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ABSTRACT

ReRAM-based accelerators have become prevalent in accelerating
deep neural network inference owing to their in-situ computing ca-
pability of ReRAM crossbars. However, most existing ReRAM-based
accelerators are designed with homogeneous crossbars, leading to
either low resource utilization or sub-optimal energy efficiency.
In this paper, we propose AutoHet, an automated heterogeneous
ReRAM-based accelerator with varied-size crossbars for different
DNN layers. To achieve both high crossbar utilization and energy
efficiency, AutoHet uses a reinforcement learning algorithm to
automatically determine the proper crossbar configuration for each
DNN layer. Additionally, AutoHet introduces rectangle crossbars
and a tile-shared crossbar allocation scheme to reduce crossbar
wastage and energy consumption. Experiment results show that
AutoHet effectively improves crossbar utilization by up to 3.1×
and reduces energy consumption by up to 94.6%, compared to ap-
proaches with homogeneous ReRAM crossbars.
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1 INTRODUCTION

Deep neural networks (DNNs) have been widely used in vari-
ous fields of modern society [22]. Typically DNNs include con-
volutional layers, which involve massive matrix-vector multiplica-
tions (MVMs). Since MVMs cause a large number of data movement
between processor and memory in traditional von Neumann ar-
chitectures [22, 30], DNN inference exhibits high computational
latency and energy consumption. These two issues are exacerbated
facing the ever-increasing network sizes and user performance de-
mands [5]. Recently, an emerging processing-in-memory (PIM) tech-
nology, resistive random access memory (ReRAM), has been pro-
posed to reduce latency and energy overhead by performing MVMs
in an in-situ computing manner [16]. The ReRAM-based accelera-
tors gradually become prevalent for DNN inference [2, 19, 21, 27].

The fundamental unit of ReRAM-based accelerators is the cross-
bar. An𝑚 × 𝑛 crossbar consists of𝑚 wordlines on rows, 𝑛 bitlines
on columns, and𝑚 ×𝑛 memristors as cells [16]. Prior to DNN infer-
ence, the model’s weights are pre-loaded into the crossbar cells as
conductance values. During the inference process, input signals are
transformed into voltage levels on the wordlines. These voltages
are subsequently multiplied by the conductances of the cells, gener-
ating currents on the bitlines in accordance with Ohm’s Law. The
currents on the same bitline are summed and converted to a digital
signal, completing a multiply-accumulate (MAC) operation [16].
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Multiple bitlines on a crossbar are computed to perform the MVMs.
Besides crossbars, accelerators also require peripheral circuits (e.g.,
DACs, ADCs) to perform the whole inference process [16].

Crossbar utilization and energy consumption are two impor-
tant system metrics for evaluating the efficiency of ReRAM-based
accelerators [2, 19, 27], especially in mobile environments where
hardware resource and system energy are extremely limited [7, 24].
Low crossbar utilization indicates a wastage of storage and comput-
ing resources, which affects operating speed and even causes task
execution failure. High energy consumption increases computing
costs and hinders the advantage of ReRAM. Therefore, to better
leverage ReRAM-based accelerators, we pursue both high crossbar
utilization and energy efficiency. However, most of the existing
ReRAM-based accelerators [2, 19, 21] struggle to simultaneously
achieve the above goals for two reasons.

First, the homogeneous crossbar architecturemay render sub-optimal
crossbar utilization or energy efficiency. Existing ReRAM-based ac-
celerators usually adopt a crossbar-level homogeneous architecture,
which uses fixed-size crossbars for the entire model [2, 19, 21]. Due
to the diverse computational characteristics of individual DNN lay-
ers, a specific crossbar size may work well for one layer but may not
be universally applicable for all the layers. Therefore, homogeneous
crossbars can hardly simultaneously achieve high utilization and
energy goals for the whole DNN model.

Second, the tile-based crossbar allocation scheme may compromise
resource utilization. The existing ReRAM-based accelerators adopt
a hierarchical topology that integrates a fixed number of crossbars
into one tile and uses the tile as the minimum allocation unit for
each DNN layer [19, 31]. This tile-based policy involves allocating
the entire tile to a layer, even if the layer is too small to occupy
all the crossbars within the tile, potentially resulting in crossbar
wastage. For large layers, the policy employs a round-up approach
to allocate tiles. Both cases lead to sub-optimal crossbar utilization.

To overcome these issues, we propose a crossbar-level hetero-
geneous ReRAM architecture for DNN inference. Unlike existing
architectures, it uses varied-size crossbars for different layers of
the DNN model. However, providing this feature is quite challeng-
ing for two reasons. First, for each DNN layer, selecting a suitable
crossbar size to achieve both high utilization and energy efficiency
is difficult. This is because the two objectives are usually in conflict:
small crossbars bring high crossbar utilization but they invoke more
PCs (e.g., ADCs), thus increasing energy consumption; vice versa.
Second, the decision space for determining crossbar sizes for all
DNN layers may be vast, considering the numerous layers in a DNN
model and the variety of candidate crossbar sizes. Therefore, we
need an automated approach to perform fast and efficient searches,
as a manual approach is time-consuming, expertise-requiring, and
error-prone.

To address the above challenges, we design AutoHet, an auto-
mated heterogeneous ReRAM-based accelerator for DNN inference.
AutoHet utilizes a reinforcement learning (RL) algorithm to auto-
matically determine the heterogeneous crossbar size for each DNN
layer. The RL algorithm expedites the optimal strategy search by
learning the features of different DNN layers. It also achieves both
high crossbar utilization and energy efficiency by integrating these
factors into the reward function. Additionally, it introduces hybrid
crossbar shapes (i.e., square and rectangle crossbars) as candidates
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Figure 1: The generic architecture of ReRAM-based accelera-

tors.

for RL search to further improve crossbar utilization. Furthermore,
AutoHet proposes a tile-shared crossbar allocation scheme that
allocates multiple layers to one tile to reduce crossbar wastage.

