
Mapping Very Large Scale Spiking Neuron Network to
Neuromorphic Hardware

Ouwen Jin
Zhejiang University
Hangzhou, China

jinouwen@zju.edu.cn

Qinghui Xing
Zhejiang University
Hangzhou, China
xingqh@zju.edu.cn

Ying Li
Zhejiang University
Hangzhou, China

cnliying@zju.edu.cn

Shuiguang Deng∗
Zhejiang University
Hangzhou, China
dengsg@zju.edu.cn

Shuibing He
Zhejiang University
Hangzhou, China

heshuibing@zju.edu.cn

Gang Pan∗
Zhejiang University
Hangzhou, China
gpan@zju.edu.cn

ABSTRACT
Neuromorphic hardware is a multi-core computer system specifi-
cally designed to run Spiking Neuron Network (SNN) applications.
As the scale of neuromorphic hardware increases, it becomes very
challenging to efficiently map a large SNN to hardware. In this pa-
per, we proposed an efficient approach to map very large scale SNN
applications to neuromorphic hardware, aiming to reduce energy
consumption, spike latency, and on-chip network communication
congestion. The approach consists of two steps. Firstly, it solves
the initial placement using the Hilbert curve, a space-filling curve
with unique properties that are particularly suitable for mapping
SNNs. Secondly, the Force Directed (FD) algorithm is developed to
optimize the initial placement. The FD algorithm formulates the
connections of clusters as tension forces, thus converts the local
optimization of placement as a force analysis problem. The pro-
posed approach is evaluated with the scale of 4 billion neurons,
which is more than 200 times larger than previous research. The re-
sults show that our approach achieves state-of-the-art performance,
significantly exceeding existing approaches.

CCS CONCEPTS
• Computer systems organization → Neural networks; • Net-
works→ Network on chip; • Hardware → Neural systems.

KEYWORDS
Neuromorphic computing, Spiking Neural Networks (SNN), Net-
work on chip (NOC), mapping

ACM Reference Format:
Ouwen Jin, Qinghui Xing, Ying Li, Shuiguang Deng, Shuibing He, and Gang
Pan. 2023. Mapping Very Large Scale Spiking Neuron Network to Neuro-
morphic Hardware. In Proceedings of the 28th ACM International Conference

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00
https://doi.org/10.1145/3582016.3582038

on Architectural Support for Programming Languages and Operating Systems,
Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3582016.3582038

1 INTRODUCTION
Neuromorphic computing promises to realize artificial intelligence
while reducing energy requirements [30]. Spiking Neural Networks
(SNNs) [25], usually regarded as the third generation of neural net-
works, play an important role in neuromorphic computing. Imitat-
ing the biological nervous system in terms of neuron and synaptic
connection models, SNN features rich spatial-temporal information
and high biological plausibility.

To exploit the advantage of the low power consumption of spike-
based artificial intelligence, many neuromorphic hardware have
been developed. For example, DYNAP-SE [28], TrueNorth [8], Neu-
rogrid [5], SpiNNaker [12], Loihi [7], Tianji [35] and Darwin [24].
All of these neuromorphic hardwares share a common design rule
to run SNN applications. That is: using a large number of specially
designed neurosynaptic cores (for example, crossbars on Loihi; and
ARM cores on SpiNNaker) to store synaptic weights and simulate
neurons dynamics in parallel.

In this kind of multicore architecture, SNN applications are re-
quired to be mapped into hardware prior to their execution. A typi-
cal process of mapping an SNN application into hardware needs:
1) partitioning neurons in SNN into several clusters to meet the
hardware constraints, and 2) placing these clusters in neuromorphic
computing cores.

A few approaches, such as PACMAN [13], PyCARL [2], SpiNeMap
[4] and DFSynthesizer [36], have been proposed to address mapping
SNNs to neuromorphic hardware. The works show that mapping
results can dramatically influence the performance of the running
of SNN applications, including power consumption, latency, and
throughput.

However, existing methods show limitations with the increase
of hardware scale (As shown in table 1) and the development of
larger-scale SNN applications [18, 22]. These limitations are due to
two main reasons:

• Most previous works mainly focus on optimizing the par-
tition of neurons, while few addressed the placement of
clusters. However, with the increasing number of cores, the
placement of partitioned clusters shows a more significant
impact on performance than the partitioning of neurons.

419

https://doi.org/10.1145/3582016.3582038
https://doi.org/10.1145/3582016.3582038

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ouwen Jin, Qinghui Xing, Ying Li, Shuiguang Deng, Shuibing He, and Gang Pan

Table 1: Capacity of several neuromorphic hardware plat-
forms

DYNAPs BrainScaleS Loihi SpiNNaker TrueNorth
[28] [34] [7] [12] [8]

Neurons/core 256 512 128 1000 256
Synapses/core 16K 128K 500K 2K 262K
cores/chip 1 1 1024 18 4096
chips/system 4 8192 768 1M 64

High-performance system
Neurons 1K 4M 100M 1B 64M
Synapses 65K 1B 100B 200B 1T

• Existing methods are designed for relatively small scale (less
than 5000 cores) neuromorphic hardware and lack scalability.
These methods either fail to solve in a reasonable time or
the solution is of inferior quality when the problem scale is
enlarged.

To tackle the limitations, we propose an efficient mapping ap-
proach based on Hilbert Space-filling Curve (HSC) [16] and Force
Directed (FD) algorithm. HSC is a space-filling curve that maps
a 1D sequence into a 2D space. We found that HSC can provide
the overall data flow layout and map connected neurons to nearby
locations , which is desirable in mapping problems. FD algorithm is
a novel optimization algorithm designed by us. By converting the
connections between the cores into forces and analyzing the forces
on the cores, the FD algorithm can efficiently optimize the location
of the cores. Combining HSC with the FD algorithm, our approach
is able to map very large scale SNN applications to neuromorphic
hardware, aiming to reduce energy consumption, spike latency,
and on-chip network communication congestion. The experimental
results show that our method can solve and optimize the SNN map-
ping task of 4 billion neurons and millions of cores in 26 seconds,
while the existing methods need more than 100 hours.

The main contributions of this paper are as follows:
• We are the first to apply Hilbert Space-filing Curve (HSC)
to the SNN mapping problem. We explore why HSC has an
advantage in mapping very large scale SNNs by concluding
the unique properties of HSC.

• We propose the Force Directed (FD) algorithm to map very
large scale SNN applications into neuromorphic hardware,
reducing energy consumption, spike latency, and on-chip
network communication congestion.

