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A B S T R A C T

In this article, a cluster-based niching differential evolution algorithm, which combines the cluster pool, the
niche method, and the differential evolution algorithm, has been employed to optimize the stable structures of
iron clusters. The cluster pool is responsible for generation of the niche sub populations, and the differential
evolutionary algorithm is used for the evolution of the population. A variety of mutation strategies have been
applied in the algorithm instance. Moreover, the crossover operator of plane cut cross and the adjustment
strategy make the algorithm more suitable for structural optimization of clusters. Subsequently, the performance
of the algorithm has been examined by the effect of cluster pool size on the convergence speed and structural
diversity. The accuracy and effectiveness of our algorithm have been verified by analyses of energy and struc-
tural evolutions. Finally, structural evolution of iron clusters with 3–80 atoms has been predicted by this al-
gorithm.

1. Introduction

Metallic clusters have attracted great attention due to their potential
applications in many fields such as physics, chemistry, biology and so
on [1–4]. Among metallic clusters, iron (Fe) clusters are of considerable
interest due to their exceptional magnetic properties such as ferro-
magnetism, high coercive force, low Curie temperature, high magnetic
susceptibility. To date, Fe clusters have been extensively used in the
aspects of giant magnetoresistance, magnetic recording, magnetic re-
frigeration, and magnetic probes [5]. As cheap metallic catalysts, Fe
clusters have been widely used in Fischer-Tropsch reaction for produ-
cing hydrocarbon by using CO and H2 in coal and natural gas. They can
also be used as a cathode catalyst for fuel cell [6]. However, both the
magnetic and catalytic properties of Fe clusters are strongly dependent
on their structures. Therefore, an investigation on the structural prop-
erties of Fe clusters is crucial for understanding their physical and
chemical performances.

Theoretically, to predict the structure of clusters is a typical global
optimization problem. The optimization goal is to get the lowest-energy
structure of clusters [7]. Essentially, exploring the stable structures of
Fe clusters is to search the lowest energy of potential energy function.
Usually, the potential energy function describes a potential energy
surface of multi-dimensional space. The potential energy surface is
considerably complex, thus searching the lowest energy on the

potential energy surface is rather time-consuming. Furthermore, there
are plenty of local minimum corresponding to metastable structures of
cluster on the potential energy surface, the number of local minimum
grows exponentially with the cluster size [8]. So far, many global op-
timization methods, such as heuristic algorithms and evolutionary al-
gorithms, have been developed to optimize the structure of clusters.
According to the number of individuals in the searching process, the
algorithms can be divided into three categories: single individual
searching algorithms, single population searching algorithms, and multi
populations searching algorithms. Single individual searching algo-
rithms, such as Monte Carlo method [9], Basin Hopping algorithm
[10,11], simulated annealing algorithm [12], belong to simple
searching algorithms. The search efficiency of these algorithms is poor
due to the lack of repeatable search. Single population searching al-
gorithms, such as genetic algorithm [13,14], particle swarm optimiza-
tion algorithm [15,16], and artificial immune algorithm [17,18], are
superior in comparison with the single individual searching algorithms
because there exists the information exchange between different in-
dividuals in single population searching algorithms. However, they are
apt to be trapped into the local optimum, leading to the premature
convergence. Multi populations searching algorithms, including
common pool [19], topology structure [20], and niche method [21], are
able to improve the search capability of global optimization remarkably
because they may maintain population diversity effectively and avoid
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the premature phenomena in single population searching algorithms.
In this article, we have proposed, for the first time, a cluster-based

niching differential evolution algorithm to optimize the structure of Fe
clusters by the multi populations searching algorithms with cluster-
based niching method. As a first step, the effect of cluster pool size on
convergence speed of algorithm and structural diversity has been ana-
lyzed. Secondly, the accuracy and effectiveness of the proposed algo-
rithm have been verified by comparison experiments. Finally, we have
examined the stable structures of Fe clusters with 3–80 atoms by using
the proposed algorithm, and predict the evolutional law of stable
structures with increasing cluster size. This article is structured as fol-
lows. Section 2 describes the potentials of Fe and the cluster-based
niching differential evolution algorithm. Section 3 presents the calcu-
lated results and discussion. The main conclusions are summarized in
Section 4.