In summary, this paper makes the following contributions:
• We propose a crossbar-level heterogeneous ReRAM-based
accelerator to achieve high crossbar utilization and energy
efficiency simultaneously for DNN inference.
• We introduce an RL algorithm to automatically determine
the heterogeneous crossbar sizes for individual DNN layers.
• Wepropose the tile-shared crossbar allocation scheme that al-
locates multiple layers to one tile to reduce crossbar wastage.
• We evaluate AutoHet with extensive experiments. Our re-
sults show that AutoHet improves crossbar utilization by
up to 3.1× and reduces energy consumption by up to 94.6%,
compared to state-of-the-art approaches.

2 BACKGROUND AND MOTIVATION

2.1 ReRAM-based Accelerator Architecture

Architecture overview. ReRAM is an emerging device with high-
density, low-latency, low-energy storage, and in-memory comput-
ing capabilities [16]. Figure 1 illustrates the generic architecture of
ReRAM-based accelerators. It comprises multiple ReRAM banks,
each containing numerous tiles. Each tile consists of several process-
ing elements (PEs), and each PE integrates multiple crossbars. Cross-
bars and peripheral circuits (e.g., DACs, ADCs, shift and adders,
pooling modules) cooperate to perform DNN inference together.

In-situ computing. The crossbar serves as the computing and
storage unit to perform highly-parallel in-situ computing. A cross-
bar consists of wordlines on rows, bitlines on columns, and mem-
ristors that store the DNN weights as conductance 𝐺 values. Each
bitline is orthogonally connected to each wordline through a mem-
ristor and forms a basic computing unit, a cell. Input data is con-
verted to the voltage 𝑉 values on wordlines through DACs and
each bitline produces the current 𝐼 according to Ohm’s law (i.e.,
𝐼 = 𝑉 ×𝐺). The sum of the multiple currents on a bitline represents
the result of a MAC operation. The in-situ MVM computing is com-
pleted after converting all the currents of all bitlines into digital
signals through ADCs.

DNN layer mapping and crossbar allocation. Owing to the
low computational latency and energy consumption, ReRAM-based
accelerators are widely employed in DNN inferences. A DNNmodel
consists of multiple layers, where each layer contains multiple
kernels. Typically, these kernels are mapped onto the crossbars in
sequence. Figure 2 shows an example of how to map kernels of two
different DNN layers onto a 32 × 32 crossbar. For simplicity, we do
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Figure 2: The mapping between DNN layers and 32× 32 cross-
bars.

not consider weight quantization. The kernel sizes of layer 1 and
layer 2 are 3 × 3 and 1 × 1, respectively. Since the number of input
and output channels of layer 1 is three and four, this layer needs to
map four 3 × 3 × 3 kernel matrices onto the crossbar. Each kernel
matrix is first expanded into a column vector and then mapped
onto a column of the crossbar. Therefore, layer 1 requires a total of
four columns of the crossbars to store its kernels. Likewise, layer 2
requires 20 columns to store its kernel parameters. If one crossbar
is insufficient to accommodate all the kernels of the layer, another
crossbar in the tile will be occupied. Note that a tile only stores the
weights of a single DNN layer in existing crossbar allocation and
mapping schemes [19, 31].When all kernel mappings are completed,
the tile is ready to perform MVM calculations.

2.2 Motivation and Challenges

ReRAM-based accelerators are commonly deployed in mobile and
edge environments, where the chip area and battery power are very
limited [7, 24]. Therefore, it is very important to simultaneously
achieve high crossbar utilization and energy efficiency. However,
existing ReRAM-based accelerators are difficult to simultaneously
meet both of these criteria, as they have the following two limita-
tions.

2.2.1 The Homogeneous Crossbar Architecture Causes Sub-Optimal
Resource Utilization or Energy Efficiency.

Existing ReRAM-based accelerators adopt a homogeneous archi-
tecture, namely, they consist of a single size of crossbars [2, 19, 21].
Since each DNN layer has different computing characteristics, one
type of crossbars may be suitable for one layer of the DNN models,
but not for all of them. We still use Figure 2 as an example to further
verify this. It shows the results of mapping two DNN layers onto
the same 32×32 crossbar. The crossbar utilization is 10.5% for layer
1 and 62.5% for layer 2. This implies that, for crossbar utilization,
the 32 × 32 crossbar is suitable for layer 2 but not for layer 1. Sim-
ilarly, the suitability of crossbars for energy efficiency varies for
different DNN layers. Therefore, mapping the entire DNN model
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onto the homogeneous crossbars fails to achieve the best result for
the whole DNN model.

Since most of the existing metrics are one-dimensional criteria
and thus make it hard to quantify the system performance, we
propose a new metric, Ratio of Utilization and Energy (RUE), to
consider the two metrics jointly. RUE is defined as 𝑈 /𝐸, where𝑈
and 𝐸 denote the crossbar utilization and the energy consumption,
respectively. Figure 3 shows the results of VGG16 when mapped
onto accelerators with homogeneous and heterogeneous crossbars.
For the homogeneous accelerators, we choose five crossbar sizes,
32 × 32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512, as commonly
used in related work[19, 27, 29]. For the heterogeneous accelerator,
we manually set the crossbar size as 512×512 for the first ten layers
of VGG16 and 256 × 256 for the last six layers. It shows that the
homogeneous accelerators can only achieve either high resource
utilization (i.e., with 32 × 32) or low energy consumption (i.e., with
512 × 512), leading to low RUE values. In contrast, the manual
heterogeneous accelerator obtains the highest RUE values.

Furthermore, we also observe that the existing crossbars are
usually square, and their side lengths are powers of 2, which are not
well-matched with the odd side lengths of some kernels (e.g., 1 × 1
and 3 × 3). As a result, significant internal wastage of the crossbar
occurs when mapping these kernels onto the square crossbars, as
shown in Figure 2. This will also lower the RUE values. Rectangle
crossbars help to address this issue (see §3.3).

