
CCL-BTree: A Crash-Consistent Locality-Aware
B+-Tree for Reducing XPBuffer-Induced Write

Amplification in Persistent Memory
Zhenxin Li

Zhejiang University
Hangzhou, Zhejiang, China

zhenxin@zju.edu.cn

Shuibing He∗
Zhejiang University

Hangzhou, Zhejiang, China
heshuibing@zju.edu.cn

Zheng Dang
Zhejiang University

Hangzhou, Zhejiang, China
dangzheng@zju.edu.cn

Peiyi Hong
Zhejiang University

Hangzhou, Zhejiang, China
hongpeiyi@zju.edu.cn

Xuechen Zhang
Washington State University
Vancouver, Washington, USA
xuechen.zhang@wsu.edu

Rui Wang
Zhejiang University

Hangzhou, Zhejiang, China
rwang21@zju.edu.cn

Fei Wu
Zhejiang University

Hangzhou, Zhejiang, China
wufei@zju.edu.cn

Abstract
In persistent B+-Tree, random updates of small key-value
(KV) pairs will cause severe XPBuffer-induced write ampli-
fication (XBI-amplification) because CPU cacheline size is
smaller than media access granularity in persistent memory
(PM). We observe that XBI-amplification directly determines
the application performance when the PM bandwidth is ex-
hausted in multi-thread scenarios. However, none of the
existing work can efficiently address the XBI-amplification
issue while maintaining superior range query performance.

In this paper, we design a novel crash-consistent locality-
aware B+-Tree (CCL-BTree). It preserves the key order be-
tween adjacent leaf nodes for efficient range query and
proposes a leaf-node centric buffering strategy that merges
writes and then flushes them together to reduce the number
of flushes to the PM media. For crash-consistency, all the
buffered KVs are recorded in write-ahead logs. CCL-BTree
further devises write-conservative logging to skip unneces-
sary log operations, and locality-aware garbage collection to

∗Shuibing He is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629582

avoid random PM writes in reclaiming log data. Our experi-
ments show that CCL-BTree reduces the XBI-amplification
by up to 81%, improves the insert throughput by up to 9.35×,
and achieves good range query performance compared to
state-of-the-art persistent B+-Trees.

CCS Concepts: • Information systems → Data struc-
tures; Storage class memory.

Keywords: Persistent Memory, Index Structures, B+-Tree
ACM Reference Format:
Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang,
Rui Wang, and Fei Wu. 2024. CCL-BTree: A Crash-Consistent
Locality-Aware B+-Tree for Reducing XPBuffer-Induced Write Am-
plification in Persistent Memory. In European Conference on Com-
puter Systems (EuroSys ’24), April 22–25, 2024, Athens, Greece. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3627703.
3629582

1 Introduction
B+-Tree is a widely used index structure in file systems
and database systems, because of its better performance
than other index structures, e.g., higher range query per-
formance than hash table [34, 52] and radix tree [28, 32],
and better data locality than skip list [10, 30]. Persistent
B+-Trees [7, 17, 31, 36, 51] that are built on the emerging
byte-addressable persistent memory (PM) attracted wide at-
tention in in-memory databases recently, for its low latency,
large capacity, and data persistence.
Like DRAM, PM is packaged on the memory bus and

handles requests at the 64 B cacheline granularity. For the
convenience of illustration, Figure 1 uses the only commer-
cially available PM, Intel Optane DCPMM [19], as an ex-
ample to illustrate its architecture. Memory accesses to PM

https://doi.org/10.1145/3627703.3629582
https://doi.org/10.1145/3627703.3629582
https://doi.org/10.1145/3627703.3629582

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang, Rui Wang, and Fei Wu

CPU Cache

3D-XPoint Media

XPBuffer

WPQ

Cacheline: 64 B

XPLine: 256 B

ADR Domain

eADR Domain

Optane DCPMM

Cacheline-induced

Amplification

(CLI)

XPBuffer-induced

Amplification

(XBI)

Application

User Data: 0-64 B

Figure 1. Architecture of PM systems using Optane
DCPMM.

are first served by a small on-DIMM write-combining buffer
(XPBuffer). They are then transformed to a 256 B data unit
(XPLine) before physically accessing the media [44, 47]. As
a result, persistent B+-Tree may suffer from severe write
amplification in two hardware layers: CPU cache and XP-
Buffer. Specifically, (1) when randomly writing KVs and their
associated metadata, which are smaller than the size of a
CPU cacheline, cacheline-induced write amplification (CLI-
amplification) may happen. (2) When the cacheline does not
fall into the previously accessed XPLine, the cacheline flush
may further trigger the XPLine-induced write amplification
(XBI-amplification).

To improve the write performance of persistent B+-Trees,
most existing work [6, 17, 31, 36, 48, 51] focuses on reducing
the number of cacheline flushes to address CLI-amplification.
For example, wB+-Tree [6] keeps leaf nodes unsorted to
decrease the cost of entry shifting. LB+-Tree [31] packets
metadata and data in one CPU cacheline so that they can
be updated in one flush rather than two separate flushes.
However, we observe that XBI-amplification rather than
CLI-amplification directly impacts the write performance of
PMs (§2.2). Therefore, these persistent indexes may exhibit
suboptimal write performance.
Recent research has introduced a novel approach to ad-

dress XBI-amplification, called FlatStore [8], which resolves
small random writes by organizing them sequentially using
a log-structured data layout in PM. This achieves better data
locality in XPBuffers and allows for multiple contiguous data
writes to be merged into a single XPLine write to PM. How-
ever, FlatStore suffers from poor range query performance
as the sequentially requested entries are randomly stored
in log files. Range query operation is crucial for database
systems that require inequality comparisons [13, 35]. Our
research shows that FlatStore degrades the performance of
range queries by up to 82.1% (§2.3).
None of the existing B+-Trees can efficiently reduce XBI-

amplification while maintaining superior range query per-
formance. In this paper, we propose a new persistent B+-Tree

variant, named CCL-BTree, which devises three techniques
to solve this problem. First, we introduce a leaf-node cen-
tric buffering strategy (§3.2) that leverages in-DRAM buffers
to reduce the total number of XPLine flushes. Specifically,
we add a layer of buffer nodes between the last-level inner
nodes and their corresponding leaf nodes in the traditional
B+-Tree. We store the leaf nodes in PM and keep the inner
nodes and buffer nodes in DRAM. Buffer nodes serve two
purposes: (1) they will merge write requests and then flush
them together to leaf nodes to reduce the number of XPLine
flushes to PM media; and (2) they can be used as cache to
reduce the number of reads to the leaf nodes. Note that we
keep the KVs unsorted within a buffer node or leaf node
for lightweight KV insertions, while maintaining the order
between adjacent leaf nodes to preserve high range query
performance.
Second, given that power failure can result in the loss

of KV entries stored in DRAM buffer nodes, we develop a
write-conservative logging scheme (§3.3) to enforce crash-
consistency. The scheme appends a log entry to the write-
ahead log (WAL) in PM, and then inserts a new KV into the
empty slot in the buffer node. Additionally, it omits logging
KVs for writes that trigger buffer nodes to flush to reduce un-
necessary log operations and alleviate the XBI-amplification
caused by writing WALs.
Third, to avoid random PM writes in reclaiming the log

data, we propose a locality-aware garbage collection tech-
nique (§3.4) that never flushes a KV to a random PM location
in garbage collection (GC). To serve this purpose, before
writing KVs to the buffer nodes, we record KVs to a primary
log, which is used for failure recovery. During the GC, we
use a secondary log to store KVs which have not been writ-
ten to PM and incoming KVs added to the index. Once all
buffer nodes are scanned, the secondary log becomes the
primary log and the old primary log is marked as deleted
and recycled.

By combining these techniques, CCL-BTree alleviates XBI-
amplification in all code paths and boosts write performance.
In summary, we make the following contributions:

• We conduct an in-depth analysis of write amplification
problem for persistent B+-Trees. We find that most
of them suffer from high XBI-amplification, which
directly impacts write performance of PMs.

• We propose CCL-BTree, which leverages the leaf-node
centric buffering, write-conservative logging, and
locality-aware GC, to alleviate the XBI-amplification
in persistent B+-Trees while maintaining crash-
consistency and superior range query performance.

• We implement CCL-BTree and extend it to NUMA sce-
narios. Our evaluation results show that CCL-BTree

CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree EuroSys ’24, April 22–25, 2024, Athens, Greece

reduces XBI-amplification by up to 81% and 76% un-
der uniform and Zipfian workloads, respectively. It
outperforms other indexes by 1.97× to 9.35× for inser-
tions while obtaining similar search performance. The
source code of CCL-BTree is is publicly available at
https://github.com/ISCS-ZJU/CCL-BTree.

2 Background and Motivation
2.1 Persistent Memory System
PM architecture. Byte-addressable PM sits on the mem-
ory bus and includes persistent media and on-chip buffers,
exemplified by Intel Optane DCPMM [19] and Samsung’s
Memory-Semantic SSD [38, 39]. The on-chip buffers are uti-
lized to bridge the performance gap between the fast CPU
cache and the relatively slow PM media. As Intel Optane
DCPMM is the only commercially available PM device, we
use it as an example of PM in this paper and Figure 1 shows
its architecture. Memory accesses to DCPMM first arrive at
a 16 KB on-DIMM write-combining buffer (XPBuffer), and
then are translated to 256 B XPLine before physically access-
ing the 3D-XPoint media. DCPMM supports two persistent
mechanisms: Asynchronous DRAM Refresh (ADR) or ex-
tended ADR (eADR) [37]. ADR ensures that, during a power
loss, all data in the write pending queues (WPQs) of the inte-
grated memory controller is flushed to PM, whereas data in
CPU caches is lost. To achieve crash consistency, programs
must explicitly flush CPU cachelines using cacheline flush in-
structions (e.g., clflush, clflushopt, or clwb) and enforce
ordering using memory fence instructions (e.g., mfence and
sfence). The eADR domain includes CPU caches, so that
programs no longer need to explicitly flush cachelines for
data consistency.
Cacheline-induced amplification. Applications use

flush operations to write data from CPU cache to XPBuffer in
PM. As the CPU cacheline size is 64 B, an application’s small
write that is less than 64 B will trigger an amplified cacheline
write. We name this phenomenon as the cacheline-induced
write amplification (CLI-amplification).

