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1 Background and Motivation

Large language models require substantial memory due to
their growing size and sequence length, necessitating multi-
ple GPUs for training [11]. As new GPUs are released an-
nually, LLM training companies often deploy new GPUs in
training clusters to boost the computing power, resulting in
heterogeneous clusters composed of both high- and low-end
devices [1]. Therefore, optimizing the use of heterogeneous
GPUs is crucial for reducing costs [5, 8].

Existing memory optimization strategies include model
parallelism [4], tensor parallelism [10], and activation recom-
putation [6]. However, existing training frameworks fail to
achieve efficient hybrid strategies on heterogeneous clusters
due to a lack of consideration for GPU diversity. There are
several challenges. (1) How to efficiently partition models to
balance the workload across GPUs with varying capabilities
[7, 13]. Traditional distributed training assumes homogeneous
GPUs and uses uniform load balancing [9, 10], which fails
to address the performance and memory discrepancies in
heterogeneous GPUs. This leads to load imbalance, where
high-performance GPUs remain idle waiting for slower ones,
causing resource underutilization and reduced system through-
put [5]. (2) Existing homogeneous tensor parallelism (TP)
strategies evenly distribute model weights and computation
across GPUs. In heterogeneous TP groups, this strategy fails
to match the varying computational and memory capabilities
of different GPUs, leading to high-performance GPUs being
idle and inefficient training. (3) Current recomputation strate-
gies, which only retain activation boundaries and recompute
others during backpropagation [3]. This coarse-grained ap-
proach does not account for the computational and memory
requirements of heterogeneous GPUs, resulting in redundant
recomputation time, exacerbating computational and memory
imbalance, and failing to address the imbalance in activation
memory consumption across pipeline stages, further reducing
heterogeneous GPU utilization [11].

2 Our Approach

We propose Baton, a systematic approach to addressing core
issues in LLM training on heterogeneous clusters. To solve
challenges (1) and (2), Baton introduces the TP partition gran-
ularity to control the minimum partition size of Transformer
layer weight tensors, enabling non-uniform tensor parallelism
by allocating different numbers of minimum partition units
to heterogeneous GPUs. This transforms the TP non-uniform
partitioning problem into one similar to the layer partition-
ing problem, unifying the solutions for PP and TP partition

strategies and achieving heterogeneous-aware load balanc-
ing. To address challenge (3), Baton uses operators as the
minimum unit for recomputation, applying a fine-grained re-
computation strategy that dynamically selects recomputations.
It considers heterogeneous GPU performance and memory
capacity to optimize and solve for the best strategy, achieving
adaptive recomputation while reducing overhead and meeting
memory requirements. Table 1 shows the support of different
training systems for heterogeneous training features. Baton
supports heterogeneous-aware tensor and pipeline parallelism
and seamlessly integrates recomputation.

Table 1: Comparison of Different Training Systems’ Support
for Heterogeneous Training Features

Fine-grained memory optimization Adaptive layer partition Adaptive tensor partition Heterogeneous-aware
Megatron-LM [10]

AdaPipe [11]
Lynx [2]

Metis [12]
HAP [14]

Baton(Ours)

Baton is built on two key designs. First, we perform de-
tailed performance profiling of heterogeneous GPUs, captur-
ing key metrics to inform strategy development. This profiling
analyzes GPU computing and memory capabilities, providing
essential data for optimization. Second, we develop a three-
level optimization algorithm that integrates recomputation,
tensor, and pipeline parallelism, reducing search complex-
ity through heuristics. This unified approach balances load
and memory, optimizing GPU usage and throughput. Baton
also customizes partitioning and recomputation strategies for
each GPU, unlocking full resource potential and improving
training efficiency in heterogeneous clusters. The overview
of Baton design is illustrated in Figure 1.
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Figure 1: Overview of Baton

We conduct experiments on a heterogeneous cluster of 2
A100 and 2 T4 GPUs, training mini GPT-3 1B model.

Specifically, Baton improves the training throughput by
7.12× compared to LLMs training system Megatron [10].
Baton improves GPU utilization and training efficiency by
leveraging heterogeneous-aware recomputation and model
partitioning, effectively balancing computation and memory.
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