The above two points motivate us to propose heterogeneous
accelerators with varied-size/shape crossbars for DNN layers to
optimize both the crossbar utilization and energy efficiency for the
whole model.

2.2.2 The Tile-Based Allocation Scheme Compromises Resource
Utilization.

Most of the current ReRAM-based accelerators utilize the tile as
the basic crossbar allocation unit for each DNN layer and allocate
one or more tiles to them [19, 31]. Each tile can only accommodate
kernels from one DNN layer to simplify the data flow. However,
this tile-based scheme can lead to crossbar wastage, thus lowering
resource utilization. For example, let us assume a tile has four 64×64
crossbars. Then, for a small DNN layer (as shown in Figure 2), it
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Figure 5: The comparison of the same DNN layer mapping

onto 64 × 64 and 128 × 128 crossbars.
only needs one crossbar to accommodate its kernel data. With the
tile-based scheme, one tile will be allocated for the layer and three
crossbars will be idle. Therefore, the crossbar wastage is 75%. This
problem still exists for large layers. For instance, assuming a large
layer requires five crossbars, it will be assigned two tiles, resulting
in an overall crossbar wastage of 3/8=37.5%.

Figure 4 illustrates the empty crossbar proportion of four DNN
layers of VGG16 on a ReRAM-based accelerator with four tile con-
figurations. The crossbar size is fixed to 64 × 64, and the number of
crossbars per tile varies from 4 to 32. It reveals that only 58% of the
crossbars are utilized on average across these layers. Furthermore,
the proportion of empty crossbars increases with the increase of
the tile size. Specifically, the average empty crossbar ratio across
these layers is 24% when a tile contains four crossbars, while the
ratio rises to 60% when a tile contains 32 crossbars. In a nutshell,
the existing tile-based scheme tends to reduce the utilization of
crossbars, thereby decreasing the RUE value.

2.2.3 Challenges.
To overcome the limitations of existing ReRAM-based accelera-

tors, we need to use crossbars with different sizes for each DNN
layer. This introduces two challenges.

First, for a specific DNN layer, selecting a suitable crossbar size
to achieve both high utilization and low energy consumption is
difficult. This is because these two objectives are usually conflict:
small crossbars result in high crossbar utilization but require more
PCs (e.g., ADC), leading to increased energy consumption, and
vice versa [29]. Figure 5 shows the utilization and the number of
activated ADCs when mapping 128 3 × 3 × 12 kernel matrices onto
a 64× 64 crossbar and a 128× 128 crossbar. As expected, the former
crossbar achieves higher utilization, whereas the latter consumes
less energy due to fewer activated ADCs.

Second, the search space for determining crossbar sizes for all
DNN layers may be vast, considering the numerous layers in a
DNN model and the variety of crossbar sizes that can be chosen
from. For a DNN model with 𝑁 layers, assuming there are 𝐶 cross-
bar candidates for each layer, the size of the solution space is 𝐶𝑁 .
A manual approach is time-consuming, expertise-requiring, and
error-prone. Therefore, we need an automated approach that can
effectively explore the search space and find the proper crossbar
size for each DNN layer.

3 DESIGN OF AUTOHET

3.1 System Overview

We propose AutoHet, an automated crossbar-level heterogeneous
ReRAM-based accelerator for optimizing DNN inferences. Figure 6

shows the overview framework of AutoHet, which consists of the
RL model and the heterogeneous ReRAM-based accelerator. The
RL model produces the heterogeneous crossbar configurations for
DNN models. The heterogeneous ReRAM-based accelerator is built
based on the crossbar configuration and performs DNN inference.
To choose the best configuration for the DNNmodel, the accelerator
outputs direct hardware feedback as a reward to optimize the RL
model.

TheRLmodel.Reinforcement learning [17] is awell-established
machine learning method for automatically dealing with the neural
architecture search problems [23]. Therefore, we choose the RL
model as the core scheme to search the heterogeneous crossbar
configurations for the whole DNN model. We construct the RL
agent based on the deep deterministic policy gradient (DDPG) [20]
algorithm, which includes paired actor and critic networks, for solv-
ing RL problems in continuous state and action space. The actor
predicts an action according to the given state (e.g., kernel size,
input channels), while the critic evaluates the importance of the
action-state pair using the Q-function [20]. The state space records
the features of DNN models and provides an observation for the
RL agent. The reward function evaluates the performance of the
crossbar strategy based on the hardware feedbacks. The experi-
ence pool collects the states, actions, and rewards to optimize the
pair-network regularly.

Heterogeneous ReRAM-based accelerator. For simplicity,
the accelerator is built still with the traditional hierarchical archi-
tecture (i.e., ReRAM bank, tile, PE, crossbar), as shown on the right
side of Figure 6. However, it has three differences from the tradi-
tional architecture. First, while crossbars in a tile are homogeneous,
crossbars in different tiles can be heterogeneous. Second, to further
improve the internal utilization within a crossbar, the crossbar does
not necessarily to be square; it can be rectangular. Third, to address
the crossbar wastage within a tile, the accelerator allows mapping
multiple DNN layers onto the same tile to reuse the empty cross-
bars in allocated tiles. Notably, both the RL-based determination
process and the tile-shared scheme run on the CPU side. We use
a global controller (GC) to decode CPU instructions and control
the heterogeneous DNN mapping and inference. The GC receives
instructions and signals the input/output buffer and tiles through
the bus[2, 29].

3.2 RL-based Heterogeneous Crossbar

Configuration Decision Scheme

We model the optimized layer-wise heterogeneous crossbar con-
figuration strategy as the RL learning target. The action of the RL
agent corresponds to the specific crossbar type (size) for each DNN
layer. We adjust the reward function to balance the crossbar uti-
lization and energy consumption. The RL agent will automatically
search the proper crossbar type for each DNN layer.