XPBuffer-induced amplification. The data access gran-
ularity between the XPBuffer and the 3D-XPoint media is a
256 B unit [47], which is referred to as an XPLine. However,
as the cacheline size is 64 B, which is less than the XPLine
size, a single cacheline flush to PM may trigger a large-sized
XPLine read-modify-write operation to the media. We call
this XPBuffer-induced amplification (XBI-amplification).
In this paper, we define the CLI-amplification/XBI-

amplification as the ratio between the total amount of data
written to XPBuffer/3D-XPoint media and the amount of
users’ data to write. Accordingly, we use the ipmctl tool [18]
to collect the hardware counter metrics (i.e., real media
read/write bytes and XPBuffer read/write bytes) and calcu-
late the two types of amplification in the following sections.

1 12 24 36 480
3
6
9

12

threadsEx
ec

ut
io

n
tim

e
(s

ec
) # cacheline flushes 1 2 3 4

1 12 24 36 480
10
20
30
40

threads

XPLine writes 1 2 3 4

(a) The impact of CLI. (b) The impact of XBI.

Figure 2. Impact of CLI-amplification and XBI-amplification.
(a) Each thread writes and flushes 𝑁 different cachelines in
a randomly selected XPLine 5 million times. (b) Each thread
writes and flushes 4 cachelines to 𝑁 different XPLines 5
million times.

FPTree
FAST&FAIR

DPTree
uTree

LB+-Tree
PACTree

FlatStore
CCL-BTree

0
10
20
30
40
50
60

W
rit

e
am

pl
ifi

ca
tio

n CLI-amplification XBI-amplification

FPTree

FAST&FAIR

DPTree
uTree

LB+-Tree

PACTree

FlatStore

CCL-BTree0
2
4
6
8

Ex
ec

ut
io

n
tim

e(
se

c)

Time

Figure 3.Write amplification and execution time under uni-
form distributions.

FPTree
FAST&FAIR

DPTree
uTree

LB+-Tree
PACTree

FlatStore
CCL-BTree

0

5

10

15

W
rit

e
am

pl
ifi

ca
tio

n CLI-amplification XBI-amplification

FPTree

FAST&FAIR

DPTree
uTree

LB+-Tree

PACTree

FlatStore

CCL-BTree0

1

2

3

Ex
ec

ut
io

n
tim

e(
se

c)

Time

Figure 4.Write amplification and execution time under Zip-
fian distributions.

2.2 Needs of Reducing XBI-Amplification
CLI-amplification and XBI-amplification are two major prob-
lems in PM write performance. Since physical media ac-
cess is often slow and forms a bottleneck in the critical
path [44, 47], XBI-amplification critically determines the
performance of in-memory applications when the PM band-
width is exhausted in multi-threaded scenarios.

We design two experiments to verify this. First, we fix
the number of XPLine flushes while increasing the number
of cacheline flushes per write request. Second, we fix the
number of cacheline flushes while increasing the number
of XPLine flushes per write request. Figure 2(a) shows that,
as the number of threads increases, the execution times for
different numbers of cacheline flushes are getting closer.
When the number of threads is greater than 36, the execution
time is virtually unchanged as the total number of cacheline

https://github.com/ISCS-ZJU/CCL-BTree

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang, Rui Wang, and Fei Wu

50 100 200 400
0

2

4

6

8

KVs

Th
ro

ug
hp

ut
 (M

op
/s) CCL-BTree

LB+-Tree
FPTree
FAST&FAIR

PACTree
DPTree
uTree
FlatStore

Figure 5. Range query performance with 48 threads.

flushes is increased by 4×. In contrast, Figure 2(b) shows the
execution time of the workload is linearly increased as the
number of XPLine flushes is increased. These results show
the greater impact of XBI-amplification.

2.3 XBI-Amplification in Persistent B+-Trees
Most of existing persistent B+-Trees are designed to reduce
cacheline flushes, thereby alleviating the CLI-amplification.
However, they may not help address XBI-amplification as
they do not necessarily reduce the number of XPLine flushes.

To verify this, we measure the CLI- and XBI-amplification
in existing B+-Trees (FPTree [36], FAST&FAIR [17], DP-
Tree [51], 𝜇Tree [7], and LB+-Tree [31]), the trie-based
PACTree [25], the log-structured FlatStore [8], and our pro-
posed CCL-BTree. We evaluate the indexes in both uniform
and Zipfian distributions (coefficient value = 0.9) with 48
threads. We first warm up the indexes using 50 million 16 B
KVs and then upsert the remaining 50 million KVs.

Figure 3 and 4 show two observations. (1) Existing persis-
tent B+-Trees are effective at reducing CLI-amplification but
inefficient at reducing XBI-amplification. For example, the
XBI-amplification is 37.1 and 12.4 on average for the uniform
and Zipfian distributions, respectively, while CCL-BTree can
reduce it to 10.2 and 3.7; (2) Compared to LB+-Tree and 𝜇Tree,
CCL-BTree has a higher CLI-amplification but lower XBI-
amplification under the uniform distribution, because we
induce extra cacheline flushes to trade for a locality-friendly
access pattern with fewer XPLine flushes.
In contrast to B+-Trees, FlatStore provides both small

XBI-amplification and CLI-amplification because the log-
structured data layout forms sequential writes in PM. How-
ever, it stores KVs in chronological order rather than key
order, resulting in significant performance degradation for
range queries. To verify this, we execute range query opera-
tions on 100 million KVs while varying the query size from
50 to 400 KVs. As shown in Figure 5, FlatStore exhibits up
to 5.59× lower throughput than persistent B+-Trees when
the scan size is 400. This slow range query performance is
unaccepable for many applications.
Summary.We deem that XBI-amplification is a serious

and common problem in all existing persistent B+-Tree vari-
ants. The straightforward way to reduce XBI-amplification
via out-of-place logging breaks the sorted nature of B+-Tree,

Buffer
Nodes

DR
AM

PM

…

Leaf
Nodes

…

Inner nodes

…

3.2 Leaf node
centric buffering

3.3
Write-conservative
logging

Append …
Write-ahead logs

3.4 Locality-aware GC

… …

Figure 6. Overview of the CCL-BTree.

which degrades the range query performance. We need to di-
rectly address XBI-amplification while guaranteeing a good
range query performance.

3 Design of CCL-BTree
This section first presents an overview of CCL-BTree and
then introduces its three key techniques. CCL-BTree aims
to minimize XBI-amplification by reducing random writes
in PM, meanwhile maintaining crash consistency and high
range query performance.

3.1 Overview
We achieve these goals by introducing a crash-consistent and
locality-aware B+-Tree as shown in Figure 6. We first pro-
pose a leaf-node centric buffering strategy to reduce the XBI-
amplification. To ensure the crash consistency of data stored
in DRAM buffer nodes, we then propose a write-conservative
logging scheme that records the data updates in a sequential
PM log before writing them to DRAM buffers. Finally, we
present a locality-aware garbage collection technique to speed
up the log reclaiming process without any interference to
the frontend workloads.

3.2 Leaf-Node Centric Buffering
A traditional B+-Tree comprises two primary components:
(1) inner nodes that store the indexes of items and (2) leaf
nodes that store the KV pairs.When a new update arrives, the
B+-tree searches the internal nodes for the corresponding
leaf node. Then, the update is directly written to the leaf
node that stored in PM, leading to the random write and
thus causing the XBI-amplification issue.
Limitations of the global buffering approach. To re-

duce XBI-amplification in PM, an intuitive approach is to
utilize a large global buffer pool in DRAM to cache andmerge
incoming write requests for leaf nodes, as in DPTree [51].
This technique initially stores all KVs in the buffer pool,
and then merges them to PM leaf nodes when the pool is
full. However, during the merging process, the KVs are ran-
domly inserted into different leaf nodes stored in different
PM XPLines, resulting in random writes in PM and the se-
vere XBI-amplification issue. Additionally, this method can
lead to decreased insert performance, as foreground threads

CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree EuroSys ’24, April 22–25, 2024, Athens, Greece

Leaf
Pointer

Version
Lock

Epoch
Bitmap

KVsPosition

（a）Buffer node8 B

Bitmap
Next

Pointer
Time-
stamp

Finger-
prints

KVs

32 B （b）Leaf node

Figure 7. The layout of buffer node and leaf node.

can be stalled by the costly merging operation. Furthermore,
search and scan performance can also suffer, as the extra
buffer lookup cost introduced by the large global buffer size
is non-trivial. We will validate these issues by studying the
performance of DPTree in §5.2.
Leaf-node centric buffering approach. To address

the above-mentioned issues, we propose a leaf-node cen-
tric buffering strategy, by introducing a new layer of buffer
nodes between the last-level inner nodes and leaf nodes, as
shown in Figure 6. Specifically, we store the leaf nodes in PM
and keep the inner nodes and buffer nodes in DRAM. It allo-
cates a fine-grained buffer node for each leaf node to buffer
multiple writes and flush them to the same XPLine timely
to improve the XPLine access locality. Figure 7(a) shows the
layout of buffer nodes, which consists of five parts: a pointer
to the corresponding leaf node, a version lock for concur-
rency control, an epoch bitmap for GC, a position counter to
store the number of KVs that are not flushed to leaf nodes,
and 𝑁𝑏𝑎𝑡𝑐ℎ slots to store KV items. To limit the space cost,
we store the first four parts in a compressed 8 B header. In
addition, we maintain a global epoch, which is initialized as
“0”. It is then altered between “0” and “1” before the execution
of each GC. Each bit of the epoch bitmap indicates whether
the corresponding KV is inserted before the current round
of GC or during the current GC. The epoch bit of a newly
inserted KV is set with the current global epoch.

