decreases by 30% at worst with such cyclic connections.
Fortunately, some cyclic connections can be reduced in software
compilers with an additional restriction.

5) Mapping Algorithms: The mapping algorithm in SNN
compilers is responsible for mapping the logic cores to real
physical cores, which affects the distance between a core and
its dependencies. Three mapping algorithms are involved in our
experiments: Plain means logical cores are orderly mapped to
hardware cores; HSC leverages the spatial locality of Hilbert
space-filling curves; HSC+FD finetunes HSCs to exploit more
locality [25]. We calculate the average physical distance (mea-
sured by NoC hops) between a core and its dependencies. The
results are 2.37, 2.54, and 2.40 hops when using HSC+FD,
HSC, and plain mapping algorithms, respectively. The dif-
ference in physical distance affects the overall performance.
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Fig. 26. The impact of NoC virtual channels.

Fig. 25 shows the normalized cycle cost of Sync, SE, and De-
pAsync with three mapping algorithms. The results demonstrate
that DepAsync performs worse than two baselines with poor
mapping, which means it is more sensitive to the mapping
result. Thus, a better algorithm is necessary for DepAsync.
Nevertheless, DepAsync with poor mapping strategies still runs
faster and costs less energy than the baseline synchronization
architecture.

6) NoC Virtual Channels: Fig. 26(a) shows the average
cycles of spike packets blocked in NoC routers. The block cycle
decreases when there are more channels, meaning a larger NoC
bandwidth exists. The block cycle grows when we increase
m in both SE and DepAsync. The more timesteps we allow
neuromorphic cores to process, the more spikes will be in-
flight simultaneously. It is worth noting that the block cycle in
DepAsync is smaller than that in Sync when m = 2. This is
because additional packets in DepAsync(m = 2) are from only
one future timestep, thus are less than additional packets for
global synchronization in Sync. Moreover, block occurs less
in DepAsync than in SE with the same m. That is because
when cores are allowed to process future timesteps, the NoC
in DepAsync is only supposed to transfer future spikes, while
the NoC in SE has to transfer packets generated by Rollback-
and-Recovery operations as well. As for overall performance,
Fig. 26(b) demonstrates speedup due to additional virtual chan-
nels, where DepAsync overwhelms Sync and SE in all settings.

D. Comparison to Other Hardware Baselines

The ANN-accelerator-like architectures differentiate from
our many-core architectures in SNN inference manners. In De-
pAsync, layers in SNN networks are deployed to different neu-
romorphic cores and computed simultaneously, as mentioned in
Section II-B. However, the ANN-accelerator-like architectures
act as a layer-sequential mode where a layer will be processed
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after computing all timesteps of the previous layer, which is not
suitable for SNN networks with no clear layer structure. There
are several studies on ANN-accelerator-like architectures [5],
[6]. Fig. 27 shows that DepAsync achieves 74.2x speedup than
the state-of-the-art ANN-accelerator-like architecture SATA [6]
which optimized SNN dataflow to reduce data movement en-
ergy overhead. In addition, the performance of DepAsync is
significantly superior to that of CPUs and GPUs, with a ratio
of 695.58x and 315.64x, respectively.

E. Scalability of DepAsync

Finally, we evaluate the scalability of DepAsync. To manu-
ally control the workload scale, a synthetic workload is gen-
erated like Izhikevich et al. [21], with both excitatory and in-
hibitory neurons involved. Synapses and connection weights
are randomly set. We gradually increase the number of neurons
and synapses in the synthetic workload from 16 cores to 256
cores, as shown in Table IV, then evaluate speedup and energy
efficiency of DepAsync. The results shown in Fig. 28 identify
the excellent scalability of DepAsync compared to Sync. As
the system scales up, the synchronization cost becomes more
expensive, thus DepAsync accelerates SNN inference faster.
The energy efficiency grows as static power consumption de-
creases due to higher speed. The fact that speedup grows faster
than energy efficiency is mainly because spike packets hop in
the NoC grows as O(v/Neore) While computation and mem-
ory units in neuromorphic cores grow as O(Ngoe ). DepAsync
gains 5.05x speedup and 2.01x energy efficiency at the 256-core
scale, which is better than SE.