Work flow. The working process of the RL model is numbered
from 1○ to 12○ in Figure 6. The solid arrows denote the decision
stage of generating the crossbar configuration, while the dashed
arrows indicate the internal learning stage of the RL model. In the
beginning, the state space updates based on the features of each
DNN layer ( 1○). Then, the RL agent produces an action (i.e., the
crossbar type of the current layer) according to the state space ( 2○
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∼ 3○). These three processes will be repeated until all DNN lay-
ers receive actions. All the actions form a heterogeneous crossbar
configuration in order ( 4○). The heterogeneous ReRAM-based ac-
celerator performs DNN mapping and inference depending on the
configuration ( 5○). The feedbacks (i.e., crossbar utilization and en-
ergy consumption) are sent to the reward function to generate a
reward value ( 6○ ∼ 7○). So far, the decision stage of the RL model
is suspended and the learning stage begins. The experience pool
collects the states, actions, and rewards generated in the previous
steps ( 8○ ∼ 10○). Then the RL agent samples a batch of experiences
and updates the pair-network in the background ( 11○ ∼ 12○). The
decision stage and learning stage are alternately executed in an
offline manner until the optimal crossbar configuration strategy is
found. Then we choose the optimal strategy as the final solution to
perform DNN mapping and inference.

Action space. To realize the layer-wise DNN inference on the
crossbar-level heterogeneous architecture, we choose crossbar type
as the action. The action 𝑎𝑘 denotes the crossbar type of the layer
𝑘 , and the accelerator will map the 𝑘-th DNN layer onto tiles with
this type of crossbar. We prepare different types of crossbars as the
candidates and map them to a sequence of integers to formulate
the action space. The details of selecting the crossbar candidates
are discussed in §3.3.

State space. To fully utilize the characteristics of each DNN
layer, we define a 10-dimensional state vector 𝑆 as our observation.
The state vector of the layer 𝑘 can be exhibited as follows:

𝑆𝑘 = (𝑘, 𝑡, 𝑖𝑛𝑐, 𝑜𝑢𝑡𝑐, 𝑘𝑠, 𝑠,𝑤, 𝑖𝑛𝑠, 𝑎𝑘 , 𝑢𝑘 ) (1)

All the states are defined in Table 1. Notably, we consider the FC
layer as a special kind of CONV layer by setting both 𝑘𝑠 and 𝑠 to
one and defining their 𝑖𝑛𝑐 and 𝑜𝑢𝑡𝑐 as the number of input and
output neurons, respectively [27, 28]. The state vector consists of
eight static features directly obtained from each DNN layer and two
dynamic features (i.e., 𝑎𝑘 and 𝑢𝑘 ) obtained from the decision stage
of the RL agent. The 𝑎𝑘 denotes the action of the current step (i.e.,
the crossbar type of layer 𝑘). The 𝑢𝑘 is the crossbar utilization of
layer 𝑘 , which can be calculated through 𝑎𝑘 and static features, as
Equation 4 shows.

Reward function. The reward 𝑅 is used to evaluate the effec-
tiveness of the RL agent. It needs to simultaneously consider the

Table 1: Symbols used in the RL state space.

No. Symbol Meaning

1 𝑘 layer index
2 𝑡 layer type: CONV:1 ; FC: 0
3 𝑖𝑛𝑐 number of channels in the input feature map
4 𝑜𝑢𝑡𝑐 number of channels produced by the CONV
5 𝑘𝑠 number of elements of a convolution kernel
6 𝑠 stride of the convolution
7 𝑤 number of weights in layer 𝑘
8 𝑖𝑛𝑠 size of the input feature map
9 𝑎𝑘 action of layer 𝑘
10 𝑢𝑘 crossbar utilization of layer 𝑘

crossbar utilization and energy consumption. We use the direct
hardware feedbacks of the heterogeneous ReRAM-based accelera-
tor to compose the reward function as follows:

𝑅 =
𝑢

𝑒
(2)

where 𝑢 and 𝑒 are the crossbar utilization and energy consumption,
respectively. Because the order of magnitude of energy consump-
tion is much greater than that of the crossbar utilization, the value
of reward𝑅 is between [0, 1], which is conducive to the convergence
of the RL model.

Experience pool. Once the DNN inference is finished, the expe-
rience pool collects actions, states, and the reward of this process.
The RL agent samples from the experience pool to periodically
update the pair-network and improve search efficiency. The experi-
ence of layer 𝑘 can be abstracted as:

𝐸𝑘 = (𝑆𝑘 , 𝑆𝑘+1, 𝑎𝑘 , 𝑅) (3)

where 𝑆𝑘 and 𝑆𝑘+1 are the state space of layer 𝑘 and 𝑘 + 1, 𝑎𝑘 is the
action of layer 𝑘 and 𝑅 is the reward of the inference.

3.3 Heterogeneous Crossbar Size Selection

To realize the high resource utilization within a crossbar, we need
to carefully select the crossbar sizes to form the heterogeneous
accelerator architecture. To this end, we formulate a mathematical
model to calculate the crossbar utilization after mapping a DNN
layer’s kernel data to the ReRAM-based accelerator. Then, we apply
this formula to guide the crossbar type selection for DNN layers.

Crossbar utilization formula.Assume a convolutional (CONV)
layer in a DNN model has the kernel size of 𝑘 ×𝑘 , input channels of
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Table 2: The structure of three popular DNN models. The

symbol 𝑎𝐶𝑏 −𝑐 represents that 𝑎 CONV layers with 𝑏 ×𝑏-sized
kernels and 𝑐 output channels. The symbol 𝐹𝑑 means a fully-

connected layer with 𝑑 neurons.