Insert flow in buffer nodes. Insertions are performed in
a log-structured manner in buffer nodes. For a new insertion,
we first search the key in inner nodes, just like in a traditional
B+-Tree. After traversing down to the target buffer node, we
use the position counter to find the first empty slot. If an
empty slot is found, we append a log entry to the WAL
for crash consistency (§3.3), and then insert the KV to this
slot and increase the position counter. If no empty slots
are available, we reset the position counter and then flush
all cached entries and the new incoming KV in batch into
the leaf node together in one XPLine write, thus relieving
the XBI-amplification problem. Note that while KVs are not
sorted in each buffer node and leaf node to speed up insert
performance, we preserve the key order between adjacent
leaf nodes to retain high range query performance.

Benefit for query operations. The buffered entries are
always up to date and can serve the incoming search requests
directly. Motivated by this simple revelation, even when the

buffered KVs are flushed to the leaf nodes, they are still re-
served in the buffer nodes until overwritten. In this way, the
number of slow PM reads to the leaf nodes can be reduced.
Extra DRAM consumption. One concern is that the

buffer nodes incur extra DRAM space consumption. Gen-
erally, more DRAM space used to buffer will bring more
performance improvement. CCL-BTree allows users to con-
trol the balance between the two parts by adjusting the value
of 𝑁𝑏𝑎𝑡𝑐ℎ . In our implementation, we empirically set 𝑁𝑏𝑎𝑡𝑐ℎ
to 2 by default to achieve a good trade-off (§5.4). We will
evaluate the memory consumption in §5.5.

3.3 Write-Conservative Logging
Since data stored in DRAM buffer nodes may be lost on a
power failure, we use the ubiquitous WAL technique applied
in PM to ensure crash consistency. However, a naive WAL
method may incur many additional PMwrites, impacting the
PM access performance. To address this issue, we propose a
write-conservative logging strategy to reduce the number of
log operations.

Write ahead logging. Each thread has an individualWAL
for scalability under high concurrency. Each WAL consists
of multiple 4MB log chunks. CCL-BTree maintains a free
log list to manage the recycled log chunks. When a new
log chunk is needed, it is first retrieved from the free list.
If the free list is empty, a new log chunk is allocated. Each
log entry is 24 B storing a KV pair of 16 B and a timestamp
of 8 B. We use _𝑟𝑑𝑡𝑠𝑐 () instruction to obtain the hardware
clock and generate timestamps. To avoid the constant skew
of the hardware clock across sockets, we use the ORDO
primitive [24] to ensure correct ordering of timestamps, as
in prior work [27, 46].

Write-conservative logging. As shown in Figure 8(a), a
naive logging method will first write the log for each new
KV and then flush the cacheline of the log to PM for data
consistency. This may yield unnecessary logging overhead.
We design a write-conservative logging approach to reduce
the number of log operations, and further reduce the PM
writes. As shown in Figure 8(b), the idea is to skip the logging
operations for KV writes that trigger the flushes when the
buffer nodes are full. We name such KV writes as trigger
writes. As these KVs will be immediately flushed together
with the buffered KVs to PM, this write-conservative method
can still guarantee their data consistency.
Avoiding logging for trigger writes reduces the number

of log operations from 𝐾 to 𝐾 ∗ 𝑁𝑏𝑎𝑡𝑐ℎ

𝑁𝑏𝑎𝑡𝑐ℎ+1 where 𝐾 is the
number of insertions. Since 𝑁𝑏𝑎𝑡𝑐ℎ is typically set to a small
integer (e.g., 𝑁𝑏𝑎𝑡𝑐ℎ = 2 by default), this strategy can yield
considerable performance improvement. Please see §5.3 for
a more detailed discussion.

A key challenge of the write-conservative logging is that
we may lose track of the latest version of KVs because they
may appear in both WALs and leaf nodes. The location of

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang, Rui Wang, and Fei Wu

(a) Naive logging

K1 K2 K3 K4 K5 K6

K1

K2

K3

K4

K5

K6

Requests

Trigger writes

(b) Write-conservative logging

Buffer
node

K4 K5

K1 K2 K3 K4 K5 K6
Leaf
node

K1 K2 K3 K4 K5 K6

K1

K2

K4

K5
K4 K5

K1 K2 K3 K4 K5 K6

Log file

Write log ❌

❌

Trigger writes

Log file

Figure 8. Illustration of logging approaches. (a) The naive
logging approach logs all KVs. (b) The write-conservative
logging doesn’t log KVs (i.e., K3 and K6) that trigger buffer
flushing.

the latest version is determined by whether the last insertion
is a trigger write. Specifically, in the case of a non-trigger
write, the latest version will be stored in the WAL when a
system crash occurs. In comparison, for a trigger write, the
KV will be directly written to the leaf node without being
logged. Therefore, the latest version will be available in the
leaf node.

To solve this issue, in addition to tracking the timestamp
in the log for each KV insertion, we also introduce a new
timestamp field in leaf nodes, as shown in Figure 7(b). We
update the timestamp field after inserting all buffered KVs
and the KV of trigger write into the leaf node. In this way,
if there are multiple versions of data of the same key in
leaf nodes and WALs during recovery, we can get the latest
version of this key by just comparing their timestamps. If
the timestamp update of a leaf node is not completed when
a failure occurs, the buffered KVs will be overwritten by
replaying WALs and the system will resume with the KVs in
theWALs after failure recovery. The KV of the corresponding
trigger write will be lost.
Failure recovery.With the write-conservative logging

strategy described above, we can easily achieve the crash
consistent recovery. First, we can reconstruct the CCL-BTree
by rebuilding their inner nodes in DRAM while traversing
the linked list of leaf nodes in PM. Second, by replaying log
entries, we recover the KVs to leaf nodes for those stored in
buffer nodes but have not been flushed to PM when failures
happened. Finally, we reset timestamps in the leaf nodes.
After that, CCL-BTree recovers all KV items and can serve
new requests. The empty buffer node will be lazily created
for each leaf node when new writes arrive.

3.4 Locality-Aware Garbage Collection
The size of WALs will keep increasing with the write-
conservative logging strategy. Therefore, we need a GC
mechanism to reclaim the PM space for logging. However, a
naive GC strategy would cause additional XBI-amplification
problems. We propose a locality-aware garbage collection
technique to alleviate the XBI-amplification during GC and
minimize the interference to the frontend workloads.

(a) Naive GC (b) Locality-aware GC

Buffer node layer

Inner node layerInner node layer

Leaf node layer log Leaf node layer

Foreground Thread GC Thread

Batch InsertionRandom Insertion

B-logI-log

Buffer node layer

Write log

Reclaim log

Figure 9. Illustration of GC approaches.

Naive GC. As shown in Figure 9(a), the naive GC pro-
cess is started by (1) stopping the foreground buffering and
logging via a global lock, and meanwhile (2) invoking a back-
ground garbage collecting thread to sequentially traverse all
buffer nodes (via the pointers in the last-level inner nodes),
and flushes the KVs that have not been flushed to leaf nodes.
After that, all log chunks in the WALs are moved to the free
log list for reclaiming, and we can unlock the buffer node
layer to serve the incoming requests.
From the process above, we can see that the naive GC

strategy suffers from severe XBI-amplification problem for
two reasons: (1) the KVs flushed from the buffer nodes may
be located in random leaf nodes in PM; (2) the buffer stops
serving incoming requests during the naive GC process, so
the requests cannot be batched in the buffer nodes. Our
experiments show that the naive GC strategy reduces the
throughput of insertion by 37.5% (§5.3).
Locality-aware GC. To alleviate the XBI-amplification

during GC, we should keep the buffer function in effect all the
time and avoid random flushes by the GC thread.We design a
novel locality-aware GC to meet these goals. The main idea
is to convert random leaf node access into sequential log
writing. The naive GC flushes all buffered KVs from buffer
nodes to leaf nodes, resulting in numerous random accesses
to different leaf nodes. In contrast, locality-aware GC only
copies them to new logs in an append-only manner, thereby
eliminating random accesses.
Specifically, we maintain two logs in locality-aware GC,

including B-logs and I-logs. B-logs store all the log entries
written before entering GC. And I-logs store all the log en-
tries written during GC. As shown in Figure 9(b), our locality-
aware GC process starts by flipping the global epoch number
which indicates the pointers of current B-log and I-log. After
that, the background GC thread scans all buffer nodes and
copies the KVs that have not been written to leaf nodes to
I-logs. In the meantime, the new coming KVs can also be
buffered to the corresponding buffer nodes and logged to
I-logs. The GC thread skips KVs that have been flushed to the
leaf nodes and the new coming KVs whose epoch bit is equal
to the global epoch. At the end of the GC process, the I-logs
contain both a subset of unflushed log entries in the original
B-log and new coming KVs inserted during the current GC

CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree EuroSys ’24, April 22–25, 2024, Athens, Greece

process. Then, we mark the I-logs as new B-logs to receive
the forthcoming log entries, and reclaim the PM space of the
original B-logs. When both the foreground threads and the
background thread access the same buffer node, we use the
version lock in the buffer node for concurrency control.

In our locality-aware GC, we can keep buffer nodes work-
ing all the time during the whole GC process, thus maintain-
ing high throughput of insertion. When foreground threads
flush leaf nodes through batch insertion, they also acceler-
ate the GC process by reducing the number of KVs to be
transferred between B-logs and I-logs. The GC process is
triggered when the ratio of the log file size and the size of
all the leaf nodes is larger than a memory usage threshold
𝑇𝐻𝑙𝑜𝑔 . By default,𝑇𝐻𝑙𝑜𝑔 is empirically set to 20%. We discuss
it in §5.4.