2. Methodology

2.1. Potential description

In theoretical study of clusters, it is considerably important to ac-
curately describe the interatomic interaction. In this work, the Finnis-
Sinclair (FS) potentials [22], which are based on the second-moment
approximation of the tight-bonding formulation, have been employed
to describe the interaction between atoms in Fe clusters. The FS po-
tentials represent many-body interactions, and their parameters are
optimized to describe the lattice parameter, cohesive energy, elastic
constants, vacancy formation energy, stacking-fault energy, and pres-
sure-volume dependency. They have been confirmed to reproduce very
well the basic structural and dynamics properties of Fe [23]. The total
energy for a system of N atoms is given as
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where rij represents the distance between atoms i and j; ρi is the elec-
tronic charge density at the site of atom i, it can be expressed by
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in which ϕ r( )ij ij is a cohesive term related to the sum of squares of
overlap integrals for the valance electrons, represents the contribution
of electronic charge density for j atom to i atom, can be defined as
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where d is a cut-off parameters assumed to lie between the second- and
third-neighbors, the value of d is < <a d a2 , a is a lattice constant.
For Fe element, the expression of rΦ( ) can be modified by
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where the range of these parameters should be set to enable the rΦ( )
reaching the maximum in first- nearest-neighbor. For example, if d= a,
then <β 4.975; otherwise, =d a2 , then <β 1.7199.

In Eq. (1), V r( ) is a repulsive two-body interaction, interpreted in
the tight-binding theory as the repulsion between core electrons on
neighboring atoms, expressed as

= ⎧
⎨⎩

− + + ⩽
>

V r r c c c r c r r c
r c

( ) ( ) ( )
0

2
0 1 2

2

(5)

where c is a cut-off parameter, just like the parameter d; c0, c1, and c2
are free parameters fitting to experimental data based on specific ele-
ments. All parameters of FS potentials for Fe have been listed in Table 1.

2.2. Transformation for potential energy surface

Actually, the potential function of a cluster corresponds to a com-
plicated potential energy surface in hyperspace. The potential energy
surface describes the relationship between the cluster energy and the
relative position of each atom in the cluster. Therefore, investigating
the stable structure of a cluster by minimizing its total energy is to
search the global minimum of the potential energy surface. However, it
is difficult to find the lowest energy on the potential energy surface
directly even for a system consisting a few atoms due to the complexity
of potential energy surface. To reduce the search space and improve the
searching efficiency, in this work we transform the potential energy
surface into many less-intricate basins by employing a local mini-
mization for the structures [24].

Since the potential energy surface is a curve in the multi-dimen-
sional space, it is impossible to directly depict the surface. Here, we
display the transformation diagram of the potential energy surface in
two-dimensional surface in Fig. 1. We may transform the complicated
potential energy surface into less-intricate basins by local minimization
procedure. The transformation not only avoids the unstable transition
state on potential energy surface, but also decreases the energy barrier.
It makes the system freely go through the basin boundaries of potential
energy, therefore simplifies the optimization process.

2.3. Cluster-based niching differential evolution algorithm

2.3.1. Structural optimization of a cluster
The structural optimization of a cluster can be described as follows.

For a cluster consisting of N atoms, the total energy of all atoms is
defined as its potential energy. When the potential energy reaches its
minimum, the search target is the atom coordinates in the three-di-
mensional space.

The objective function of the structural optimization is the potential
energy according to Eq. (1). It can be described as

=f E Rmin min ( )tot (6)

where Etot is the potential energy of a system, R represents the atomic
distance matrix, and is given by
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xi, yi, and zi denote the coordinates of atom i in three-dimensional
space. Since the interatomic distance is relative, it means rij = rji.
Therefore, the distance matrix R is a symmetric matrix, and the diag-
onal values are zero because the distance between an atom and itself is
zero (rii = 0).To make the general multi-populations differential evo-
lution algorithm more effectively during the structural optimization of
cluster, in the base of primal algorithms [25,26], we have proposed a
cluster-based niching differential evolution algorithm by combining the
cluster pool, the niche method, and the differential evolution algorithm
instance, as shown in Fig. 2.