• Combining HSC with the FD algorithm completes our map-
ping approach. We evaluate our approach with a large scale
of 4 billion neurons and millions of cores on a general neu-
romorphic hardware model. The results demonstrate the
excellence of the proposed approach.

2 BACKGROUND AND RELATEDWORK
2.1 Background of SNN Mapping Problem
Neuromorphic computing, an emerging computing paradigm using
SNNs model, has the potential to drive the next wave of AI and is
receiving increasing attention [30], for its characteristics of brain
mimicking and energy efficiency.

An SNN application is an attempt to use SNN to implement ma-
chine learning approaches. SNNs can be trained to perform specific

	𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑥(

𝑥)

𝑥*

𝑥"!

𝑥""

𝑥"#

SNN Application

𝑐!

𝑐"

𝑐# 𝑐$

𝑐%
Neuromorphic Chip

Placement 2

	𝑥!

𝑐!

Legend

Neuron

Cluster

Neuromorphic core

Synapse
Cluster connection

Placement 1

𝑐!

𝑐"

𝑐#

𝑐$

𝑐%

Neuromorphic Chip
core

←Router

	𝑥!

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑥(

𝑥)

𝑥*

𝑥"!

𝑥""

𝑥"#

𝑐!
𝑐"

𝑐#

𝑐$

𝑐%
𝑐!

𝑐"

𝑐#

𝑐$

𝑐%

Partitioned Cluster Network

Partition

Mapping

Figure 1: Mapping SNN into neuromorphic hardware

tasks by supervised or unsupervised methods like other traditional
Artificial Neuron Networks (ANNs). While training refers to ad-
justing the synaptic weights between neurons. This survey [30]
shows that SNN applications could provide competitive results
in many machine learning tasks, including vision classification,
reinforcement learning, and robotic autonomous control.

A neuromorphic hardware platform is a computer system specif-
ically designed to implement SNN applications [27]. Table 1 lists
several existing Neuromorphic hardware platforms. And many
larger-scale neuromorphic hardware, e.g. SpiNNaker2 with 10 mil-
lion core processors [26] is being designed and developed by com-
panies and research institutions [11]. These hardware systems can
be uniformly abstracted as multi-core computing systems that use
many homogeneous neurosynaptic computing cores to simulate
neuron dynamics in parallel. A typical implementation of the neu-
rosynaptic computing core is the analog crossbar [21], while some
choose to use digital processors [8, 12].

The most common design in the latest large-scale neuromorphic
systems is Network-on-Chip (NOC) [23] with 2D mesh structures.
The main advantage of this architecture is its high scalability to
achieve massively parallel computing systems.

Based on this multicore architecture, SNN applications must be
mapped into hardware. Mapping an SNN application into hard-
ware means 1) partitioning neurons in SNN into several clusters
to meet the hardware constraints and 2) placing these clusters in
neuromorphic computing cores.

Figure 1 illustrates an example of mapping SNN applications
into neuromorphic hardware. The input of the mapping problem
is an SNN application, which is represented as a graph consisting

420

Mapping Very Large Scale Spiking Neuron Network to Neuromorphic Hardware ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

of neurons and synapses. Firstly, Neurons in the SNN application
need to be partitioned into clusters due to the neurosynaptic core’s
capacity limitation. In Figure 1, the maximum number of neurons
per core limited by hardware capacity is 3, so 13 neurons 𝜃0−12 are
partitioned into 5 clusters 𝑐0−4. Based on the partition result, we
can obtain the Partitioned Cluster Network (PCN), a graph made of
clusters. The connections between clusters preserve the information
of synapses that connect neurons partitioned in separate clusters.

The result of the mapping algorithm is a placement. Figure 1
shows two possible results of mapping given PCN into a 2 × 3
neuromorphic hardware. The green dotted box represents a neu-
rosynaptic core, and the square in the upper left corner represents
its router. One obvious conclusion is that placement 1 is a higher-
quality solution than placement 2 because the path length of all
connections in placement 1 is less than or equal to that in place-
ment 2. The following section will give a more systematic and
mathematical description of the problem.

2.2 Related Work
Mapping and scheduling problem is a well-known NP-hard problem
[14], and this paper studies one instance of this type of problem. As
a result, obtaining an optimized solution is extremely challenging.
Based on this fact, existing mapping methods are often based on
iterative optimization or greedy approaches to obtain approximate
optimal solutions.

PACMAN [13] is the standard mapping method for SpiNNaker
[12]. It employs a simple first come, first serve technique while
considering user-specified constraints. TrueNorth [33] proposed
a heuristic algorithm to place clusters to hardware cores layer-by-
layer. Clusters of the input layer are placed in predefined positions.
Then clusters in the following layers would choose a core with
the minimum sum of distances from all adjacent inward clusters
in preceding layers. DFSynthesizer [36] is initialized by randomly
allocating clusters to neuromorphic cores. From this, it searches
for a better solution by swapping clusters’ positions iteratively. It
evaluates throughput and energy cost every time clusters are moved
and retains new mapping if the metric improves. SDFSNN [3] uses
Synchronous Data-Flow Graphs (SDFGs) for mapping exploration.
PSOPART [6] uses an instance of PSO (particle swarm optimization)
to directly map neurons of SNN to neuromorphic cores. Based
on PSOPART, SpiNeMap [4] adds a partition phase before using
the PSO algorithm. Since a hardware core can contain no more
than one cluster, SpiNeMap binarizes the position and velocity of
particles. PyCARL [2] extends SpiNeMap’s method to support the
high-level programming interface PyNN. Song et al. [37] proposed
a framework that also employs PSO to generate the SNN placement.
Song integrated SDF3 into PSO as its fitness function to calculate
the throughput for a given mapping. In the framework, a scheduler
is constructed to avoid placement conflict.

Previous research mainly focuses on heuristic methods to map
neuron clusters to the neuromorphic hardware. A common problem
with these methods is that they may be too slow to solve when the
hardware scale is enlarged. These methods tested on a scale of fewer
than 5000 cores mapping problems. Therefore, a more efficient
mapping method is needed with the emergence of neuromorphic
hardware such as SpiNNaker2 and Darwin3, which has a capacity

of tens of billions of neurons and millions of parallel computing
cores.

3 PROBLEM FORMULATION
3.1 Neuromorphic Hardware Model
In this paper, as shown in Figure 2, neuromorphic hardware is
modeled as a many-core system made of a set of homogeneous
processing cores connected by routers. Each router binds to a core
and connects its neighbors in four directions with bidirectional
links to form an interconnection network with a 2D mesh topology.