3.5 Theoretical Performance Analysis
Quantification of decreased XBI-amplification. Exist-
ing researches are ineffective in reducing XBI-amplification
because their cacheline flushes are too random to be cached
in XPBuffer and each 64 B cacheline flush may trigger a
256 B XPLine flushes to PM media. In contrast, CCL-BTree
uses fine-grained buffer node to merge multiple KV writes
and flushes them to the same XPLine timely to improve the
XPLine access locality. We use an example of 𝐾 new incom-
ing KV updates to illustrate this. For a traditional B+-Tree,
we may need at most 𝐾 XPLine flushes for these 𝐾 updates
because they may randomly write to different leaf nodes. For
CCL-BTree, we can reduce the XPLine flushes for leaf nodes
from 𝐾 to 𝐾

𝑁𝑏𝑎𝑡𝑐ℎ+1 , thus decreasing the XBI-amplification.
Quantification of additional XBI-amplification

caused by logging. To ensure data consistency, CCL-BTree
introduces extra PM writes by logging, as we need to write
the PM log for each KV. However, logs are sequentially ap-
pended to the per-thread WAL, and multiple (e.g., 256B / 24B
= 10.7) log entries would be merged to one XPLine flush.
Thus, for the 𝐾 KV updates, the logging strategy will incur
additional 24

256 ∗𝐾 ∗ 𝑁𝑏𝑎𝑡𝑐ℎ

𝑁𝑏𝑎𝑡𝑐ℎ+1 XPLine flushes forWALs, slightly
increasing the XBI-amplification.
Overall performance. Based on the above benefit-cost

analysis, we find that CCL-BTree can reduce the number of
XPLine flushes from 𝐾 to 256 + 24 ∗ 𝑁𝑏𝑎𝑡𝑐ℎ

256 ∗ (𝑁𝑏𝑎𝑡𝑐ℎ + 1) ∗ 𝐾 . When 𝑁𝑏𝑎𝑡𝑐ℎ
is equal to 2 (the default value), it reduces 60.4% XPLine
flushes compared to the traditional B+-Tree, thus improving
the KV write performance. We will evaluate the overall XBI-
amplification and verify this in §5.3.

4 Implementation
Based on the proposed designs above, we implement a proto-
type system CCL-BTree in C++. In this section, we introduce
the key implementation decisions of CCL-BTree to improve
its effectiveness and scalability.

4.1 CCL-BTree Structure
Inner nodes. They store the query indexes of inserted keys,
and have the same structure as classical B+-Trees. We place
them in DRAM and follow the inner nodes implementation
of FAST&FAIR [17], by default, and it can be easily replaced
by other existing index structure implementations.

Buffer nodes. They store the DRAM buffered KV pairs of
the corresponding leaf nodes as stated in §3.2. The detailed
implementations refer to Figure 7(a).

Leaf nodes. They store the inserted KV pairs in PM, and
their detailed implementations are shown in Figure 7(b).
Each leaf node is set as 256 B to make full use of an XPLine
access. A leaf node starts with a 32 B header, which stores the
metadata of this leaf node, i.e., (1) a 14-bit bitmap to identify
invalid keys, (2) a 48-bit pointer to the next leaf node for
efficient range scan, (3) an 8 B timestamp for failure recovery,
(4) a 14 B fingerprint array for efficient search, and a 2 B
padding. The remaining space is used to store KV entries, and
it can hold up (256𝐵 − 32𝐵)/16𝐵 = 14 KV entries at most for
the default setting of 8 B key and 8 B value. Each fingerprint
is a 1 B hash value of the corresponding key in the leaf node.
We can compare the fingerprint of a search key with the
14 fingerprints of a leaf node to filter the unmatched keys
and quickly locate the slots that contain potential matches,
which reduces the number of PM reads [36].

Write-ahead logs. They store the KV log entries that are
used for backing up the KV entries buffered in DRAM node
buffers. The detailed structure of a log entry is stated in §3.3.

4.2 Insertion Flow
Insertion to leaf nodes. Upon an insertion, the KV is in-
serted to the buffer node according to the description in §3.2.
If the buffer node is full, we flush the cached entries and the
new incoming KV in batch in one XPLine flush. The batch
insertion is executed in three steps: (1) insert the entries into
the empty slots in the data region one by one and record
the modified cachelines (the keys are unsorted in the leaf
node); (2) persist the modified cachelines using clwb and call
one sfence to ensure the order; (3) update the fingerprints,
timestamp, and bitmap, and persist the metadata region using
single clwb and sfence. As any modifications to the leaf node
are invisible before the bitmap is persisted, the insertion
ensures the crash-consistency of the leaf node.
Logless split of leaf nodes. When a leaf node is full

during batch insertion, CCL-BTree splits the leaf node with-
out writing logs to reduce XBI-amplification. The first step
is to allocate a new leaf node (newLeaf) and copy half of
the entries from the current leaf node (oldLeaf) to the new
leaf node. Next, it inserts the KVs whose keys are larger
than splitKey in the remaining KVs to be inserted into
the newLeaf. And then it updates the metadata region of
newLeaf and flushes the entire newLeaf. After that, it flushes
the modified cacheline in the oldLeaf. A single sfence is

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang, Rui Wang, and Fei Wu

called now to ensure all flushed data has been persistent.
Note that we only update the data region of oldLeaf, and its
metadata region is updated and persisted after this sfence
instruction. Finally, the remaining KVs (i.e., KVs whose keys
are smaller than splitKey) are inserted into the oldLeaf
through normal batch insertion.
Since the 𝑏𝑖𝑡𝑚𝑎𝑝 and the 𝑛𝑒𝑥𝑡𝑝𝑜𝑖𝑛𝑡𝑒𝑟 fields in the meta-

data region are compressed to 8 B, we can atomically insert
the newLeaf into the linked list of leaf nodes and update the
status of the splitting leaf node. If a crash happens before
that, any modifications to the splitting leaf node are invisible
to users and CCL-BTree can restart correctly by scanning
the linked list. Besides, we adopt the chunk-based allocation
strategy [7] to avoid the potential PM leak for the newly
created leaf node.

Update, delete, and merge operations. Update and in-
sertion are implemented as upsert operations. Upsert will
insert a new entry if the key does not exist. Otherwise, it
performs an update. For a deletion, the tombstone KV (i.e.,
value is set to zero) is inserted into the buffer node. When
the tombstone KV is written to the leaf node, we clear its
corresponding bit in the bitmap so that its slot can be used
for serving a new KV. In this way, both updates and deletions
can be regarded as insertions and benefit from our designs.
If the deletion causes a leaf node to be underutilized (i.e.,

< 50%) and its left sibling node has enough space, CCL-BTree
merges the node to the left sibling node. It first acquires the
locks of the two nodes and then moves the KV pairs in the
underutilized node to its sibling. After that, the metadata
in the sibling node is updated in order. Because the bitmap
and the next pointer are 8 B, we can atomically detach the
underutilized node from the linked list of leaf nodes and
validate the newly inserted KVs in the sibling node. We use
the same method as in the split operation to enforce crash
consistency and avoid PM leaks in the merge process.

4.3 Query Flow
Point query. For a given key, we first search the key in the
inner node layer to find the corresponding target buffer node.
Then, we scan the whole buffer node to check if any cached
KVs whose key is equal to the target key. For correctness,
we should scan the buffer nodes from the left-most slots to
avoid getting the stale values. If there is a match, the value
of the cached KV in the buffer node is returned directly with-
out accessing PM. Otherwise, we continue to search from
the corresponding leaf node. We can check the bitmap and
fingerprints compressed in the same cache line to minimize
the number of PM reads [36].
Range query. CCL-BTree maintains the key order be-

tween adjacent leaf nodes but releases the order within a
buffer node or a leaf node. This partially ordered design is
widely used to reduce the high PM write overhead caused by
item shiftings [6, 25, 31, 36, 51]. Although this incurs over-
head for range queries to sort the keys within a leaf node,

the overhead is not significant because the sorting process is
executed in DRAM and the performance bottleneck is caused
by the slow PM read, especially in multi-threaded scenarios.
For a range query, we first search the starting key in the
inner node layer to find the target buffer node. Then we use
the next pointers in the last-level inner nodes to traverse
the successive buffer nodes and leaf nodes to obtain all KV
entries in this range. If entries with the same key exist in
both leaf nodes and buffer nodes, we retain the entries stored
in the buffer nodes since the buffer nodes always store the
latest versions of KVs.

4.4 System Optimizations
Besides the techniques proposed in §3, we further adopt
several optimizations to improve the effectiveness and scala-
bility of CCL-BTree.
Optimization #1: NUMA-friendly PM accesses. Re-

mote PM accesses across NUMA may induce extra PM la-
tency and degrade the system performance due to the multi-
socket cache coherence [25, 42]. Most of the prior persistent
indexes [6, 7, 17, 31, 51] only consider the situation with
a single socket and cannot scale well for multiple NUMA
nodes. In contrast, CCL-BTree scales well in multi-socket
NUMA systems for three reasons. First, CCL-BTree intro-
duces buffer nodes in DRAM to batch the incoming KVs
which reduces the number of remote PM accesses. Second,
CCL-BTree binds the log file per thread to the local PM to
avoid remote logging. Third, the locality-aware GC only
scans the buffer nodes in DRAM and copies log entries into
the local log file, avoiding remote PM access during GC.
Optimization #2: Concurrency control. In the inner

node layer, we adopt the lock-free search algorithm used in
FAST&FAIR [17], which uses node-level locking for insert
operations, for high-performance concurrency control. Af-
ter traversing down from the root and reaching the target
buffer node safely, we switch to the typical version lock pro-
tocol to ensure the correctness of the concurrency control.
Specifically, each buffer node maintains a version number to
detect conflict (i.e., odd number means this node is locked).
A writer tries to increment the version number atomically
using compare-and-swap (CAS) instruction when the ver-
sion is even. If the version is odd or the CAS instruction
is unsuccessful, the operation retries from the inner node
layer. Otherwise, the writer enters the critical section and
increases the version number after completing its operations.
A reader first checks whether the buffer node is being held
by a concurrent writer (i.e., odd version number). If not, it
optimistically read data without holding any lock. Upon fin-
ishing its operations, it checks the version again and retries
if the version number changes. Note that the leaf nodes share
the version number of their corresponding buffer nodes, thus
no extra locking is needed for leaf nodes. Besides, the version
number stored in DRAM can also help avoid excessive PM
accesses for conflict detection.

CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree EuroSys ’24, April 22–25, 2024, Athens, Greece

Optimization #3: Variable-size KVs. CCL-BTree adopts
an indirection pointer strategy for variable-size KVs that are
widely used in real-world scenarios [3, 5]. Specifically, CCL-
BTree reserves additional PM areas beyond the tree to store
the actual keys and values which are larger than 8 B. At the
same time, it replaces the keys and values in the tree (as well
as in the logs) with 8 B indirection pointers that point to the
locations of the actual data. We utilize the most significant
bit to indicate whether the 8 B word is an indirection pointer
or actual data. This strategy is commonly used in existing
persistent indexes [6, 8, 16, 36, 48] and popular database sys-
tems [13, 35]. However, updating indirection pointers still
suffer from significant XBI-amplification, as an 8 B indirec-
tion pointer write can potentially result in a 256 B write on
real PM media. Therefore, our techniques remain effective in
reducing the XBI-amplification caused by indirection point-
ers. We will further evaluate the impact of variable-size KVs
in §5.4.

5 Evaluation
5.1 Experimental Setup
Platform.We run the experiments on a Linux server with
two Intel Xeon Gold 5318Y CPUs. Each CPU has 24 phys-
ical/48 logical cores, 64GB DRAM, and four 128GB Intel
Optane DCPMMs 200 series. The DCPMMs attached to a
CPU are mounted with the Ext4-DAX file system and config-
ured in App Direct Mode. We bind every thread to one core
using the function 𝑝𝑡ℎ𝑟𝑒𝑎𝑑_𝑠𝑒𝑡𝑎𝑓 𝑓 𝑖𝑛𝑖𝑡𝑦_𝑛𝑝 () to avoid the
thread switching overhead. All source codes are compiled
with g++7.5 with -O3 optimization.

Workloads.We use the micro-benchmarks and the YCSB
macro-benchmarks [11] to generate different workloads. For
each workload, we first warm up the index with 50 million
KVs, so that the data size exceeds the size of the L3-cache and
the tested performance reflects the performance of PM [32].
After warming up, we run each test with 50 million opera-
tions three times and report the average performance. For
the scan operation, we retrieve 100 entries from a random
start key. By default, we use 8 B keys and 8 B values.
Target comparisons. We compare CCL-BTree with

state-of-the-art persistent structures, including FPTree [36],
FAST&FAIR [17], DPTree [51], 𝜇Tree [7], LB+-Tree [31],
PACTree [25], FlatStore [8], and RocksDB deployed on
PM [20]. We use their public code except FlatStore, which is
not open-source. We reimplement FlatStore as faithfully as
possible according to the description in the paper. We do not
plot the delete performance of PACTree because we cannot
run this function correctly.

To make the comparison fair, we use the same 256 B tree
node size for each index except for 𝜇Tree and DPTree. This
configuration yields the best performance for all indexes,
except 𝜇Tree and DPTree, due to the alignment between
XPLine size and leaf node. Specifically, each node contains

14 KVs (14 ∗ 16 = 224 B) and a 32 B metadata region. The
𝜇Tree index stores only one KV in each leaf node to avoid
expensive structural refinement operations in PM, whereas
DPTree requires large leaf nodes containing 256 KVs to amor-
tize persistence overhead. Additionally, we use pre-allocated
PM pools from the local socket for all indexes to minimize
the allocation overhead since memory allocation can signifi-
cantly affect index structure performance [12, 25, 31, 32]. We
set the default number of GC threads for CCL-BTree to 1.

5.2 Overall Performance
Micro-benchmarks. Figure 10 shows the system perfor-
mance of each index with uniform key distribution. For in-
sertion, CCL-BTree outperforms other B+-Tree variants by
1.97× to 9.35× with 96 threads. CCL-BTree also has the best
scalability. It delivers a continuously increasing throughput
until 96 threads while the others achieve nearly saturated
throughputs at around 36 threads. There are three reasons
for the improvements. First, as we have discussed in §2.2,
the XBI-amplification becomes more dominant in insertion
performance when the number of threads increases. CCL-
BTree can efficiently alleviate it. Second, when the index
spans multiple NUMA nodes, the leaf-node centric buffer-
ing and NUMA-aware logging can significantly reduce the
remote PM accesses. Third, the inherent limitations of ex-
isting indexes also degrade their performance. For example,
FAST&FAIR and PACTree place the whole tree structure in
PM, leading to more slow PM accesses. DPTree adopts the
global buffer pool strategy, incurring high XBI-amplification
and merge overhead (§3.2). For instance, DPTree has a much
higher XBI-amplification (43.2) than CCL-BTree (10.2) with
48 threads. LB+-Tree uses HTM for concurrency control,
which might not scale well to multi-threaded and cross-
NUMA scenarios as transaction aborts increase. To analyze
this further, we show the detailed improvement of each opti-
mization of CCL-BTree in §5.3.
The update and delete operations bring similar perfor-

mance trends as insertion operations because they also ben-
efit from the optimizations of CCL-BTree. For the search
operation, CCL-BTree outperforms other indexes by 1.07×
to 2.95× because the cached KVs can be directly returned
without accessing the slow PM leaf nodes. For the scan oper-
ation, CCL-BTree performs 10% worse than LB+-Tree. This is
because CCL-BTree needs to search and merge results from
both buffer nodes and leaf nodes to get the latest entries. Ex-
cept LB+-Tree, it outperforms other indexes by 1.09× to 4.93×.
𝜇Tree exhibits the worst scan performance (1.53Mop/s) be-
cause it stores only one KV pair in each leaf node, leading to
a large number of random PM reads to the linked list.
YCSB macro-benchmarks. We use YCSB benchmark

to produce five realistic uniform workloads with different
read/write ratios. They are insert-only, insert-intensive (75%
insert and 25% read), read-intensive (75% read and 25% in-
sert), read-only, and scan-insert (95% scan and 5% insert).

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang, Rui Wang, and Fei Wu

1 24 48 72 96
0

10
20
30
40
50

threads

Th
ro

ug
hp

ut
 (M

op
/s

)

1 24 48 72 96
0

10
20
30
40
50

threads
1 24 48 72 96

0
10
20
30
40
50

threads
1 24 48 72 96

0

15

30

45

60

threads
1 24 48 72 96

0

2

4

6

8

threads

FPTree FAST&FAIR DPTree uTree LB+-Tree PACTree CCL-BTree

(a) Insert (b) Update (c) Delete (d) Search (e) Scan

Figure 10. Performance of persistent indexes for the micro-benchmark.

1 24 48 72 96
0

10

20

30

40

threads

Th
ro

ug
hp

ut
 (M

op
/s

)

1 24 48 72 96
0

10

20

30

40

threads
1 24 48 72 96

0

15

30

45

60

threads
1 24 48 72 96

0

20

40

60

80

threads
1 24 48 72 96

0

5

10

15

20

threads

FPTree FAST&FAIR DPTree uTree LB+-Tree PACTree CCL-BTree

(a) Insert-Only (b) Insert-Intensive (c) Read-Intensive (d) Read-Only (e) Scan-Insert

Figure 11. Performance of persistent indexes for the YCSB benchmark.

m
in

20
%

40
%

60
%

80
%

90
%

99
%

99
.9

%0

5

10

15

20

(a) Insert

La
te

nc
y

(u
s)

FPTree
FAST&FAIR
DPTree
uTree
LB+-Tree
PACTree
CCL-BTree

m
in

20
%

40
%

60
%

80
%

90
%

99
%

99
.9

%0

1

2

3

4

(b) Search

Figure 12. Latency analysis for the micro-benchmarks.

Figure 11 shows the performance trends of YCSB benchmark
are similar to the micro-benchmarks. For the insert-only and
insert-intensiveworkloads, CCL-BTree can improve through-
puts by at least 1.67× with 96 threads. Besides, CCL-BTree
maintains the best performance even within the read-only
and scan-insert workloads. These results indicate CCL-BTree
also scales well under various real-world access patterns.
Latency analysis. Figure 12 shows the latency distribu-

tion of all indexes for the insert and search workloads of the
micro-benchmark with 48 threads. As shown in Figure 12(a),
CCL-BTree shows a 1.37× to 6.83× lower 99.9𝑡ℎ percentile
insert latency than other persistent indexes. This is mainly
attributed to the less XBI-amplification which alleviates the
access blocking time when PM bandwidth is exhausted. Al-
though DPTree shows the lowest insertion latency with the
60 − 99𝑡ℎ percentiles, its average latency is longer than CCL-
BTree. This is because the foreground requests of DPTree
may be stalled by the merging process. When the merging

Insert Update Delete Search Scan
0

10

20

30

40

Th
ro

ug
hp

ut
 (M

op
/s

)

Base +BNode +WLog

Base
+BNode

+WLog0
4
8

12
16
20

XB
I-a

m
pl

ific
at

io
n WAL

Leaf

(a) (b)

Figure 13. Performance and XBI-amplification analysis of
each optimization with 48 threads.

happens, the insertion latency after the 99.9𝑡ℎ percentile can
reach up to 300 ∼ 400 milliseconds.