2.3.2. Cluster pool
Essentially, the cluster pool is a collection of many different clusters

(individuals) with the same atomic number. The cluster pool is used to
keep the individual diversity during structural optimization of clusters.
Moreover, it is a great solution for clustering and distinguishing the
clusters. The initialization, clustering, and update of the cluster pool
play a significant role in the whole algorithm. The three procedures
have been described in detail below.

2.3.2.1. Initialization of cluster pool. Consider a cluster consisting of N
atoms, the atom coordinates are represented by three dimensional
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vectors x, y, z. Herein, an individual (cluster) can be denoted by a
vector of 1×3N. The position of an individual is described as

= …X x x x[ , , , ],j p j p j p N j p,
0

1, , 2, , 3 , , (9)

where X j p,
0 represents an individual of generation 0, = …j N1, , p is the

index of the individual in sub-population p, Np is the maximum number
of sub-population p, = …p P1, , is the index of sub-population, P
represents the number of sub-populations.

In the initialization of cluster pool, two methods are usually adopted
to generate the individuals. One method is a random initialization
method in which all atomic coordinates are produced by initializing the
values of x, y, z randomly. To avoid the considerable variation of the
generated individuals, we set the values of x, y, z in the range N[0,r · ]0 1

3 .
The individuals are randomly generated by

= × ×x rand r N[0,1)i j p, ,
0 1/3 (10)

where r0 is the first-neighbor distance, N denotes the cluster size (the
number of atoms). The cluster volume scales correctly with the first-
neighbor distance and cluster size. The other method is a growing in-
itialization method to generate the individuals. In the growing method,
a new individual is generated based on the lowest-energy structure of
the cluster with N− 1 atoms plus one additional atom. The additional
atom position is randomly chosen from the range N[0,r · ]ij

0 1
3 . This in-

itialization method makes use of the obtained stable structures of small-
sized cluster to generate the initial structures of large-sized cluster. It
can offer a reasonable structure with relatively low energy and reduce
the searching space. However, the obtained structures are very similar
if all individuals are generated by the growing method, leading to the
premature convergence of the algorithm. To ensure the diversity of the
population and prevent the optimization from prematurity, only some
individuals are generated by the growing method, while most of the
individuals are still generated by the random initialization.

2.3.2.2. Clustering of cluster pool. The clustering is an important step in
the cluster pool. According to structural characteristic of clusters, they
are classified based on their structural differences despite the difference
of atomic position or potential energy. The structure difference can be
denoted by the distance of clusters (individuals) on the potential energy
surface, and the clustering method puts the adjacent clusters together
on the potential energy surface. All individuals can be divided into
some niches according to the structure difference, and the individuals
in the same niche have similar structures. Here, we adopt the K-means
method [27] to generate the niches. The selection of starting center
points and the number K of clustering have remarkable effects on the
constringency speed of the algorithm and the performance of clustering.
We choose the low-energy individuals in the cluster pool for the
selection of starting center points, and select the large clustering
number K at the beginning. As the algorithm evolves, we choose the
small clustering number K because some high-energy individuals have
been eliminated and the clusters are concentrated in a smaller range.

2.3.2.3. Update of cluster pool. The update of cluster pool has been
carried out to eliminate the worst individual. First, a group of new
individuals will be produced when each evolution has finished.
Secondly, the new individuals will be classified to the corresponding
classes according to their structure differences. Finally, the individuals
in the class are listed according to their potential energy and the
highest-energy (worst) individual will be eliminated. By eliminating the

Table 1
Parameters of FS potentials for Fe [22].

Parameter d [Å] A e[ V] β c [Å] c0 c1 c2

Fe 3.569745 1.828905 1.8 3.40 1.2371147 −0.3592185 −0.0385607

Fig. 1. Transformation diagram of potential energy surface.