Each core, together with its binding routers, has coordinates of
(𝑥,𝑦). The system size is defined by (𝑁,𝑀), which means a number
of 𝑁 ×𝑀 cores are available in the system. The core at the top-left
corner is indexed as (0, 0), while the core at the bottom-right corner
is indexed as (𝑁 − 1, 𝑀 − 1). We denoted the hardware system as a
set

𝑆 = {(𝑥,𝑦) ∈ N2 |0 ≤ 𝑥 < 𝑁, 0 ≤ 𝑦 < 𝑀}. (1)

The capacity of processing cores in different neuromorphic hard-
ware varies greatly. Two constants, 𝐶𝑂𝑁𝑛𝑝𝑐 and 𝐶𝑂𝑁𝑠𝑝𝑐 , are used
to address this difference in hardware constraints. 𝐶𝑂𝑁𝑛𝑝𝑐 defines
the maximum number of neurons that can be configured per core,
while 𝐶𝑂𝑁𝑠𝑝𝑐 defines the maximum number of synapses that can
be configured per core.

(0,0) (0,1) (0,3)(0,2) (0,4)

(1,0) (1,1) (0,3)(1,2) (1,4)

(2,0) (2,1) (2,3)(2,2) (2,4)

Figure 2: Hardware model

3.2 SNN Application and Partitioned Cluster
Network (PCN) Model

An SNN application is naturally modeled as a directed Graph

𝐺𝑆𝑁𝑁 = (𝑉𝑆 , 𝐸𝑆 ,𝑤𝑆) . (2)

Each node 𝑥 ∈ 𝑉𝑠 presents a minimum computational unit: neurons.
Each edge 𝑒𝑖, 𝑗 ∈ 𝐸𝑠 presents a synapse connecting neuron 𝑥𝑖 and
𝑥 𝑗 .𝑤𝑠 : 𝐸𝑠 → R is the edge weight function defined on the edges of
the graph. It should be noted that the value of weights𝑤𝑠 (𝑒) does
not represent the synapse weights in the SNN but the density of the
spiking emitted by synapse 𝑒 , or in other words, the communication
traffic volume.

Neurons in SNN need to be partitioned into clusters to meet the
hardware constraints before mapping algorithms can operate on

421

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ouwen Jin, Qinghui Xing, Ying Li, Shuiguang Deng, Shuibing He, and Gang Pan

Algorithm 1: partition algorithm
Input: 𝐺𝑆𝑁𝑁 = (𝑉𝑆 , 𝐸𝑆 ,𝑤𝑆)
Output: 𝐺𝑃𝐶𝑁

1 𝑐𝑙𝑎𝑡𝑒𝑠𝑡 = {};
2 foreach 𝑥𝑖 ∈ 𝑉𝑆 do
3 if Neuron 𝑥𝑖 can not be partitioned into 𝑐𝑙𝑎𝑡𝑒𝑠𝑡 due to the

hardware limitation then
4 𝑉𝑃 = 𝑉𝑃 + 𝑐𝑙𝑎𝑡𝑒𝑠𝑡 ;
5 𝑐𝑙𝑎𝑡𝑒𝑠𝑡 = 𝑛𝑒𝑤{};
6 end
7 𝑐𝑙𝑎𝑡𝑒𝑠𝑡 = 𝑐𝑙𝑎𝑡𝑒𝑠𝑡 + 𝑥𝑖 ;
8 end
9 build 𝐸𝑝 and𝑤𝑃 based on 𝐺𝑆𝑁𝑁 ;

10 𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃);

them. In this paper, we use algorithm 1 to do partition. The output
of the partition algorithm is the Partitioned Cluster Network (PCN)

𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃), (3)

which is defined by a directed Graph. Each node

𝑐𝑖 = {𝑥 |𝑥 is partitioned in 𝑐𝑖 } ∈ 𝑉𝑝 , (4)

presents a cluster of neurons, whose self is a set made of the neurons
it contains. A partitioned cluster can be mapped on an arbitrary
core in neuromorphic hardware, which means it is the smallest
unit that the mapping algorithm can schedule. Each edge 𝑒𝑖, 𝑗 ∈ 𝐸𝑃
presents a communication connection between clusters 𝑐𝑖 and 𝑐 𝑗 .
The weight function𝑤𝑃 is given by the following equation:

𝑤𝑃 (𝑒𝑖, 𝑗) =
∑︁

𝑒𝑢,𝑣 ∈𝐵𝑖,𝑗

𝑤𝑆 (𝑒𝑢,𝑣), (5)

where
𝐵𝑖, 𝑗 =

{
𝑒𝑢,𝑣 ∈ 𝐸𝑆

��𝑥𝑢 ∈ 𝑐𝑖 𝑎𝑛𝑑 𝑥𝑣 ∈ 𝑐 𝑗
}
, (6)

which presents the communication traffic volume between clusters,
and it is proportional to the total number of spikes pass through
this connection.

3.3 Problem Definition
Based on the system and application models, the mapping problem
can be modeled as finding a placement 𝑃 : 𝑉𝑃 → 𝑆 , an injective
function that maps the clusters into cores, which is noted as follow:

𝐹 (𝐺𝑃𝐶𝑁 , 𝑆) = 𝑃 (7)
𝑃 (𝑐𝑖) = (𝑥𝑖 , 𝑦𝑖), (8)

where 𝐹 is a given mapping algorithm.
To quantify the output placement, we use fivemetrics to optimize

themapping task, that is, energy consumption, latency, and network
congestion. These metrics are computed as follow:

(1) Energy Consumption: The total energy consumed by all spikes
on interconnect given 𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃) and Placement
𝑃 is computed as follow

𝑀𝑒𝑐 =
∑︁

𝑒𝑖,𝑗 ∈𝐸𝑝
(𝑤𝑃 (𝑒𝑖, 𝑗)

(

𝑃 (𝑐𝑖) − 𝑃 (𝑐 𝑗)

 + 1

)
𝐸𝑁𝑟

+𝑤𝑃 (𝑒𝑖, 𝑗)

𝑃 (𝑐𝑖) − 𝑃 (𝑐 𝑗)

𝐸𝑁𝑤),
(9)

where ∥ · ∥ is the 𝐿1 norm, which gives the Manhattan dis-
tance between two cores, 𝐸𝑁𝑟 is the energy consumption
for a router route one spike message, and 𝐸𝑁𝑤 is the energy
consumption for one spike message transmitted through a
wire between routers.