Network Structure

AlexNet C3-64, C3-192, C3-384, 2C3-256, F4096, F4096, F10

VGG16 2C3-64 , 2C3-128, 3C3-256, 6C3-512,F4096, F1000, F10

ResNet152
C7-64, 3C1-64, 8C1-128, 40C1-256, 12C1-512,

37C1-1024, 4C1-2048, 3C3-64, 8C3-128,
36C3-256, 3C3-512, F1000

𝐶𝑖𝑛 , and output channels of 𝐶𝑜𝑢𝑡 . This layer will be mapped onto
a crossbar array that contains multiple 𝑟 × 𝑐 crossbars, as shown
in Figure 7. The layer is first unfolded into a weight matrix with
𝐶𝑖𝑛 × 𝑘2 rows and 𝐶𝑜𝑢𝑡 columns. Then the weight matrix will be
mapped across multiple crossbars.

To ensure computational parallelism, we map the data from one
single kernel onto a single crossbar. Because each 𝑟 × 𝑐 crossbar
can store up to ⌊𝑟/𝑘2⌋ kernels in row and 𝑐 kernels in column,
some cells within the crossbars cannot be fully utilized as shown in
Figure 7. Furthermore, the whole crossbar array needs to include
⌈𝐶𝑖𝑛/⌊𝑟/𝑘2⌋⌉ rows of crossbars and ⌈𝐶𝑜𝑢𝑡/𝑐⌉ columns of cross-
bars. Therefore, the overall utilization of the crossbar array can be
calculated as Equation 4.

𝑢 =
𝐶𝑖𝑛 × 𝑘2 ×𝐶𝑜𝑢𝑡

𝑟 × ⌈𝐶𝑖𝑛/⌊𝑟/𝑘2⌋⌉ × 𝑐 × ⌈𝐶𝑜𝑢𝑡/𝑐⌉
(4)

For fully connected (FC) layers, this formula remains applicable
by setting 𝑘 = 1 and 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 as the number of input and
output neurons of the FC layer.

Naive crossbar candidate selection. From Equation 4, it is
evident that choosing the same crossbar size for each DNN layer
is sub-optimal, as different DNN layers have varying values for
𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡 , and 𝑘 . To enhance the utilization, a naive approach is to
consider multiple commonly used crossbars as candidates, typically
including 32 × 32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512,
as mentioned in previous work [19, 27, 29]. However, we notice
that the existing crossbar candidate shapes are all squares with
side lengths that are powers of 2, and they are not suitable for all
DNN layers. Table 2 shows the weight sizes for each layer of three
classical DNNmodels. We observe that square crossbars are suitable
for FC layers with side lengths close to or equal to powers of 2 (e.g.,
FC 1000, FC 4096), minimizing wastage. In contrast, CONV layers
with typical 3 × 3 kernels show low utilization on square crossbars
with powers of 2 side lengths due to the mismatch. In summary,
only using existing square heterogeneous crossbars still results in
a large number of wasted cells within the crossbar.

Tile1 Tile2 Tile3

Tile3

Empty-XBDNN Model

RL agent

Strategy
L1: XB32

L2: XB32

L3: XB32

Configuration

L2: Tile2, XB-1
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Configuration
L1:Tile1,XB-1,XB-2
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(a) Without Tile-shared Allocation

(b) With Tile-shared Allocation

XB-1

L1:Tile1,XB-1,XB-2

XB-2

XB-3 XB-4

XB-1 XB-2

XB-3 XB-4

XB-1 XB-2

XB-3 XB-4

XB-1 XB-2

XB-3 XB-4

XB-1 XB-2

XB-3 XB-4

XB-1 XB-2

XB-3 XB-4

Figure 8: The tile-shared crossbar allocation scheme.

Hybrid crossbar shape selection. Tomake crossbar candidates
suitable for both FC and CONV layers in a DNN model, it is neces-
sary to choose both square and rectangle crossbars as candidates.
To determine the desired sizes of rectangle crossbars, we analyze
the weight matrix sizes by unfolding all CONV layers in common
DNN models. We observe that most weight matrices misaligned
with square crossbars come from the 3 × 3 kernel size. Specifically,
it constitutes 62.5%, 81.25%, and 32.05% for AlexNet, VGG16, and
ResNet152, respectively. Since the widths of these weight matri-
ces are powers of 2, we only adjust the height of the rectangle
crossbars to be multiples of 9, reducing the number of wasted rows
within the crossbar. For example, the fourth layer of VGG16 (i.e.,
𝑘 = 3,𝐶𝑖𝑛 = 128,𝐶𝑜𝑢𝑡 = 128) achieves 83.7% utilization on 32 × 32
crossbars but achieves 100% on 36 × 32 crossbars. Following this
principle, we design five heterogeneous crossbar candidates in our
experiments (i.e., 32 × 32, 36 × 32, 72 × 64, 288 × 256, 576 × 512).
Similarly, users can tailor heterogeneous crossbars based on the
architecture of their target DNNs, which can also be supported by
AutoHet (§4.4).

Overall, employing a mixture of crossbar shapes enhances the
cell utilization of crossbars. Additionally, the increased crossbar
utilization results in a reduced number of required crossbars and
PCs, contributing to lower energy consumption and a high RUE
value.

3.4 Tile-shared Crossbar Allocation Scheme

As discussed in §2.2, the existing tile-based allocation scheme of
ReRAM-based accelerators may lead to significant crossbar wastage
in a tile when the tile cannot be fully filled. To address this issue, we
propose a tile-shared crossbar allocation scheme for ReRAM-based
accelerators. The key idea is allowing multiple DNN layers to be
mapped onto the same tile, thereby reducing the number of empty
crossbars by tile sharing.