Moreover, we consider the bandwidth hierarchy in real-world
many-core systems. Generally, the whole system consists of
multiple chips, and each chip contains several neuromorphic
cores. The intra-chip NoC is multiple times faster than inter-
chip (about 4 times in Darwin [9]). To simulate the bandwidth
hierarchy in a large-scale system, we divide 16 x 16 cores into
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TABLE III
HARDWARE PARAMETERS OF DIFFERENT NEUROMORPHIC CHIPS
[ TrueNorth [3] | SpiNNaker2 [36] | Loihi [1] | Loihi2 [37] [ Darwin3 [2]
Implementation Digital Digital Digital Digital Digital
Technology 28 nm 22 nm 14 nm 7 nm 22 nm
neuron models LIF Programmable LIF Programmable Programmable
fnax. neurons 256 10° 1K 8K 4K
per core
fmax. synapses 64K 10° M ™M M
per core
Energy per
synaptic operation 26 pJ 10 pJ 23.6 pJ - 547 pJ
TABLE IV 0.0 05 1.0 15 2.0 25
SYNTHETIC WORKLOADS WITH DIFFERENT Baseline
SCALES 1.28x Speedup with periodically global synchronization
#Cores [ FNCUrons [ FSynapse 1.07x Speedup)with directly eliminating global synchronization
16 (4 x 4) 10,240 903,718 1.80x Speedup with core-dependency local synchronization
32 (8 x 4) 14,481 2,027,922 DepAsync IPZ223
64 (8 X 8) 20,480 4,048,000
128 (16 X 8) 28,962 8,043,888
256 (16 x 16) 40,960 16,096,000 Fig. 30. The performance of different synchronization mechanisms.
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Fig. 29. (a) Topology and (b) Performance of large scale system with  G. Performance on Real-World Neuromorphic Chip

bandwidth hierarchy.

8 x 8 4-core clusters and then decrease the bandwidth between
adjacent clusters. Fig. 29(a) gives an example topology of 4
clusters. Fig. 29(b) shows a linear relationship between band-
width difference and the overall performance.

FE. Comparison to Directly Removing Global Synchronization

To better illustrate the performance improvement brought by
DepAsync, we also compare it with an ideal synchronization
mechanism, which directly eliminates the global synchroniza-
tion itself by assuming a global signal in the system that im-
mediately advances to the next timestep once all cores have
completed their work for the current step ( NoSync in Fig. 30).
We assume that there is an ideal global signal which is set
when all cores have completed their computation tasks and
all spikes have been successfully delivered. Once the signal
is set, all cores immediately begin the next time step, thus
eliminating the intrinsic overhead of the global synchronization
mechanism. As shown in the Fig. 30, DepAsync achieves a
1.80x speedup, which demonstrates that on one hand, it reduces
synchronization overhead, and on the other, the safe forwarding
of each cores reduces waiting time.

Parameters

As shown in the Table III, different real-world neuromorphic
chips have different hardware parameters and specifications.
They all support LIF neuron model used in our experiments.
Therefore, to demonstrate the high efficiency of DepAsync
under various hardware parameters, we conducted tests on the
parameters of these five platforms. As the Fig. 31 illustrates,
DepAsync achieves 2.37x speedup and 1.54x improvement in
energy efficiency across different hardware. Furthermore, under
the same workload, the more limited the capability of a single
core, the more cores are required, thus leading to a larger mesh
scale. As a result, the acceleration effect of DepAsync becomes
more significant, which is consistent with our results.

VI. CONCLUSION

In this paper, we propose a novel asynchronous architec-
ture to time-accurately accelerate SNN inference on hardware
inspired by dependency relationships on neuromorphic cores.
We first observe the imbalance in SNN workloads deployed
on many-core accelerators and identify under-utilization caused
by all-core synchronization. Then, we leverage core dependen-
cies determined at compilation time to control the timestep
proceeding behavior of neuromorphic cores, implemented by
adding a scheduler in each core worked with a new type NoC
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packet. Finally, we use five SNN workloads to evaluate our De-
pAsync architecture. Compared to conventional synchronous
architectures, DepAsync achieves an average speedup of 2.47x
and an energy efficiency improvement of 1.55x. It also outper-
forms state-of-the-art speculative-execution-based architectures
with 1.87x higher performance and 1.40x better energy effi-
ciency. Furthermore, our experiments at different scales show
that DepAsync exhibits excellent scalability as the system size
increases.
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