(2) Average Latency: The average time a spike message spent
on transmission in interconnect network, given 𝐺𝑃𝐶𝑁 =

(𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃) and Placement 𝑃 , is computed as follow

𝑀𝑎𝑙 =
∑︁

𝑒𝑖,𝑗 ∈𝐸𝑝
(𝑤𝑃 (𝑒𝑖, 𝑗) (∥𝑃 (𝑐𝑖) − 𝑃 (𝑐 𝑗)∥ + 1)𝐿𝑟

+𝑤𝑃 (𝑒𝑖, 𝑗)∥𝑃 (𝑐𝑖) − 𝑃 (𝑐 𝑗)∥𝐿𝑤)

/
∑︁

𝑒𝑖,𝑗 ∈𝐸𝑝
𝑤𝑃 (𝑒𝑖, 𝑗),

(10)

where 𝐿𝑟 is the delay for a router route one spike mes-
sage, and 𝐿𝑤 is the delay for one spike message transmitted
through a wire between routers.

(3) Maximum Latency: The maximum time spike messages spent
on transmission in interconnect network among all connec-
tion routes, given 𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃) and Placement 𝑃 , is
computed as follow

𝑀𝑚𝑙 = max
𝑒𝑖,𝑗 ∈𝐸𝑝

((∥𝑃 (𝑐𝑖) − 𝑃 (𝑐 𝑗)∥ + 1)𝐿𝑟

+ ∥𝑃 (𝑐𝑖) − 𝑃 (𝑐 𝑗)∥𝐿𝑤).
(11)

(4) Average Congestion: The average congestion in the inter-
connection network, given the 𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃) and
Placement 𝑃 , is computed as follow

𝑀𝑎𝑐 =
∑︁

(𝑥,𝑦) ∈𝑆
𝐶𝑜𝑛(𝑥,𝑦)/(𝑁 ∗𝑀), (12)

where 𝐶𝑜𝑛(𝑥,𝑦) compute the congestion in router whose
coordinates is (𝑥,𝑦).It is compute as follow

𝐶𝑜𝑛(𝑥,𝑦) =
∑︁

𝑒𝑖,𝑗 ∈𝐸𝑃
(𝑤𝑃

(
𝑒𝑖, 𝑗

)
∗ 𝐸𝑥𝑝𝑒

(
𝑥,𝑦, 𝑃 (𝑐𝑖), 𝑃 (𝑐 𝑗)

)
),

(13)

where 𝐸𝑥𝑝𝑒 (𝑥,𝑦, (𝑥𝑠 , 𝑦𝑠), (𝑥𝑡 , 𝑦𝑡)) is the function that com-
pute the expected value of number of spike pass through
coordinate (x,y) when one spike is transmitted from coor-
dinate (𝑥𝑠 , 𝑦𝑠) to (𝑥𝑡 , 𝑦𝑡). The complete calculation of this
function is presented in algorithm 4 in the appendix.

(5) Maximum Congestion: The maximum congestion in the in-
terconnection network, given the𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃) and
Placement 𝑃 , is computed as follow

𝑀𝑚𝑐 = max
(𝑥,𝑦) ∈𝑆

𝐶𝑜𝑛(𝑥,𝑦) . (14)

4 THE PROPOSED APPROACH
4.1 Overview
Figure 3 illustrates the main work flow of our proposed approach.
The process flow consists of two steps: step 1) using Hilbert Space-
filling Curve (HSC) to obtain an initial placement, and step 2) per-
form Force directed (FD) algorithm to optimize the placement.

422

Mapping Very Large Scale Spiking Neuron Network to Neuromorphic Hardware ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Hilbert Space-
Filling Curve1D sequence

Topological Sorting Force Directed
Algorithm

Output

Input

Partitioned Cluster Network

Initial Placement Final Placement

Figure 3: Diagram of the proposed approach

4.2 Initial Placement Based on Hilbert
Space-filling Curve

4×4

8×8 16×16

Figure 4: Some instances of Hilbert space-filling curve

4.2.1 Motivation. In our analysis, the most critical problem that
existing heuristic search methods cannot map large-scale networks
is that the solution space grows too fast with the size. The number
of possible solutions for a mapping task with 𝑁 kernels is up to
𝑁 !. It is too difficult for existing methods to approach optimal
solutions from a random starting point in solution space. So we
wondered if we could start from a better initial placement rather
than a completely random one.

Figure 4 shows some instances of HSC. HSC is a well-known
fractal graph that provides a mapping relationship between 1D and
2D space. We find that HSC has very special properties, which can
help to obtain a good initial placement.

4.2.2 Properties of HSC. We use the HSC as a guide to achieving
an initial placement because it has the following properties.

(1) Locality: The HSC is widely used in computer science mainly
because it gives a mapping between 1D and 2D space that
preserves locality well. The locality here means that two
points closing to each other in one-dimensional space are
also close to each other after being mapped in 2D space
[16]. SNN applications also show another form of locality
property: neurons are only connected to a few other neu-
rons locally instead of being widely connected in the whole

network. This locality can be found both in deep machine
learning applications and biological nervous systems in na-
ture [39]. Combining these two locality properties is that
the neurons with connections will be mapped closely in 2D
space based on HSC, which is favorable for the mapping
problem.

(2) Infinity: HSC can give a mapping between 1D and 2D space
in infinity order, which means there are no scalability is-
sues when mapping very large-scale SNN applications to
hardware.

(3) Provide data flow layout: Most SNN applications show direc-
tionality: data flow from input to output like a stream. As
shown in the figure 5, the HSC maintains this directionality
whenmapping, providing a U-shaped overall layout and fully
using all space. Better yet, an HSC is a fractal graph. That
is, it has this property in any of its sub-graphs. Therefore,
not only on a global scale but on any small local area, this
property can help to obtain a better Placement. We believe
this feature may be the most critical reason HSC can provide
superior initial solutions for further optimization.

Figure 5: Data flow layout

4.2.3 Initial Placement with HSC. We achieve the initial placement
through the following two steps: step 1) A sequence of clusters is
obtained by a variety of topological ordering of the PCN graph.
And step 2) a discrete approximation of Hilbert Space-filling Curve
is used to map the 1D sequence into the 2D mesh.