For search operations, Figure 12(b) shows that CCL-BTree
exhibits much lower latency before the 20𝑡ℎ percentile be-
cause the target KVs are obtained and returned from the
buffer nodes without accessing the slow PM. Starting from
the 20𝑡ℎ percentile, most indexes show similar search laten-
cies due to the same searching path (i.e., searching from
the DRAM indexing layer and then getting the target KVs
through one PM access). At the 99𝑡ℎ percentile, DPTree
shows a higher tail latency (8.2 us) because it needs to search
both the global buffer pool and the base tree.

5.3 Improvement of Each Optimization
Buffering and write-conservative logging. Figure 13(a)
shows the performance improvement of each optimization
in CCL-BTree. Base is the implementation of CCL-BTree
without any optimizations discussed in §3. +BNode denotes

CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree EuroSys ’24, April 22–25, 2024, Athens, Greece

0 300 600 900 1200 1500
0

10

20

30

40

50

Time (ms)

Th
ro

ug
hp

ut
 (M

op
/s

)

start GC

w/o GC our GC naive GC

Figure 14. Performance of different GC strategies.

the version with the leaf-node centric buffering and the naive
WAL logging. +WLog denotes the version with the leaf-node
centric buffering and the write-conservative logging enabled.
As shown in Figure 13(a), +BNode improves the through-

put of Base by an average of 35.9% for PM write operations
(i.e., insertion, deletion, and update). This is due to the leaf-
node centric buffering, which drastically reduces the XBI-
amplification as discussed in §3.5. +BNode also enhances
search performance by 6.5% because some read requests can
be served in the buffer nodes without resorting to the slow
PM. After enabling the write-conservative logging, +WLog
further improves the average throughput by 8.3% compared
to +BNode, thanks to the reduced number of log operations.
For a better demonstration, Figure 13(b) shows the XBI-

amplification, which is measured by dividing the actual PM
media write size by the user write size, during the execution
of Base, +BNode and +WLog. We count the XBI-amplification
caused by modifying leaf nodes and WALs separately. The
results show that, +BNode reduces the XBI-amplification
by 63.9% on leaf node modifications compared to Base. Al-
though +BNode introduces extra PM writes for WALs to
ensure data consistency, it still reduces the overall XBI-
amplification by 36.9%, resulting in the write performance
improvement shown in Figure 13(a). Additionally, by en-
abling write-conservative logging, +WLog further reduces
the XBI-amplification on WALs by 26.5% compared to +BN-
ode. In summary, with these two techniques, CCL-BTree
reduces the total XBI-amplification by 44.1%, which is lower
than the ideal value of 60.4% as discussed in §3.5. This is
because the ideal value does not take into account the effect
of the node splitting.

Locality-aware GC. Figure 14 shows the system through-
put with different GC strategies. We first populate the CCL-
BTree with 50 million KVs and clean all buffer nodes (i.e., all
KVs are flushed into the leaf nodes). After that, we continue
inserting KVs and record the throughput periodically. When
the GC is triggered, the throughput of naive GC decreases
by 37.5% (from 32Mop/s to 20Mop/s) because of the ran-
dom flushes to the leaf nodes. In contrast, we find that our
locality-aware GC strategy has a marginal impact on the
system performance compared to the case without GC. The
overhead of our locality-aware GC is trivial for three reasons:
(1) locality-aware GC copies the KVs to a new log instead

Table 1. Sensitivity of𝑁𝑏𝑎𝑡𝑐ℎ . We use the workloads inmicro-
benchmarks with 48 threads. TP means throughput.

Nbatch 1 2 3 4 5

Insert TP (Mops/s) 27.4 30.6 31.6 32.9 33.3
media write (GB) 9.37 7.52 6.63 6.17 5.88

Search TP (Mops/s) 39.9 41.1 42.9 43.7 44.4
DRAM hit (M) 4.9 9.4 14.2 17.6 21.7

Usage DRAM (GB) 0.47 0.59 0.74 0.82 0.93
PM (GB) 2.71 2.77 2.96 2.83 2.81

Table 2. Sensitivity of 𝑇𝐻𝑙𝑜𝑔. We use the insert workload in
micro-benchmarks with 48 threads.

𝑇𝐻𝑙𝑜𝑔 10% 15% 20% 25% 30% 35%

Throughput (Mop/s) 31.5 31.7 31.6 31.7 31.5 31.9

Peak log size (MB) 825.3 764.6 700.8 857.8 930.1 965.5

of flushing them to a random location in PM, thus reducing
the number of XPLine flushes and the bandwidth consump-
tion; (2) The foreground threads are executed normally by
inserting the incoming KVs to the buffer nodes and I-logs;
(3) locality-aware GC skips the KVs that have been flushed
to the leaf nodes and inserted during the current GC, which
reduces the number of KVs to be copied.

5.4 Sensitivity Analysis
Batch size. The number of buffered KVs (i.e.,𝑁𝑏𝑎𝑡𝑐ℎ) in each
buffer node affects the performance and memory usage of
CCL-BTree. Table 1 shows, when 𝑁𝑏𝑎𝑡𝑐ℎ increases from 1 to
5, the insert throughput is increased by 21.5% and the search
throughput is increased by 11.3%. The improved performance
benefits from fewer media write (from 9.37 GB to 5.88 GB)
and higher DRAM hits (from 4.9M to 21.7M). However, the
DRAM consumption is increased by 97.8%. Therefore, there is
a trade-off between system performance and memory usage.
Given the decent performance improvement and the modest
space overhead, we set 𝑁𝑏𝑎𝑡𝑐ℎ to 2 in our design.

GC trigger threshold. Table 2 shows the impact of𝑇𝐻𝑙𝑜𝑔 .
We observe that (1) 𝑇𝐻𝑙𝑜𝑔 has a marginal influence on the
insert throughput because of the effectiveness of our locality-
aware technique; and (2) it affects the peak log size. Based
on these results, we empirically set 𝑇𝐻𝑙𝑜𝑔 to 20% to limit the
PM consumption.
Access skewness. Figure 15(a) shows the insert perfor-

mance with skewed key distributions. We warm up using 50
million KVs and then perform 50% lookup and 50% upsert in
50 million operations with 48 threads. CCL-BTree achieves
the best performance in all cases. As the skewness increases,
the improvement becomes more prominent because more op-
erations can be completed in the buffer nodes, thus avoiding
slow PM accesses. When the coefficient is 0.99, LB+-Tree’s
performance significantly drops. This is because the highly

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang, Rui Wang, and Fei Wu

0.5 0.6 0.7 0.8 0.9 0.99
0

20

40

60

Zipfian Coefficient

Th
ro

ug
hp

ut
 (M

op
/s

)

FPTree FAST&FAIR DPTree uTree LB+-Tree PACTree CCL-BTree

1 24 48 72 96
 0

 2

 4

 6

threads
64 128 256 512

0

10

20

30

Size of Value (Byte)
100M 200M 500M 1000M

0

20

40

KVs
(a) (b) (c) (d)

Figure 15. Sensitivity analysis. (a) Skew test with various skewness. (b) Variable-size KV test. The sizes of keys and values are
randomly generated from 8 to 128 B. (c) Large value test. The key size is fixed to 8 B. (d) Various dataset sizes.

1 24 48 72 960

10

20

30

40

threadsT
hr

ou
gh

pu
t (

M
op

/s
)

FPTree
FAST&FAIR
DPTree
uTree
LB+-Tree

PACTree
CCL-BTree

Figure 16. eADR test.

100M 500M 1000M
0
2
4
6
8

10

KVs

Ti
m

e
(s

ec
)

24 threads
48 threads

Figure 17. Recovery.

skewed workload incurs frequent HTM transaction aborts,
leading to severe performance degradation.
Variable-size KV. Figure 15(b) shows the insert perfor-

mance of variable-size KVs with different threads. The sizes
of keys and values are randomly generated from 8 to 128
B. We exclude the results of DPTree and PACTree because
we are unable to run their code in the test. As expected, all
indexes have lower throughput than their counterparts with
8 B fixed-size keys and values due to the pointer chasing
and string comparison during the traversal. Nevertheless,
CCL-BTree still outperforms other indexes by up to 2.47×.

Large value. Figure 15(c) shows the insert performance
of large data with 96 threads. The value size varies from 64
to 512 B and the key size is fixed to 8 B. We adopt indirection
pointers to store large values in an out-of-band area. The
improvement decreases because the whole XBI-amplification
becomes alleviated as the value size increases. However, CCL-
BTree still outperforms other indexes by 1.2× to 3.5× for the
512 B value sizes, because the flushes of indirection pointers
still benefit from our designs. A large portion of real-world
applications generate values smaller than 512 B. For example,
Facebook reports the average value size is smaller than 128
B in all its workloads [5]. CCL-BTree benefits more from this
kind of workloads.
Dataset size. Figure 15(d) shows the insert throughput

of all indexes under 96 threads with various dataset sizes.
CCL-BTree’s throughput is stable at around 40 Mop/s as
the dataset size increases. Even for a very large dataset (i.e.,
1000 million operations), CCL-BTree still outperforms other
indexes by at least 1.83×.

8B 32B 128B 512B
0

200

400

600

Size of Value (Byte)
M

em
or

y
Us

ag
e

(G
B)

FPTree
FAST&FAIR
DPTree
utree

LB+-Tree
PACTree
CCL-BTree

DRAM PM DRAM PM

Figure 18. Space consumption.

5.5 Other Tests
The eADR mode. Figure 16 shows the index performance
when PM works in the eADR mode. As the eADR platform is
still not available, we use the ADR platform to emulate it by
removing the flush instructions in the programs, similar to
prior work [14, 29, 43, 49]. We only test the insert operation
in the micro-benchmarks because search operations show
similar trends as in the ADR mode. We can observe that
CCL-BTree still outperforms other indexes by 1.78× to 6.07×
with 96 threads. Whether the cache line is persistent or not,
our designs are capable of improving XPLine locality, which
greatly reduces the number of slow accesses to the PMmedia.
Therefore, we expect that CCL-BTree is also efficient on the
real eADR platform.
Another interesting observation is that CCL-BTree has

a higher throughput if explicit flush operations are main-
tained (e.g., 44.8Mop/s with 96 threads in the ADR mode in
Figure 10(a) versus 32.3Mop/s in the eADR mode). This is
because the CPU cache size is much smaller than the total
dataset size. To make space for new requests, dirty cachelines
will be automatically evicted from the CPU cache and flushed
to PM. These implicit flushes are oblivious to the XPLine
locality and may convert sequential cacheline writes into
random XPLine flushes to PM media [14], leading to severe
XBI-amplification. This observation further inspires us that,
even for the eADR platform, reasonable use of explicit flush
operations may improve application performance.