Fig. 2. Schematic diagram of cluster-based niching differential evolution al-
gorithm.

Fig. 3. Generation of plane-cut-splice crossover.
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worst individual, the overall number of individuals keeps unchangeable
in the cluster pool but the quality of individuals in the pool is improved.

2.3.3. Differential evolution algorithm
The differential evolution algorithm consists of five main parts in-

cluding generation of initial populations, mutation, crossover, adjust-
ment and selection. They are described in detail as follows.

2.3.3.1. Generation of initial populations. The initial populations for
evolution are from the niches, and are produced in the clustering
procedure of cluster pool. Two methods are used for the generation of
initial populations. One is that all initial populations for evolution are
from the same niches. The aim of this method is to search the lowest-
energy individual in the niche. The chance which each individual is
selected in the niche is associated with its potential energy. The low-
energy individual will have a preferential chance to be selected for
evolution. This section can be called as roulette or championship. The
other method is that some initial populations are from the same niche

while the remaining populations are from other niches. This method is
to search the lowest-energy individual in different energy region or in a
new energy region since different niche represents different energy
region.

2.3.3.2. Mutation. Different mutation strategies are adopted for
different differential evolution algorithms. Three common mutation
strategies, random mutation (rand/1), best mutation (Best/1), and
random to best mutation (Rand to Best/1) are descripted as follows.

Random mutation (Rand/1):

= + −V X F X X( )j p
t

r p
t

r p
t

r p
t

, 3, 1, 2, (11)

best mutation (Best/1):
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t

r p
t
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, , 1, 2, (12)

random to best mutation (Rand to Best/1):

= + − + −V X F X X F X X( ) ( ),j p
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t
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Fig. 4. Flow chart of the cluster-based niching differential evolution algorithm.
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where = …j N1, , p; ∈ …r r r N1, 2, 3 [1, , ]p ∈ …r r r N1, 2, 3 [1, , ]p , and
≠ ≠ ≠r r r j1 2 3 ; F is a scaling factor and ∈F [0,2]. The three mutation

strategies are employed in different evolution algorithms because of
theirself advantages. The random mutation (Rand/1) improves the
global searching capability of different evolution algorithm but its
convergence speed is relatively slow. The best mutation (Best/1) has the
advantages of strong local searching capacity and fast convergence

speed while it increases the risk of trapping in local optimum. The third
mutation (Rand to Best/1) balances the global searching and local
searching capacity by combining the different strengths of the previous
two mutations.

2.3.3.3. Crossover. Crossover is a key step in the different evolution
algorithm instance because it decides the performance of the different
evolution algorithm. Here, the classical plane-cut-splice crossover is
employed due to its strong searching capacity. Assuming two parent
individuals are noted as ∈P Xi p1 , and ∈P Vi p2 , , the plane-cut-splice
crossover operator first shifts the mass centers of P1 and P2 to the origin,
and then randomly chooses a plane to pass through the origin. The
plane splits each parent into two parts (S1 and S2). If S1 of each parent
has the same number of atoms (for example, the number of atoms for S1
is L, then that for S2 is N-L), we exchange the parts S1 (one from P1, the
other from P2) to form two child clusters, denoted as Ui g, . If S1 of each
parent has different number of atoms, the plane passed through the
origin will be rotated until it splits the parents to two parts with the
same number of atoms for each parent. The procedure of plane-cut-
splice crossover is shown in Fig. 3. The crossover probability in the
algorithm is denoted as Cr. The energies of new generated individuals
are locally minimized before they enter the population.