In step 1), the topological order of the PCN graph is generated by
algorithm 2, which is the same as the classical topological sorting
algorithm, except for a slight modification to enable it to handle
non-Directed-acyclic-graphs (non-DAG). The algorithm’s output is

423

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ouwen Jin, Qinghui Xing, Ying Li, Shuiguang Deng, Shuibing He, and Gang Pan

Algorithm 2: Topological sorting
Input: 𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃)
Output: 𝑆𝑒𝑞 : 𝑉𝑝 → N

1 𝑝 = 0;
2 𝑆 = all clusters with no incoming edge;
3 𝑆𝑒𝑞(𝑐𝑖) = −1 for all 𝑐𝑖 in 𝑉𝑃 ;
4 while 𝑝 < |𝑉𝑝 | do
5 if 𝑆 is not empty then
6 𝑛 = 𝑐𝑖 with smallest index 𝑖 in 𝑆 ;
7 remove n from S;
8 else
9 𝑛 = 𝑐𝑖 with smallest index 𝑖 that 𝑆𝑒𝑞(𝑐𝑖) == −1

10 end
11 𝑆𝑒𝑞(𝑛) = 𝑝;
12 𝑝 = 𝑝 + 1;
13 foreach 𝑐 𝑗 with an edge 𝑒𝑖, 𝑗 ∈ 𝐸𝑃 do
14 𝐸𝑃 = 𝐸𝑃 − 𝑒𝑖, 𝑗 ;
15 if 𝑐 𝑗 has no other incoming edge and 𝑆𝑒𝑞(𝑐 𝑗) == −1;
16 then
17 𝑆 = 𝑆 + 𝑐 𝑗
18 end
19 end
20 end

a function 𝑆𝑒𝑞 : 𝑉𝑝 → N.

𝑆𝑒𝑞(𝑐𝑖) = 𝑗, (15)

presents that the cluster 𝑐𝑖 is the 𝑗th item in the sequence of topo-
logical order.

In step 2), the sequence is mapped into 2D space using a discrete
approximation of the Hilbert Space-filling Curve, which is noted as
a function 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 : N → (N,N).

𝐻𝑖𝑙𝑏𝑒𝑟𝑡 (𝑖) = (𝑥𝑖 , 𝑦𝑖), (16)

presents that the 𝑖th item in the sequence is mapped to the position
(𝑥𝑖 , 𝑦𝑖).

Combining steps 1 and 2 we obtain the function of the initial
placement 𝑃𝑖𝑛𝑖𝑡 : 𝑉𝑝 → (N,N).

𝑃𝑖𝑛𝑖𝑡 = 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 ◦ 𝑆𝑒𝑞, (17)

which essentially transforms the network, represented as a graph,
into a 1D sequence, and then further maps it to 2D space based on
the HSC.

4.3 A Statistical Analysis of HSC
Figure 6 provides a statistical analysis of the advantages of HSC
curves applied to mapping problems.

Figure 6.a shows three examples of different space-filling curves
on an 8*8 mesh, including HSC, Zigzag, and Circle [32]. The arrows
in the figure indicate the arrangement of the original 1D sequence
in 2D space based on the corresponding space-filling curves.

Figure 6.b shows the generated distance heatmaps based on
curves in Figure 6.a. In the heatmap, the value at any point (𝑥,𝑦) is
equal to the distance of the point pair (𝑃𝑥 , 𝑃𝑦), where 𝑃𝑖 represents
the position where the 𝑖th point in the 1D sequence is mapped to 2D

space, based on the corresponding curve. The closer the point pair
is, the smaller the value and the darker the color in the heatmap, and
vice versa. The heatmap shows some features of the space-filling
curve from a visual perspective: compared with other space-filling
curves, the HSC’s heatmap appears darker near the diagonal and
has fewer sharp spikes of brightness. This phenomenon images the
locality property of the HSC, i.e., points that are adjacent in 1D
sequence will also be adjacent in 2D space.

Figure 6.c shows three connection images of SNN. In the connec-
tion image, the value of the point (𝑥,𝑦) indicates whether there is a
connection between neuron 𝑥 and neuron 𝑦 in the neural network.
If there is, the corresponding point is colored. Otherwise, it is blank.

Figure 6.d shows a Cost we designed to measure the performance
of different curves. The specific calculation process is as follows: the
connection image of SNN is covered on the heatmap of the space-
filling curve like a mask, and then the desired cost is obtained by
summing up the values of all the covered points in the heatmap.
In fact, all the points to be counted are precise all the connections
in the neural network, and their connection distances in 2D space
are the values on the heatmap. These values can obtain the sum
of all the connection distances in the mapped space, which is an
important metric to measure the mapping performance.

In order to further obtain the average performance of these space-
filling curves when mapping an arbitrary unknown SNN, we made
the probability cloud image. The probability cloud is composed of
many connection images of different SNNs. In the same way, we
can obtain the cost of different curves on this point cloud map, and
the results are shown in Figure 6.e.

It can be seen from the results that HSC performs several times
better than ZigZag and Circle on mapping neural networks in a
statistical sense.

4.4 Force Directed Algorithm for Finetuning
4.4.1 Overview. The HSC provides a placement that only maps
clusters at a macro level, so there is a large room for local opti-
mization. Therefore, we propose the FD algorithm to finetune the
placement provided by HSC.

The main idea of the FD algorithm is to regard clusters as par-
ticles on a 2D plane and the connection between clusters as the
tension. In this way, in the dynamic evolution of the physical model,
particles subjected to greater tension will get closer, achieving the
desired result: clusters with greater connections will be mapped to
closer positions.

The design of the FD algorithm also takes advantage of the
locality of the SNN applications. It is embodied in two points: 1)
The force of each cluster is only related to clusters connected to it.
Therefore, when the algorithm updates the position of a cluster in
the placement, only clusters connected to it need to be maintained.
The locality of SNN ensures that the number of affected clusters
is not too large, thus ensuring the high efficiency of computation.
2) Based on the placement given by HSC, the locality of the SNN
applications ensures that clusters with connections are mapped in
close positions. This property means that each cluster is not too
far from the optimal position, ensuring that the FD algorithm’s
strategy based on local tuning does not need to be executed too
many times.

424

Mapping Very Large Scale Spiking Neuron Network to Neuromorphic Hardware ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

a.

b.

c.

d.

Hilbert Zig Zag Circle

Cost 1.0 2.63 6.33

e.

Hilbert ZigZag Circle

Hilbert ZigZag Circle

Full_connect_8_8 LeNet_ImageNet ResNet

Probablity Cloud Hilbert Cost

Figure 6: Why HSC space filling curve. a) Space-filling Curve. b) Distance-Heatmap. c) Network. d) Cost Computation. e) Cost of
different space-filling curves

4.4.2 Details of FD Algorithm. To perform the FD algorithm, we
first build an abstract physical model. Although we borrow many
physics concepts, this model does not have any real physics mean-
ing but is entirely intended to serve the mapping algorithm.