Figure 8 shows an example of the proposed tile-shared crossbar
allocation scheme. The RL agent generates a crossbar mapping
strategy that maps three DNN layers (𝐿1−𝐿3) onto 32×32 crossbars.
We assume that each layer can fit into a single tile. Without the tile-
shared scheme, the Global Controller directly maps 𝐿1, 𝐿2, and 𝐿3
onto Tile 1, Tile 2, and Tile 3, respectively, as shown in Figure 8(a).
This mapping approach results in 8/12 of crossbars in the three tiles
being wasted. In contrast, with the tile-shared scheme, as illustrated
in Figure 8(b), the Global Controller first remaps the𝐿2 and𝐿3 layers
onto the unoccupied crossbars in Tile 1, and then releases Tile 2
and Tile 3. Therefore, the utilization of Tile 1 is improved from 50%
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to 100%, while Tiles 2 and 3 become available for other layers in
the DNN model or other models.

Note that the tile selection for data sharing cannot be arbitrary.
AutoHet assigns different DNN layers with crossbars of various
sizes to maximize RUE values. Therefore, it is crucial to ensure that
the selected tiles for sharing should have the same crossbar size.
To this end, AutoHet first groups all the used tiles based on their
crossbar sizes. The tiles within each group have the same crossbar
size. Then, for each tile group, AutoHet executes Algorithm 1 to
obtain the tile combinations where data needs to be remapped for
tile sharing. Specifically, the tiles within the group are first sorted
in ascending order based on the number of empty crossbars (Line
2). This generates a sorted tile list. Then, a two-pointer approach is
employed, traversing the list from both ends towards the list center.
When the sum of empty crossbars in the two pointed tiles is greater
than the total number of crossbars within a tile, the tiles pointed by
the two pointers are combined. The empty numbers of crossbars on
the two pointers are updated, and the tail pointer is moved one step
towards the list center (Lines 8-12). Otherwise, the head pointer
moves one step towards the list center (Lines 13-14). This process
is repeated until the two pointers meet and the combination results
are returned. The algorithm exhibits a time complexity of 𝑂 (𝑁 ),
where 𝑁 corresponds to the length of the list.

Algorithm 1 The tile-shared remapping algorithm
Require:

XBNum: the number of crossbars integrated in one tile;
tileList: a list of tile in one group;

1: combMap← empty map
2: tileList.sort(ascending=True)
3: head← 0
4: tail← lengthOf(tileList) − 1
5: while head <tail do
6: hTile← tileList[head]
7: tTile← tileList[tail]
8: if hTile.emptyXBNum + tTile.emptyXBNum ≥ XBNum then

9: hTile.emptyXBNum←
hTile.emptyXBNum + tTile.emptyXBNum − XBNum

10: tTile.emptyXBNum← 0
11: combMap[hTile.ID].append(tTile.ID)
12: tail← tail − 1
13: else

14: head← head + 1
15: end if

16: end while

return combMap

4 EVALUATION

4.1 Experiment Setup

Experiment platform.We implement the AutoHet based on a
ReRAM simulator, MNSIM [31], as commercial ReRAMs are cur-
rently unavailable to us.We use theMNSIM because of its simplicity
and efficiency. We adjust the crossbar size and the number of rele-
vant modules (e.g., DACs, ADCs) in each tile to build different types
of tiles. Each bank contains 256×256 tiles while each tile contains
four PEs by default. The weights of DNN models are quantized
to 8 bits, so we group eight crossbars in each PE to represent one
weight data. The precision of memristor cells and DACs is set to
1-bit. We set the ADC revolution to 10-bit to support crossbars of
all heterogeneous sizes. We modify the metric calculation module
of the hardware model to calculate the system metrics (e.g., RUE,

crossbar utilization, and energy consumption) based on crossbar
sizes and the number of PCs. All other configurations remain at
their default values.

Models and datasets.To evaluate the performance of AutoHet,
we select AlexNet [13], VGG16 [11], and ResNet152 [6] as work-
loads.We also choose three representative datasets. TheMNIST [14]
dataset consists of 70,000 grayscale 28 × 28 × 1 images. The CI-
FAR10 [12] dataset comprises 60,000 labeled 32 × 32 × 3 images.
The ImageNet [3] dataset has 1.4 million color images with various
sizes. We conduct DNN inference of different-scale models with
their corresponding datasets (i.e., AlexNet on MNIST, VGG16 on
CIFAR-10, and ResNet152 on ImageNet).

Baselines. We compare AutoHet to the existing homogeneous
ReRAM-based accelerators. For a comprehensive comparison, we
select five commonly used square crossbar sizes to form five homo-
geneous accelerators as our baselines. Each baseline only chooses
one of the five square sizes (i.e., 32×32, 64×64, 128×128, 256×256,
and 512 × 512) for all the DNN layers. For the heterogeneous ac-
celerator, AutoHet automatically chooses one of the five crossbar
sizes (i.e., 32 × 32, 36 × 32, 72 × 64, 288 × 256, and 576 × 512) for
each DNN layer.

4.2 Overall Performance

Figure 9(a) illustrates the RUE results of different accelerators for
the three DNNmodels. The RUE value is a comprehensive indicator,
which is defined as the ratio of the crossbar utilization (U) to the
energy consumption (E), as described in §2.2. The larger the RUE
value, the better the system. We have two observations.

First, AutoHet consistently exhibits the highest RUE values
compared to the homogeneous accelerators. Specifically, its av-
erage RUE value is 5.1× higher than those of the homogeneous
accelerators across the three DNN models. This demonstrates Au-
toHet’s capability to simultaneously maximize crossbar utilization
and energy efficiency. AutoHet performs the best because it uses
heterogeneous crossbars, whereas the counterparts utilize homo-
geneous ones. Furthermore, it considers both metrics through the
RL-based search approach, while existing accelerators do not. Ad-
ditionally, the proposed rectangle crossbar shape and tile-shared
crossbar allocation scheme in AutoHet also improve resource
utilization, contributing to the RUE values.

Second, AutoHet demonstrates various speedups on different
DNN models. Specifically, it outperforms the best-performing ho-
mogeneous accelerator by 1.3×, 2.2×, and 1.4× for AlexNet, VGG16,
and ResNet152, respectively. This is because different DNN models
have various kernel structures and the number of layers, resulting
in varying improvement space that AutoHet can enhance.