2.3.3.4. Adjustment and selection. The adjustment operator is used to
modify the broken structures produced in crossover. Since some atoms
far from the mass center may evaporate in plane-cut-splice crossover,
the atomic interaction is not enough to pull the evaporated atoms back
to the cluster system. The adjustment strategy is used to adjust the
positions of evaporated atoms and keeps each individual to be searched
by neighborhood searching approach. Furthermore, a greedy selection
is employed to determine whether the new generated individuals
survive to the next generation or not. Here, the potential energy of
cluster is adopted as the fitness function. The lower-energy individual is
more likely to survive to the next generation. The greedy selection is
described as

= ⎧
⎨⎩

⩽
+X

U E U E X
X

if ( ) ( )
otherwisei g

i g i g i g

i g
, 1

, , ,
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where Xi g, represents the parent individual, Ui g, is the new generated
individual in crossover operator. If the energy of Ui g, is lower than that
of Xi g, , Ui g, will replace the parentXi g, , as a new solution surviving to
next generation. Otherwise, Xi g, is kept to the next generation.

The complete cluster-based niching differential evolution algorithm
is composed of cluster pool and the differential evolution algorithm
instance. The procedure has been shown in Fig. 4. The main steps of the
algorithm are given as follows.

Step 1: Initialization of cluster pool. The initial individuals in the
cluster pool are generated by a random initialization or a
growing method. Each initial individual is locally optimized in
the cluster pool.

Step 2: Clustering of cluster pool. By adopting the K-means clustering
method, all individuals in the pool are classified based on their
structure differences. Each category represents a niche. The
low-energy individuals in the pool are selected as starting
center points.

Step 3: Generation of initial populations for evolution. Each differential
evolution algorithm example has to generate initial populations
before evolution. Two methods are applied to obtain the initial
populations. One is that all initial populations are from the
same niche, the other is that some initial populations are from
the same niche while the other populations are from other ni-
ches.

Step 4: Evolution. The evolution of differential evolution algorithm
consists of mutation, crossover and selection. The new

Fig. 5. Evolutionary curves of Fe clusters with (a) 30 and (b) 60 atoms for
different cluster pool sizes.

Fig. 6. Evolution curve of clusters with (a) 30 and (b) 60 atoms.
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individuals, which are generated from mutation and crossover
operators, have to be optimized to their local minima. By the
greedy selection, the new generated individuals will be de-
termined to save in the cluster pool or not.

Step 5: Update of cluster pool. The elimination of the worst individual
is carried out for updating the cluster pool after the generation
of new individuals. Based on the structural differences, the new
individuals are classified to the corresponding category and the
highest-energy individual will be eliminated.

Step 6: Termination decision. After finishing the above steps, the al-
gorithm checks if the result satisfies the end condition. Here,
the end condition is the maximum iterations. If all differential
evolution algorithm examples arrive at the maximum itera-
tions, the program will terminate, otherwise the program will
turn back to Step 2 and continue.

3. Results and discussion

3.1. Effect of cluster pool size on algorithm

In the cluster-based niching differential evolution algorithm, the
choice of cluster pool size has a significant influence on algorithm
performance because it greatly affects the structural diversity of cluster
and the convergence of the algorithm. To analyze the effect of cluster
pool size on the algorithm convergence, we first compare the con-
vergence speed of the algorithm at different cluster pool size (10, 20,
40, 60, and 80 are chosen for comparison). For each cluster pool size,
ten times independent experiments have been performed for Fe clusters
with 30 and 60 atoms. For accurately analyzing the effect of cluster
pool size, we adopt the random initialization method to generate the
initial individuals rather than the growing method. The reason is that
the algorithm may be close to the optimal solution with fewer iteration
step in the growing method though it can improve the quality of initial
individuals, which is not convenient for observing and comparing the
effect of cluster pool size.

Fig. 5 illustrates the evolutionary processes of energy in the algo-
rithm for each cluster pool size. One can find that for both Fe30 and Fe60
clusters, the convergence speed is gradually decreased with the cluster
pool size. With the increasing number of individuals in the cluster pool
(i.e., increasing cluster pool size), the individuals with poor quality also
rise, leading to the result that they have a high probability to be se-
lected for differential evolution algorithm examples. Accordingly, the
convergence speed is also decreased. In contrast, the convergence speed
is fast for small cluster pool size but the structural diversity is de-
creased. Meanwhile, the algorithm is prone to premature convergence

Fig. 7. Fingerprint vector change for structures of Fe60 cluster.