We first define the potential energy. Given placement 𝑃 and PCN
graph 𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃), the potential energy is defined as
follow:

𝑈𝑐𝑖 (𝑐 𝑗 , 𝑃 (𝑐𝑖), 𝑃 (𝑐 𝑗)) = 𝑢 (𝑃 (𝑐 𝑗) − 𝑃 (𝑐𝑖)) ∗𝑤𝑝 (𝑒𝑖, 𝑗) . (18)

The equation (18) means that based on a given placement, the
clusters 𝑐𝑖 will generate a potential field. Any other cluster 𝑐 𝑗 in the
system will therefore have a potential energy𝑈𝑐𝑖 (𝑐 𝑗). The value of
potential energy is determined by

(1) The position of 𝑐 𝑗 in the potential field generated by 𝑐𝑖 , i.e.,
the relative position of 𝑐𝑖 to 𝑐 𝑗 .The further away 𝑐 𝑗 is from
𝑐𝑖 , the more potential energy 𝑐 𝑗 has.

(2) The connection weight between 𝑐𝑖and 𝑐 𝑗 . If there is no con-
nection between 𝑐𝑖 and 𝑐 𝑗 , 𝑐𝑖 will not gain potential energy
from 𝑐 𝑗 ’s potential field.

(3) The shape of the potential energy field.

Figure 7 visualized three potential energy fields, whose shape
is determined by potential function 𝑢 (𝑝). In case a), the potential
function is designed most straightforwardly:

𝑢𝑎 (𝑝) = |𝑥𝑝 | + |𝑦𝑝 |, (19)

where 𝑝 = (𝑥𝑝 , 𝑦𝑝) is the position of the cluster relative to the ori-
gin of the potential field. This potential function defines a uniform
potential field. The potential energy at position p is linearly propor-
tional to the 𝐿1 norm of the position vector p, i.e., the Manhattan
distance from p to origin.

𝑢! 𝑝 = 𝑥" + 𝑦" 𝑢#	 𝑝 = 𝑥" + 𝑦"
$ 𝑢% 	 𝑝 = 𝑥"$ + 𝑦"$

Figure 7: Different potential energy fields

The energy fields are not uniform in case b) and c) but is denser
when away from the origin. This design gives clusters relatively
more potential energy when away from the field’s origin. In the sub-
sequent optimization process of reducing the system’s total energy,
these pairs of clusters farther away will be preferentially pulled
closer. Such property helps to reduce long-distance connections
and therefore reduce latency. The potential energy at position 𝑝 is
proportional to the squared 𝐿1 norm and the squared 𝐿2 norm of 𝑝 ,
respectively. The potential functions are designed as follows:

𝑢𝑏 (𝑝) = (|𝑥𝑝 | + |𝑦𝑝 |)2, (20)

𝑢𝑐 (𝑝) = 𝑥2𝑝 + 𝑦2𝑝 . (21)

There are many other possible potential field designs. The above
three potential energy fields are chosen in this paper because of
their computational efficiency and performance. And by selecting
different potential field functions, our algorithm can flexibly trade-
off between solving speed and solution quality.

425

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ouwen Jin, Qinghui Xing, Ying Li, Shuiguang Deng, Shuibing He, and Gang Pan

The total potential energy of a cluster 𝐸𝑐𝑖 and system’s total
energy 𝐸𝑠 can be computed as follow:

𝐸𝑐𝑖 =
∑︁

𝑐 𝑗 |𝑒 𝑗,𝑖 ∈𝐸𝑝
𝑈𝑐 𝑗 (𝑐𝑖 , 𝑃 (𝑐 𝑗), 𝑃 (𝑐𝑖)), (22)

𝐸𝑠 =
∑︁

𝑐𝑖 ∈𝑉𝑃
𝐸𝑐𝑖

=
∑︁

𝑐𝑖 ∈𝑉𝑃

∑︁
𝑐 𝑗 |𝑒 𝑗,𝑖 ∈𝐸𝑝

𝑈𝑐 𝑗 (𝑐𝑖 , 𝑃 (𝑐 𝑗), 𝑃 (𝑐𝑖)) (23)

=
∑︁

𝑒𝑖,𝑗 ∈𝐸𝑝
𝑈𝑐𝑖 (𝑐 𝑗 , 𝑃 (𝑐𝑖), 𝑃 (𝑐 𝑗)) .

The target of the FD algorithm is to minimize the system’s total
energy by optimizing the placement:

argmin
𝑃

𝐸𝑠 . (24)

Equation (26) shows that minimizing the system’s total energy is
equivalent to minimizing the system’s total energy consumption
when using a specially designed potential function (25).

𝑢 (𝑝) = (| |𝑝 | | + 1)𝐸𝑁𝑟 + ||𝑝 | |𝐸𝑁𝑤 (25)

𝐸𝑠 =
∑︁

𝑒𝑖,𝑗 ∈𝐸𝑝
𝑈𝑐𝑖 (𝑐 𝑗 , 𝑃 (𝑐𝑖), 𝑃 (𝑐 𝑗))

=
∑︁

𝑒𝑖,𝑗 ∈𝐸𝑝
𝑢 (𝑃 (𝑐 𝑗) − 𝑃 (𝑐𝑖)) ∗𝑤𝑝 (𝑒𝑖, 𝑗)

=
∑︁

𝑒𝑖,𝑗 ∈𝐸𝑝
((| |𝑃 (𝑐 𝑗) − 𝑃 (𝑐𝑖) | | + 1)𝐸𝑁𝑟+

||𝑃 (𝑐 𝑗) − 𝑃 (𝑐𝑖) | |𝐸𝑁𝑤) ∗𝑤𝑝 (𝑒𝑖, 𝑗)
=𝑀𝑒𝑐 .

(26)

In our model, force is defined as the reduction in potential energy
of a cluster as it moves towards its neighbor position. A cluster will
be subjected to different forces in four directions: up, down, left,
and right. The force is computed as follows:

𝐹𝑜𝑟𝑐𝑒𝑐𝑖 ,𝑑

= 𝐸𝑐𝑖 − 𝐸′𝑐𝑖

= 𝐸𝑐𝑖 −
∑︁

𝑐 𝑗 |𝑒 𝑗,𝑖 ∈𝐸𝑝
𝑈𝑐 𝑗 (𝑐𝑖 , 𝑃 (𝑐 𝑗), 𝑃 (𝑐𝑖) + ▽𝑝𝑑),

(27)

where
𝑑 ∈ {𝑈𝑃, 𝐷𝑂𝑊𝑁, 𝐿𝐸𝐹𝑇 , 𝑅𝐼𝐺𝐻𝑇 } (28)

▽𝑝𝑑 =


(−1, 0) 𝑑 = 𝑈𝑃

(1, 0) 𝑑 = 𝐷𝑂𝑊𝑁

(0,−1) 𝑑 = 𝐿𝐸𝐹𝑇

(0, 1) 𝑑 = 𝑅𝐼𝐺𝐻𝑇

. (29)

The equation (27) shows that when the cluster moves in one direc-
tion, the force in that direction is positive if the potential energy is
reduced and negative otherwise. This fact indicates that in order
to reduce the system’s total energy, clusters tend to move in the
direction of greater force.