Figure 9(b) and 9(c) shows the crossbar utilization and energy
consumption of all the accelerators. For better presentation, we
normalize the lowest energy consumption of the homogeneous
accelerators to one for each DNN model. We observe that although
AutoHet sometimes has lower utilization than certain homoge-
neous accelerators, its energy consumption is significantly reduced.
Using the VGG16 model as an example, AutoHet exhibits a slightly
lower utilization by 14%, compared to the homogeneous accelerator
with 64 × 64 crossbars, but its energy consumption is reduced by
8.4×. This explains why AutoHet achieves the highest RUE values.
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Figure 9: The overall performance of different accelerators for the three DNN models.
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Figure 10: The performance of individual techniques in AutoHet for three DNN models.

4.3 Impact of Individual Techniques

Figure 10 shows the impact of each optimization in AutoHet on the
RUE, crossbar utilization, and energy consumption. We gradually
enable each technique one by one. For simplicity, we use SXB and
RXB to denote square crossbar and rectangle crossbar, respectively.
SXBs include the five crossbar sizes from the baselines, while RXBs
include 36×32, 72×64, 144×128, 288×256, and 576×512. Base means
the SXB-based homogeneous accelerator with the highest RUE. For
example, for VGG16 on CIFAR-10, it refers to the homogeneous
accelerator with the 512 × 512 SXBs. +He is the accelerator where
the RL agent only uses heterogeneous SXBs for each DNN layer.
+Hy denotes the version that utilizes both SXBs and RXBs (i.e.,
32 × 32, 36 × 32, 72 × 64, 288 × 256, and 576 × 512) to construct the
accelerator. All extends +Hy to support the tile-shared allocation
scheme, which means all optimizations are enabled. We have the
following two observations.

First, each optimization applied to the previous version can im-
prove or maintain the RUE, crossbar utilization, and energy con-
sumption. For example, for VGG16, +He achieves a 1.1× increase
in RUE compared to Base. This is because +He can choose various
suitable SXBs for different DNN layers. When both SXBs and RXBs
are used, +Hy achieves 1.9× higher RUE than +He. This is because
+Hy improves 9.3% crossbar utilization and reduces 1.7× energy
consumption. It demonstrates the advantages of setting the height
of the crossbar as a multiple of 9 rather than using the side length
as a power of 2 for typical 3 × 3 kernels. When the tile-shared allo-
cation scheme is enabled, All further increases 1.14× RUE because
the scheme can make the empty crossbars in one tile be utilized by
other DNN layers. We have similar observations for other metrics
(i.e., crossbar utilization and energy consumption) and models (i.e.,
AlexNet and ResNet152).

Second, the proposed optimizations achieve various improve-
ments for different metrics. For example, +Hy obtains more sig-
nificant improvement in energy reduction, whereas All achieves
more noticeable growth in crossbar utilization. +Hy contributes
more in energy reduction because using RXBs makes the crossbars

Table 3: The crossbar size for each layer of VGG16 on MNIST.

Layer L1 L2-L11 L12-L14 L15 L16

Base 512x512 512x512 512x512 512x512 512x512
+He 512x512 512x512 256x256 512x512 256x256
+Hy 288x256 576x512 576x512 576x512 576x512

Table 4: The number of occupied tiles for different models.

Comparisons AlexNet VGG16 ResNet152

+Hy 33 30 246
All 31 27 232

more suitable for the weight matrices, thereby efficiently reducing
the number of the most energy-consuming ADCs. For All, its tile-
shared allocation scheme allows multiple DNN layers to be mapped
onto the same tile, thereby the crossbar utilization can be efficiently
boosted.

Table 3 shows the assigned crossbar sizes for individual DNN
layers in Base, +He, and +Hy. Because of the space limitation, we
only show the results of VGG16. Base uses a 512×512 crossbar size
for all layers, whereas +He adjusts the crossbar sizes of L12-14 and
L16 to 256 × 256 and keeps 512 × 512 for the remaining layers. This
demonstrates that the RL agent can automatically select appropriate
crossbar sizes for different DNN layers, considering their computing
characteristics. When RXBs are utilized as heterogeneous crossbar
candidates, the 288×256 crossbar is assigned for L1, and the 576×512
is assigned for the remaining layers. This demonstrates that RXBs
are more suitable than SXBs in improving utilization and reducing
energy consumption for all DNN layers in VGG16. Table 4 illustrates
the total number of occupied tiles in +Hy and All. Compared to
+Hy, All reduces the number of occupied tiles by 6.1%, 10%, and
5.7% for AlexNet, VGG16, and ResNet152, respectively. This result
confirms that the tile-shared allocation scheme can indeed reduce
crossbar wastage, thus improving resource utilization.

4.4 Sensitivity Analysis

To show the performance of AutoHet under various scenarios, we
evaluate it by adjusting the ratio of SXBs and RXBs, the number of
crossbar candidates, and the number of PEs in each tile. Although
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there are numerous homogenous accelerators available for compar-
ison, we choose the one with the highest RUE value (denoted as
Best-Homo) to simplify the presentation. Due to space limitations,
we only demonstrate the results for VGG16; however, similar results
are observed for other models.

Various ratios of SXBs to RXBs. Figure 11(a) shows the RUE
values of AutoHet and Best-Homo with various ratios of SXBs to
RXBs. We maintain the total number of crossbar candidates as five
and choose 𝑎 SXBs and 𝑏RXBs (i.e., 𝑎S𝑏R) from the 10 crossbar sizes
mentioned in §4.3. Figure 11(a) shows that AutoHet consistently
outperforms Best-Homo: the RUE value is increased from 1.03× to
1.27×. Furthermore, we observe that more RXBs can achieve larger
RUE values, demonstrating the effectiveness of the RXBs.