Recovery. Figure 17 shows the recovery performance of
CCL-BTree with different KV numbers. The recovery time

CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree EuroSys ’24, April 22–25, 2024, Athens, Greece

amzn osm wiki facebook
0

15

30

45

60

Th
ro

ug
hp

ut
 (M

op
/s

) FPTree
FAST&FAIR
DPTree
utree

LB+-Tree
PACTree
CCL-BTree

0.4

Figure 19. Performance of four realistic datasets.

increases linearly with the total data size and scales well
for parallel recovery. With 1000 million KVs (about 16GB in
total size) and 48 threads, the recovery time is 6.2 seconds.
Memory consumption. Figure 18 shows the memory

consumption of DRAM and PM with different indexes after
inserting one billion KVs. We fix the key size as 8 B and vary
the value size from 8B to 512 B. We can see that the DRAM
consumption of CCL-BTree is always much lower than the
PM consumption, and occupies 17.5%, 9.3%, 3.9%, 1.1% of the
total memory space for different value sizes. These ratios are
comparable to other DRAM-PM hybrid indexes. For example,
for the case of 8 B value size, CCL-BTree consumes 28.8 GB
of PM and 6GB of DRAM, while FPTree, LB+-Tree, DPTree
and 𝜇Tree consume 26.9 GB, 24.2 GB, 44.9 GB, 29.8 GB of PM
space, and 2.5 GB, 2.5 GB, 9.2 GB, 29.8 GB of DRAM space, re-
spectively. FAST&FAIR and PACTree only consume 29.1 GB
and 27.1 GB of PM space, respectively, because they are pure
PM indexes. Additionally, as the value size increases, the PM
consumption of CCL-BTree also increases linearly, while the
DRAM consumption remains almost constant by using the
indirect pointer strategy. As a result, the DRAM consumption
ratio decreases linearly. We claim that such DRAM consump-
tion is generally acceptable inmost productionworkloads [5],
as the DRAM consumption typically takes up a small fraction
of the total data values.

Realistic datasets. To further showcase the performance
of CCL-BTree, we evaluate it using four realistic datasets
obtained from SOSD [33]. These datasets include: (1) amzn
containing book popularity data from Amazon, (2) osm con-
taining cell IDs from Open Street Map, (3) wiki containing
timestamps of edits from Wikipedia, and (4) facebook con-
taining randomly sampled Facebook user IDs. Both amzn and
osm contain 800 million keys respectively, whereas wiki and
facebook contain 200 million keys. All the datasets use 8 B
keys and 8 B values. Figure 19 shows the insert throughputs
of all indexes with 96 theads. We observe that CCL-BTree
outperforms others by at lease 1.24×, demonstrating its effi-
ciency with various real-world datasets.

Comparison with persistent log structures. We com-
pare CCL-BTree with FlatStore and RocksDB deployed on
PM. Table 3 shows the results with 48 threads. While the
insert throughput of CCL-BTree is 16% lower than FlatStore,
its range query is 3.72× higher. FlatStore has poor range

Table 3. Compare with log-structured indexes.

Throughput (Mops/s) RocksDB-PM FlatStore CCL-BTree
Insert 1.2 36.4 30.5
Search 1.1 38.2 41.1
Scan x 1.1 4.1

query performance because all KVs are unsorted. RocksDB
is always an order of magnitude slower than other indexes
and we omit its scan throughput since it takes more than 2
hours. RocksDB’s poor insert performance is caused by its
expensive compaction operations and PM-oblivious write
policy that occurs severe XBI-amplification. The search per-
formance is poor because of the multiple-level searching.
The scan operation must seek and sort-merge entries from
multiple levels in PM, thus also delivering low throughput.

6 Generality Discussion
Applicability to other PM devices. Our CCL-BTree de-
sign is based on Intel Optane DCPMMs [19]. Despite Intel
having ceased its Optane memory business in August 2022,
they are scheduled to unveil a new family of PM products
for the 4th and 5th Generations Xeon Scalable processors
(Sapphire Rapids and Emerald Rapids) [40]. Our proposed
techniques are still useful for these devices as they continue
to use 3D-XPoint as internal media. Additionally, CCL-BTree
can also be applied to future PM devices facing access gran-
ularity mismatches between cacheline and device’s internal
media. Several compelling examples are the CXL-based PM
products such as Samsung’s Memory-Semantic SSD [38] and
KIOXIA’s XL-FLASH [26], and byte-addressable SSD [1]. All
these promising alternatives to Optane DCPMMs have an
internal buffer, whose block-level media access granularity
(e.g., 4 KB flash page) is significantly larger than the cache-
line size. As a result, these devices also suffer from severe
XBI-like write amplification. In the future, other types of
PMs based on different media (e.g., NRAM [2], PCM [45],
MRAM [41], etc.) may appear, which could also have a lim-
ited buffer amount with high media access granularity to
match the speeds of fast cache and slow memory media,
making our techniques still applicable to them.
Applicability to other indexes. Besides B+-Trees, the

ideas of CCL-BTree can also apply to other types of index
structures, such as radix trees and hash tables. For example,
in the persistent hash tables (e.g., CCEH [34], CLevel [9]),
we can introduce a buffer node for one or multiple buckets
to batch the updates to them, and use the write-conservative
logging and locality-aware GC to ensure crash consistency
with reduced write amplification.

7 Related Work
Tree-based indexes. A large number of researches [4, 6, 7,
15, 17, 21, 25, 31, 36, 48, 51] are proposed to build efficient

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhenxin Li, Shuibing He, Zheng Dang, Peiyi Hong, Xuechen Zhang, Rui Wang, and Fei Wu

B+-Tree or its variants for PM and storage. Most of them [6,
17, 31, 36, 48, 51] focus on reducing the number of cacheline
flushes to improve the write performance in PM. 𝜇Tree [7]
aims to reduce the tail latency by moving the expensive
structural refinement operations out of PM. PACTree [25]
is the first persistent index that mitigates NUMA effects
by using separate pools for data in each NUMA node. B𝜀-
tree [4] also uses inner nodes to buffer writes but it is a
write-optimized data structure for disk storage. None of them
has considered the mismatch between the cacheline size
and the media access granularity of PM, leading to severe
XBI-amplification. In contrast, CCL-BTree considers both
the random access pattern of B+-Tree and the media access
granularity of PM, alleviating the XBI-amplification.
Log-structured indexes.Many efforts [22, 23, 50] have

redesigned the LSM-Tree based indexes for PM. However,
range queries in LSM-Trees must seek and sort-merge entries
from multiple levels, which leads to lower scan performance
compared to B+-Tree. FlatStore [8] incorporates a volatile
index for fast indexing and a persistent log structure for
storage. It enables sequential writes in PM to make full use
of the PM bandwidth. But it still suffers from poor scan
performance because the KVs are not sorted in logs. Different
from these work, CCL-BTree achieves efficient range queries
by maintaining the order between adjacent leaf nodes.

8 Conclusions
In this paper, we design and implement a crash-consistent
locality-aware B+-Tree named CCL-BTree, which tackles the
XBI-amplification issue in PM while providing high range
query performance. CCL-BTree consists of three techniques
including leaf-node centric buffering, write-conservative log-
ging, and locality-aware garbage collection to alleviate the
XBI-amplification in all the code paths. Our results show
that CCL-BTree reduces the XBI-amplification by up to 81%
and 76% under uniform and Zipfian workloads respectively,
and improves the insert throughput by up to 9.35× while
maintaining superior range query performance compared to
state-of-the-art indexes.

Acknowledgments
We sincerely thank our shepherd Tianzheng Wang and the
anonymous reviewers for their constructive suggestions.
This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2021ZD0110700, the National Science Foundation of China
under Grant 62172361, the Program of Zhejiang Province
Science and Technology under Grant 2022C01044, and the
US National Science Foundation under Grant CNS 1906541.

References
[1] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang,

Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu. 2019. Flatflash:

Exploiting the Byte-Accessibility of SSDs within A Unified Memory-
Storage Hierarchy. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems. 971–985.

[2] Gilles Amblard. 2011. Development and Characterization of Carbon
Nanotube Processes for NRAMTechnology. InAlternative Lithographic
Technologies III, Vol. 7970. International Society for Optics and Pho-
tonics, 797017.

[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-Scale Key-Value Store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer
Systems. 53–64.

[4] Michael A Bender, Martin Farach-Colton, William Jannen, Rob John-
son, Bradley C Kuszmaul, Donald E Porter, Jun Yuan, and Yang Zhan.
2015. An Introduction to B-trees and Write-Optimization. login; mag-
azine 40, 5 (2015).

[5] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020.
Characterizing, Modeling, and Benchmarking Rocksdb Key-Value
Workloads at Facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST). 209–223.

[6] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile
Main Memory. Proceedings of the VLDB Endowment (VLDB) 8, 7 (2015),
786–797.

[7] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu.
2020. UTree: A Persistent B+-Tree with Low Tail Latency. Proceedings
of the VLDB Endowment (VLDB) 13, 12 (2020), 2634–2648.

[8] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and
Jiwu Shu. 2020. FlatStore: An Efficient Log-Structured Key-Value
Storage Engine for Persistent Memory. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 1077–1091.

[9] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-Free
Concurrent Level Hashing for Persistent Memory. In Proceedings of
the 2020 USENIX Annual Technical Conference (ATC). 799–812.