Tension is defined on the pair of adjacent clusters. It is computed
as follows:

𝑇𝑒𝑛𝑠𝑖𝑜𝑛𝑐𝑖 ,𝑐 𝑗 = 𝐹𝑜𝑟𝑐𝑒𝑐𝑖 ,𝑑𝑖 𝑗 + 𝐹𝑜𝑟𝑐𝑒𝑐 𝑗 ,𝑑 𝑗𝑖
,

where | |𝑃 (𝑐𝑖) − 𝑃 (𝑐 𝑗) | | = 1,
(30)

where 𝑑𝑖 𝑗 representing direction from 𝑃 (𝑐𝑖) to 𝑃 (𝑐 𝑗). The tension’s
value equals the sum of the forces of the two clusters pointing
toward each other. According to the definition of force (27), the
tension’s value is equal to the sum of the potential energy reduced
by switching the positions of the two clusters.

Based on the above model definition, we propose the FD algo-
rithm. Algorithm 3 illustrates the complete workflow of the FD
algorithm. First, the input placement 𝑃𝑖𝑛𝑖𝑡 is set as the baseline of
the optimization (line 2). Based on initial placement, the 𝐹𝑜𝑟𝑐𝑒 array
is built using equation (27) (lines 3-5). The 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 array is built
using equation (30) (lines 7-8). Meanwhile, a list 𝐿 of all pairs with
positive tension is constructed (lines 9-11). The list 𝐿 is then sorted
into a queue where the higher the tension, the more advanced the
pair (line 13). The FD algorithm then optimizes placement by swap-
ping pairs in the queue (lines 14-41). In each iteration, a new queue
will be generated for the next iteration. The algorithm recursively
iterates until the new queue is empty (line 14). In each iteration,
a part of the pairs in the queue will be swapped. The proportion
of this part is controlled by hyperparameter 𝜆 (line 17). Before be-
ing swapped, a pair has to be checked to ensure its tension is still
positive. If not, the pair is discarded (lines 18-19). In the swapping
process, the clusters mapped to these two positions are swapped,
and their 𝐹𝑜𝑟𝑐𝑒 values are rebuilt (lines 20-21). The 𝐹𝑜𝑟𝑐𝑒 of all
other clusters connected to these two clusters is maintained (line
24). Finally, all clusters affected by the swapping process are added
to a list 𝐿𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 (line 25). When all the swaps are complete, the al-
gorithm starts building the queue for the next iteration 𝐿𝑛𝑒𝑥𝑡 (lines
30-40). 𝐿𝑛𝑒𝑥𝑡 is first initialized to contain all pairs in the queue for
this iteration (line 15). All pairs containing the affected clusters are
then appended to 𝐿𝑛𝑒𝑥𝑡 . After rebuilding the tensions of all pairs
in 𝐿𝑛𝑒𝑥𝑡 , all pairs with non-positive tensions are discarded (lines
36-38). Finally, the queue required for the next iteration is obtained
by sorting 𝐿𝑛𝑒𝑥𝑡 in order of tension (line 40).

4.5 Design Choices of FD Algorithm
In this section, we motivate the FD algorithm’s design choices.

(1) Check before the swapping process. Pairs in the queue are
assured of positive tension when the queue is constructed.
However, during a series of swaps in one iteration, a previous
swap may cause a change in the tension of the subsequent
swaps. Before being swapped, a pair of clusters has to be
checked to ensure its tension is still positive. This checking
procedure is used to ensure the convergence of the algo-
rithm. According to equations (30) and (27), the change of
the system’s total energy is equal to the tension of the pair
before the swap. The positive tension ensures the system’s
total energy decreases monotonically.

𝐸∗𝑠 = 𝐸𝑠 −𝑇𝑒𝑛𝑠𝑖𝑜𝑛𝑐𝑖 ,𝑐 𝑗 < 𝐸𝑠 , (31)

where 𝐸∗𝑠 is the new system’s total energy after the swap. An-
other possible method is to dynamically maintain the queue,
i.e., updating all pairs’ tension after each swap. However, this
method will bring high algorithm complexity. We choose to
use a static queue and check in terms of algorithm efficiency.

(2) Hyperparameter 𝜆. The main idea of introducing the hyper-
parameter 𝜆 is to mimic the dynamic evolution of a physical

426

Mapping Very Large Scale Spiking Neuron Network to Neuromorphic Hardware ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Algorithm 3: Force Directed
Input: 𝑃𝑖𝑛𝑖𝑡 ,𝐺𝑃𝐶𝑁 = (𝑉𝑃 , 𝐸𝑃 ,𝑤𝑃), 𝑆, 𝜆
Output: 𝑃𝑓 𝑖𝑛𝑎𝑙

1 Define:𝑈𝑃, 𝐷𝑂𝑊𝑁, 𝑅𝐼𝐺𝐻𝑇, 𝐿𝐸𝐹𝑇 = 0, 1, 2, 3;
2 𝑃𝑛𝑜𝑤 = 𝑃𝑖𝑛𝑖𝑡 ;
/* Build array 𝐹𝑜𝑟𝑐𝑒 */

3 foreach 𝑝 = (𝑥,𝑦) in 𝑆 do
4 build the 𝐹𝑜𝑟𝑐𝑒 [𝑝] [0..3];
5 end
/* Build array 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 and list 𝐿 */

6 𝐿 = empty 𝐿𝑖𝑠𝑡 ;
7 foreach 𝑝𝑎𝑖𝑟 = (𝑝𝑢 , 𝑝𝑣) in 2D mesh that 𝑝𝑢 and 𝑝𝑣 is

adjacent do
8 build the 𝑇𝑒𝑛𝑠𝑖𝑜𝑛[𝑝𝑎𝑖𝑟];
9 if 𝑇𝑒𝑛𝑠𝑖𝑜𝑛[𝑝𝑎𝑖𝑟] > 0 then
10 𝐿.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑝𝑎𝑖𝑟)
11 end
12 end
13 sort 𝐿 𝑠.𝑡 . ∀𝑖 < 𝑗,𝑇𝑒𝑛𝑠𝑖𝑜𝑛[𝐿[𝑖]] ≥ 𝑇𝑒𝑛𝑠𝑖𝑜𝑛[𝐿[𝑗]];