Various numbers of crossbar candidates.We vary the num-
ber of crossbar sizes and choose 2, 4, and 8 candidates from SXBs
and RXBs. The results are shown in Figure 11(b). It illustrates that
AutoHet outperforms Best-Homo by 1.15× on average, regardless
of the number of heterogeneous crossbar candidates. Furthermore,
we note that AutoHet demonstrates greater RUE improvements
compared to Best-Homo when employing a higher number of het-
erogeneous candidates. This is attributed to the increased diversity
of candidates, enabling the RL agent to choose more suitable cross-
bar sizes for individual DNN layers.

Various numbers of PEs in each tile.Wemaintain the crossbar
candidates fixed but change the number of PEs in each tile from 8
to 32. Figure 11(c) highlights that AutoHet achieves higher RUE
values than Best-Homo: it is improved by 2.24× to 4.38×. This
shows the generality and robustness of the AutoHet for various
underlying hardware configurations.

4.5 Discussion

Area and latency. Table 5 shows the area occupancy and inference
latency of AutoHet and other accelerators. Due to space limita-
tion, we only show the results of VGG16; other models have similar
observations. We find that AutoHet has the minimum area con-
sumption. Specifically, AutoHet reduces 92% area consumption
compared to the best-performing accelerator with homogeneous
SXBs (i.e., 512×512). This is because the heterogeneous architecture
with hybrid shapes of crossbars and the tile-shared scheme improve
the crossbar utilization, thereby reducing the total number of used
crossbars and PCs. Furthermore, we observe that the inference la-
tency of AutoHet does not exhibit a significant increase compared
to the homogeneous counterparts. Specifically, AutoHet incurs

Table 5: The area occupancy and inference latency of of Au-

toHet and other accelerators.

Accelerators SXB32 SXB64 SXB128 SXB256 SXB512 AutoHet

Area (𝜇𝑚2) 2.29E+10 1.02E+10 5.31E+09 3.03E+09 2.12E+09 1.82E+09
Latency (ns) 2.26E+06 2.94E+06 2.96E+06 2.71E+06 2.73E+06 2.34E+06

only 3.2% higher latency than the best-performing 32 × 32 homo-
geneous accelerator. Compared to other accelerators, AutoHet
achieves a latency reduction of 1.2× on average.

Search time of RL. The RL training is an offline search process.
The search time includes the time spent by the RL agent to make
decisions and the time to wait for rewards from the simulator.
Specifically, for VGG16, the 300-round search time is 49.2 minutes.
This overhead is acceptable for a contemporary server, as the RL
training is executed once but the decision result is used many times.
Moreover, we observe that 97% of the search time is spent on the
simulator to generate the feedbacks. With the emergence of the
real ReRAM-based hardware in the near future, we can generate
the feedbacks from the hardware, which is much faster than the
simulator. Therefore, the search time on a real hardware platform
will be significantly reduced.

Applicability to different domains. In this paper, we verify
the effectiveness of AutoHet on DNN models. While, the idea of
adopting a heterogeneous architecture based on the characteristics
of each part of the model is generic. We believe the idea of hetero-
geneous ReRAM-based accelerators is effective for other different
artificial intelligence domains, such as large language models [4].

5 RELATEDWORK

Chip-level heterogeneous architectures. Prior works propose
chip-level heterogeneous architectures to accelerate applications.
Liu et al. [15] proposed a heterogeneous PIM system that com-
bines both fixed-function arithmetic units and programmable cores
on the logic layer of a 3D die-stacked memory. Hetraph [8] facili-
tates energy-efficient graph processing by combining memristor-
based analog computing units (for high-parallelism computing) and
CMOS-based digital computing cores (for efficient computing). Joar-
dar et al. proposed two heterogeneous architectures, REGENT [10]
for CNNs and GRAMARCH [9] for DNNs, both of which integrate
ReRAM arrays with GPU cores. However, they cannot solve the
crossbar wastage in ReRAM, resulting in sub-optimal crossbar uti-
lization.

Crossbar-level heterogeneous architectures. Several studies
explore crossbar-level heterogeneous approaches. ReGraphX [1]
uses 128×128 crossbars for vertex-computation layers and 8×8
crossbars for edge-computation layers in graph neural network
training. REREC [26] adopts 16×16 crossbars to perform inner-
product computation and 128×128 crossbars for multi-layer percep-
tron inference in recommendation systems. However, both of them
are not designed for DNNmodels. Zhu et al. [29] proposed tomap in-
dividual CONV layers onto three SXBs through a greedy algorithm.
However, it focuses more on crossbar utilization while AutoHet
aims at both crossbar utilization and energy consumption through
the RL-based method. Furthermore, AutoHet leverages RXBS and
tile-shared allocation to further boost resource utilization.

AutoML methods for DNNs on ReRAMs. Some efforts lever-
age AutoML methods to improve the behaviors of DNN models on
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ReRAM-based accelerators, such as pruning [27], quantization [25],
and mapping [18]. However, they pay more attention to the model
optimization instead of the hardware architecture. In contrast, Au-
toHet uses an RL-based method to design efficient ReRAM-based
accelerator architecture for DNN models.

6 CONCLUSION

In this paper, we propose AutoHet, an automated heterogeneous
ReRAM-based accelerator for DNN models to maximize crossbar
utilization while minimize energy consumption. Given the charac-
teristics of each layer in the DNN, AutoHet automatically selects
appropriate heterogeneous crossbars for each layer using reinforce-
ment learning. Additionally, we introduce hybrid crossbar shapes
(i.e., square and rectangle crossbars) to further enhance the match-
ing between the weight matrices and crossbars. Finally, we propose
the tile-shared allocation scheme to improve utilization by allowing
multiple DNN layers to be mapped onto the same tile. Experimental
results demonstrate that AutoHet effectively improves the cross-
bar utilization by up to 3.1×while reducing the energy consumption
by up to 94.6% compared to existing homogeneous accelerators.
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