Table 2
Global minima energy and space groups (SG) of Fe clusters.

N Energy (eV) SG N Energy (eV) SG N Energy (eV) SG

3 −5.3985 D3h 29 −97.9671 D3h 55 −194.6868 Cs

4 −8.7233 Td 30 −101.4513 C2v 56 −198.7520 C1v

5 −11.8598 D3h 31 −104.9369 Cs 57 −202.9373 Td

6 −14.9990 Oh 32 −108.8106 C2v 58 −206.8059 C3v

7 −18.5493 D5h 33 −112.2849 Cs 59 −210.6376 C2v

8 −21.5183 Cs 34 −116.0135 D5h 60 −214.4278 C3v

9 −25.0658 C2v 35 −119.5971 C2 61 −218.1707 Td

10 −28.5357 C3v 36 −123.1219 Cs 62 −221.5913 Cs

11 −31.9849 C2v 37 −126.8454 Cs 63 −225.3541 Cs

12 −35.8818 C5v 38 −130.9645 D6h 64 −229.0662 C3v

13 −40.2985 Ih 39 −134.8397 C6v 65 −232.5331 C2v

14 −43.1772 C3v 40 −138.5112 D6h 66 −236.2673 Cs

15 −46.6375 C2v 41 −141.8420 Cs 67 −240.0078 C1

16 −50.0240 Cs 42 −145.5473 Cs 68 −243.8329 Cs

17 −53.4553 Cs 43 −149.4047 Cs 69 −247.5954 Cs

18 −57.2367 Cs 44 −153.1767 C2v 70 −251.3606 Cs

19 −61.5615 D5h 45 −156.6997 Cs 71 −254.9198 Cs

20 −64.8385 C2v 46 −160.3679 Cs 72 −259.0745 Cs

21 −68.1871 C1 47 −164.1621 Cs 73 −262.9092 C1

22 −71.8589 Cs 48 −168.1839 C3v 74 −266.6987 Cs

23 −76.0972 D3h 49 −171.8014 Cs 75 −270.7753 Cs

24 −79.3414 C2v 50 −175.4720 C1 76 −274.9962 D6h

25 −82.9402 C2v 51 −179.2199 Cs 77 −278.9273 C6v

26 −87.0660 Td 52 −183.1521 Cs 78 −282.8276 D6h

27 −90.5422 C2v 53 −187.0497 Cs 79 −286.4929 Cs

28 −93.9368 Cs 54 −190.9403 D3h 80 −290.2863 C2
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because the structure is easily trapped into local optima for small
cluster pool size. Therefore, the best cluster pool size should be de-
termined by balancing the algorithm convergence and the structural
diversity.

3.2. Performance analysis of algorithm

To evaluate the performance of the cluster-based niching differ-
ential evolution algorithm, we have calculated the lowest energy of
clusters (individuals) in the cluster pool and illustrated the change of
the lowest-energy structures with the number of iterations in Fig. 6.
Here, Fe30 and Fe60 clusters are selected as representatives. It can be
seen from this figure that the energies of individuals are considerably

high in early iterations, and the structures of clusters are confusing
without any ordering and symmetry. The potential energy of in-
dividuals (cluster) is quickly decreased with the increase of iteration
times. Moreover, the energy curve is not continuously dropping but
jumps to next lowest energy point (stair-step-like shape), indicating the
considerable difference of energy in different metastable structures.
Also, it means that the algorithm adopts the jumping search between
metastable structures rather than the continuous search along the po-
tential energy surface of structures. Furthermore, the algorithm is
gradually close to the optimal solution with increasing iteration. Also,
the structures in Fig. 6 tend to be order and symmetrical with iteration
time.