[10] Sakib Chowdhury and Wojciech Golab. 2021. A Scalable Recoverable
Skip List for Persistent Memory. In Proceedings of the 33rd ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA). 426–428.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SOCC). 143–154.

[12] Zheng Dang, Shuibing He, Peiyi Hong, Zhenxin Li, Xuechen Zhang,
Xian-He Sun, and Gang Chen. 2022. NVAlloc: Rethinking Heap Meta-
data Management in Persistent Memory Allocators. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 115–127.

[13] PostgreSQL Global Development Group. 1996. PostgreSQL. https:
//www.postgresql.org/. Last accessed on Sep-2023.

[14] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understand-
ing the Idiosyncrasies of Real Persistent Memory. Proceedings of the
VLDB Endowment (VLDB) 14, 4 (2020), 626–639.

[15] Chenchen Huang, Huiqi Hu, and Aoying Zhou. 2021. BPTree: An
Optimized Index with Batch Persistence on Optane DC PM. In Data-
base Systems for Advanced Applications: 26th International Conference,
DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part III 26.
Springer, 478–486.

[16] Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim
Harris, and Steve Byan. 2018. Closing the Performance Gap between
Volatile and Persistent Key-Value Stores Using Cross-Referencing Logs.
In Proceedings of the USENIX Annual Technical Conference (ATC). 967–
979.

https://www.postgresql.org/
https://www.postgresql.org/

CCL-BTree: A Crash-Consistent Locality-Aware B+-Tree EuroSys ’24, April 22–25, 2024, Athens, Greece

[17] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
2018. Endurable Transient Inconsistency in Byte-Addressable Persis-
tent B+-Tree. In 16th USENIX Conference on File and Storage Technolo-
gies (FAST). 187–200.

[18] Intel. 2018. A Utility for Configuring and Managing Intel Optane DC
Persistent Memory Modules. https://github.com/intel/ipmctl. Last
accessed on Sep-2023.

[19] Intel. 2019. Intel® OptaneTM DC Persistent Memory.
https://www.intel.com/content/www/us/en/products/memory-
storage/optane-dc-persistent-memory.html. Last accessed on
Sep-2023.

[20] Intel. 2019. PMEM-RocksDB: A Persistent Key-Value Store for Flash
and RAM Storage. https://github.com/pmem/pmem-rocksdb. Last
accessed on Sep-2023.

[21] Yizheng Jiao, Simon Bertron, Sagar Patel, Luke Zeller, Rory Bennett,
Nirjhar Mukherjee, Michael A Bender, Michael Condict, Alex Conway,
Martín Farach-Colton, et al. 2022. BetrFS: A Compleat File System for
Commodity SSDs. In Proceedings of the Seventeenth European Confer-
ence on Computer Systems (EuroSys). 610–627.

[22] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H Noh, and
Young-ri Choi. 2019. SLM-DB: Single-Level Key-Value Store with
Persistent Memory. In 17th USENIX Conference on File and Storage
Technologies (FAST). 191–205.

[23] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea Arpaci-
Dusseau, and Remzi Arpaci-Dusseau. 2018. Redesigning LSMs for
Nonvolatile Memory with NoveLSM. In 2018 USENIX Annual Technical
Conference (ATC). 993–1005.

[24] Sanidhya Kashyap, Changwoo Min, Kangnyeon Kim, and Taesoo Kim.
2018. A Scalable Ordering Primitive for Multicore Machines. In Pro-
ceedings of the Thirteenth EuroSys Conference (EuroSys). 1–15.

[25] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap,
and Changwoo Min. 2021. PACTree: A High Performance Persistent
Range Index Using PAC Guidelines. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP). 424–439.

[26] KIOXIA. 2022. Kioxia Launches Second Generation of High-
Performance, Cost-Effective XL-FLASH Storage Class Memory So-
lution. https://www.kioxia.com/en-jp/business/news/2022/20220802-
1.html. Last accessed on Sep-2023.

[27] RMadhava Krishnan,Wook-Hee Kim, Xinwei Fu, Sumit KumarMonga,
Hee Won Lee, Minsung Jang, Ajit Mathew, and Changwoo Min. 2021.
TIPS: Making Volatile Index Structures Persistent with DRAM-NVMM
Tiering. In 2021 USENIX Annual Technical Conference (ATC). 773–787.

[28] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H
Noh. 2017. WORT: Write Optimal Radix Tree for Persistent Memory
Storage Systems. In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST). 257–270.

[29] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and
Thomas Willhalm. 2019. Evaluating Persistent Memory Range Indexes.
Proceedings of the VLDB Endowment (VLDB) 13, 4 (2019), 574–587.

[30] Zhenxin Li, Bing Jiao, Shuibing He, and Weikuan Yu. 2022. PHAST:
Hierarchical Concurrent Log-Free Skip List for Persistent Memory.
IEEE Transactions on Parallel and Distributed Systems (2022).

[31] Jihang Liu, Shimin Chen, and LujunWang. 2020. LB+Trees: Optimizing
Persistent Index Performance on 3DXPoint Memory. Proc. VLDB
Endow. 13, 7 (2020), 1078–1090.

[32] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu,
Hongbo Kang, and Yongwei Wu. 2021. ROART: Range-Query Opti-
mized Persistent ART. In Proceedings of the 19th USENIX Conference
on File and Storage Technologies (FAST). 1–16.

[33] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, San-
chit Misra, Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020.
Benchmarking Learned Indexes. Proceedings of the VLDB Endowment
(VLDB) 14, 1 (2020), 1–13.

[34] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beom-
seok Nam. 2019. Write-Optimized Dynamic Hashing for Persistent

Memory. In 17th USENIX Conference on File and Storage Technologies
(FAST). 31–44.

[35] Oracle. 1995. MySQL. https://www.mysql.com/. Last accessed on
Sep-2023.

[36] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent
and Concurrent B-Tree for Storage Class Memory. In Proceedings of
the 2016 International Conference on Management of Data (SIGMOD).
371–386.

[37] Andy Rudoff. 2020. Persistent Memory Programming without All That
Cache Flushing. SDC (2020).

[38] Samsung. 2022. Memory-Semantic SSDTM: Industry 1st CXL-Based
Storage Optimized for AI/ML. https://samsungmsl.com/ms-ssd/. Last
accessed on Sep-2023.

[39] Samsung. 2022. Why We Built the Industry First CXL-Based NAND
Flash SSD? https://www.youtube.com/watch?v=Ol0Ct_WMZuE. Last
accessed on Sep-2023.

[40] Anton Shilov. 2023. Optane’s Last Gasp: Intel’s Final Persistent Mem-
ory Roadmap Leaks. https://www.tomshardware.com/news/intel-
optane-last-gasp. Last accessed on Sep-2023.

[41] Said Tehrani, JM Slaughter, E Chen, M Durlam, J Shi, and M DeHerren.
1999. Progress and Outlook for MRAM Technology. IEEE Transactions
on Magnetics 35, 5 (1999), 2814–2819.

[42] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. 2021. Nap: A Black-
Box Approach to NUMA-Aware Persistent Memory Indexes. In 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 93–111.

[43] Rui Wang, Shuibing He, Weixu Zong, Yongkun Li, and Yinlong Xu.
2022. XPGraph: XPline-Friendly Persistent Memory Graph Stores for
Large-Scale Evolving Graphs. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1308–1325.

[44] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swan-
son, and Jishen Zhao. 2020. Characterizing and Modeling Non-Volatile
Memory Systems. In Proceedings of the 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE, 496–508.

[45] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P
Reifenberg, Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson.
2010. Phase Change Memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[46] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. 2021. ArchTM: Architecture-
Aware, High Performance Transaction for Persistent Memory. In 19th
USENIX Conference on File and Storage Technologies (FAST). 141–153.

[47] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An Empirical Guide to the Behavior and Use
of Scalable Persistent Memory. In Proceedings of the 18th USENIX
Conference on File and Storage Technologies (FAST). 169–182.

[48] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost
for NVM-Based Single Level Systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST). 167–181.

[49] Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng Huang.
2022. NBTree: A Lock-Free PM-Friendly Persistent B+-Tree for eADR-
Enabled PM Systems. Proceedings of the VLDB Endowment (VLDB) 15,
6 (2022), 1187–1200.

[50] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.
ChameleonDB: A Key-Value Store for Optane Persistent Memory. In
Proceedings of the Sixteenth European Conference on Computer Systems
(EuroSys). 194–209.

[51] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019.
DPTree: Differential Indexing for Persistent Memory. Proceedings of
the VLDB Endowment (VLDB) 13, 4 (2019), 421–434.

[52] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-
Performance Hashing Index Scheme for Persistent Memory. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 461–476.

https://github.com/intel/ipmctl
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://github.com/pmem/pmem-rocksdb
https://www.kioxia.com/en-jp/business/news/2022/20220802-1.html
https://www.kioxia.com/en-jp/business/news/2022/20220802-1.html
https://www.mysql.com/
https://samsungmsl.com/ms-ssd/
https://www.youtube.com/watch?v=Ol0Ct_WMZuE
https://www.tomshardware.com/news/intel-optane-last-gasp
https://www.tomshardware.com/news/intel-optane-last-gasp

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Persistent Memory System
	2.2 Needs of Reducing XBI-Amplification
	2.3 XBI-Amplification in Persistent B+-Trees

	3 Design of CCL-BTree
	3.1 Overview
	3.2 Leaf-Node Centric Buffering
	3.3 Write-Conservative Logging
	3.4 Locality-Aware Garbage Collection
	3.5 Theoretical Performance Analysis

	4 Implementation
	4.1 CCL-BTree Structure
	4.2 Insertion Flow
	4.3 Query Flow
	4.4 System Optimizations

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Improvement of Each Optimization
	5.4 Sensitivity Analysis
	5.5 Other Tests

	6 Generality Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