To further examine the change of structures with energy curves, the

Fig. 8. The lowest-energy structures of Fe clusters with N=5–80.
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fingerprint vector of cluster [28] has been calculated during evolution.
As an example, the result of Fe60 cluster is shown in Fig. 7. The four
structures in Fig. 7 correspond to different stages of evolution curve.
One can find that the fingerprint vector diagram has many peaks at the
beginning of evolution. The peaks are not high, and the atoms are
randomly arranged and disordered (see Fig. 7a). With the increasing of
iterations, some peaks disappear, and some great peaks may split into
two or more peaks (see Fig. 7b and c). However, the fingerprint vector
diagram has fewer and sharp peaks in final phase of the evolution, and
these peaks mainly concentrate on three areas, as indicated in Fig. 7d.
Therefore, the energy of cluster is frequently decreased and the struc-
ture becomes more ordered with the increase of iteration.

It can be seen from the aforementioned analyses that our algorithm
may effectively optimize the random mixed structures to become or-
dered and symmetrical. By examining the change of structure, one can
find that the more symmetrical and orderly the structure of the cluster
is, the lower its potential energy is, resultantly the more stable the
structure is. Moreover, the fingerprint vector diagram has many peaks
for disordered structures while their peak values are small. In contrast,
the peaks for ordered structure are few but considerably sharp.

3.3. Optimized results of Fe clusters

In this work, structures of Fe clusters have been optimized by using
our proposed cluster-based niching differential evolution algorithm.
With the framework of the FS many-body potentials, the energies and
space groups of the lowest-energy structures of Fe clusters with 3–80
atoms have been summarized in Table 2. One can find that most of the
lowest-energy structures have a good symmetry. As seen from the table,
the global minima of Fe clusters obtained by our algorithm are in
complete agreement with the putative global minima available in
Cambridge Cluster Database (CCD) [29] except for 71 atoms. For 71-
atom Fe cluster, the minimal energy by our algorithm is−254.9198 eV,
slightly higher than that of the CCD (−255.18697 eV). Nevertheless,
this comparison still indicates the accuracy and effectiveness of our
algorithm. Due to the complexity of searching the global minima on
multi-dimensional potential energy surface and the limitation of com-
putational resources, the atomic number of Fe cluster is less than 80 in
this work.

The optimized stable structures of Fe clusters corresponding to
Table 2 are further illustrated in Fig. 8. Evidently, it can be seen that Fe
clusters possess extremely high symmetry at small size (N < 13).
Especially, a complete icosahedron has been formed for the cluster with
N=13. Moreover, the number of icosahedrons in stable structures
gradually rises with the atomic number. For example, the cluster pre-
sents two icosahedral rings for N=38, and there are three icosahedral
rings in the cluster for N=54. With the atomic number increasing to
75, four icosahedral rings gradually replace the three icosahedral rings.
According to this growth regularity, the lowest-energy structures of Fe
clusters will contain more icosahedral rings if the number of atoms
continues to increase. Therefore, it can be predicted that there are
icosahedral rings in the stable structures of Fe clusters, and the number
of the icosahedral rings will rise with the increase of atomic number.

4. Conclusions

In summary, we have proposed a cluster-based niching differential
evolution algorithm to search the globally stable structures of Fe clus-
ters with the atomic number from 3 to 80. For exploring the structural
characteristic of clusters, the cluster pool, the niche method, and the
differential evolution algorithm have been combined. First, a local
minimization method is adopted by transforming the potential energy
surface into many less-intricate basins to simplify the optimization
process. Secondly, K-means clustering method is employed to classify
the structures into some niches. Moreover, the complete cluster-based
niching differential evolution algorithm have been described, and the

effect of cluster pool size on algorithm performance is examined.
Additionally, the effectiveness of our algorithm has been analyzed by
ten times independent experiments for structural optimization of Fe
cluster. Finally, the stable structures of Fe clusters with 3–80 atoms
have been explored by using the structural clustering based niching
differential evolution algorithm. The growth trend of stable structures
indicates that the lowest-energy structure of Fe cluster contains many
icosahedra, and the number of the icosahedral rings rises with the
atomic number. It can be expectable that the structural clustering based
niching differential evolution algorithm should be extended to predict
the stable structures of other metallic and alloy clusters.
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