/* Iterating and optimizing */

14 while 𝐿 is not empty do
15 𝐿𝑛𝑒𝑥𝑡 = 𝐿;
16 𝐿𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 = empty 𝐿𝑖𝑠𝑡 ;

/* switch the pair */

17 foreach 𝑝𝑎𝑖𝑟𝑖 = (𝑝𝑢 , 𝑝𝑣) in 𝐿 and 𝑖 < 𝜆 |𝐿 | do
18 recompute 𝑡𝑒𝑛𝑠𝑖𝑜𝑛[𝑝𝑎𝑖𝑟𝑖];
19 if 𝑇𝑒𝑛𝑠𝑖𝑜𝑛[𝑝𝑎𝑖𝑟𝑖] > 0 then
20 swap the placement of clusters currently placed

at 𝑝𝑢 and 𝑝𝑣 in 𝑃𝑛𝑜𝑤 ;
21 rebuild 𝐹𝑜𝑟𝑐𝑒 [𝑝𝑢] [0..3] and 𝐹𝑜𝑟𝑐𝑒 [𝑝𝑣] [0..3];
22 foreach 𝑐 𝑗 𝑖𝑛 (𝑐𝑢 , 𝑐𝑣) do
23 foreach 𝑐𝑘 with an edge 𝑒 𝑗,𝑘 𝑜𝑟 𝑒𝑘,𝑗 in 𝐸𝑃 do
24 maintain 𝐹𝑜𝑟𝑐𝑒 [𝑃𝑛𝑜𝑤 (𝑐𝑘)] [0..3];
25 𝐿𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑘);
26 end
27 end
28 end
29 end

/* clean up */

30 remove duplicates from 𝐿𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 ;
31 foreach 𝑐 𝑖𝑛 𝐿𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 do
32 append all pairs contains 𝑃𝑛𝑜𝑤 (𝑐) to 𝐿𝑛𝑒𝑥𝑡
33 end
34 foreach 𝑝𝑎𝑖𝑟 = (𝑝𝑢 , 𝑝𝑣) 𝑖𝑛 𝐿𝑛𝑒𝑥𝑡 do
35 rebuild 𝑇𝑒𝑛𝑠𝑖𝑜𝑛[𝑝𝑎𝑖𝑟];
36 if 𝑇𝑒𝑛𝑠𝑖𝑜𝑛[𝑝𝑎𝑖𝑟] <= 0 then
37 remove 𝑝𝑎𝑖𝑟 form 𝐿𝑛𝑒𝑥𝑡

38 end
39 end
40 𝐿 = 𝐿𝑛𝑒𝑥𝑡 ; sort 𝐿;
41 end
42 𝑃𝑓 𝑖𝑛𝑎𝑙 = 𝑃𝑛𝑜𝑤 ;

model, namely, a particle with a larger force will move faster.
The hyperparameter 𝜆 determines a certain percentage of
pairs in the front of the queue that could participate in the
swapping process in an iteration. This property indicates
that the algorithm will preferentially swap pairs with large
tension. The value of 𝜆 cannot be too large or too small.
A large 𝜆 indicates that almost all pairs can participate in
the swapping process, making the algorithm less physically
interpretable and reducing the placement quality. A low 𝜆

causes only a small number of pairs to be swapped in each
iteration, increasing the total number of iterations required
to achieve convergence, resulting in the low efficiency of
the algorithm. Through a series of experiments, we give a
practical value of 𝜆: 30%, aiming to balance the efficiency
and quality.

(3) Introducing of 𝐿𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 .We use a list 𝐿𝑎𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 to record all
affected clusters in an iteration. This method ensures that we
get all pairs with positive tension after each iteration while
performing as less tension computation as possible. This
method is especially effective when the algorithm is close to
convergence, where only a small number of clusters in the
system have not reached the convergence position. The al-
gorithm tracks these clusters and their related pairs through
this list, thus avoiding the overhead of maintaining all pairs’
tension, resulting in significant efficiency improvement.

5 EXPERIMENTS AND EVALUATIONS
5.1 Experimental Setting

Table 2: Parameters of target neuromorphic hardware

Parameter Value

𝐶𝑂𝑁𝑛𝑝𝑐 4096
𝐶𝑂𝑁𝑠𝑝𝑐 64K
𝐸𝑁𝑟 1
𝐸𝑁𝑤 0.1
𝐿𝑟 1
𝐿𝑤 0.01

5.1.1 Experimental Environment. We use software to simulate an
abstract target neuromorphic hardware platform to measure our
proposed approach. The parameters for the target hardware plat-
form are listed in Table 2.

The experiments are conducted on an Ubuntu 20.04.2 LTS (GNU
Linux 5.8.0-59-generic x86 64) workstation with 40 CPU cores (In-
tel(R) Xeon(R) Silver 4210R CPU@2.40GHz), 256G memory and 4
GPU cards (GeForce RTX 3080).

We use GPUs to train and transform SNN applications. All map-
ping algorithms are implemented by C++ without GPU computing
power or multicore parallel computing feature.

5.1.2 SNN Applications for Evaluations. Table 3 lists 13 SNN appli-
cations used for evaluation. Columns 2 and 3 of the table report the
number of neurons and synapses of the SNN applications. Columns
4 and 5 report the number of clusters and connections of the cor-
responding PCN graph. Column 6 reports the scale of the target
neuromorphic hardware.

427

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ouwen Jin, Qinghui Xing, Ying Li, Shuiguang Deng, Shuibing He, and Gang Pan

Table 3: Benchmarks

𝐺𝑆𝑁𝑁 𝐺𝑃𝐶𝑁 Target
Applications Neurons Synapses Clusters Connections Hardware

DNN_65K 65536 805M 16 48 4 × 4
DNN_16M 16.7M 4T 4096 258048 64 × 64
DNN_268M 268M 70T 65536 4M 256 × 256
DNN_4B 4B 1125T 1M 67M 1024 × 1024
CNN_65K 65536 2M 16 48 4 × 4
CNN_16M 16.7M 528M 4096 16384 64 × 64
CNN_268M 268M 8B 65536 262K 256 × 256

LeNet-MNIST 9118 0.4M 9 19 3 × 3
LeNet-ImageNet 1.0M 188M 251 2151 16 × 16
AlexNet 0.9M 1.0B 229 4289 16 × 16
MobileNet 6.9M 0.5B 1688 37418 42 × 42
InceptionV3 14.6M 5.4B 3570 117597 60 × 60
ResNet 28.5M 11.6B 6956 478602 84 × 84

The first seven SNN applications starting with DNN or CNN are
randomly synthetic. DNN stands for Deep Neural Network, which
contains multiple layers of neurons, and each adjacent layer of
neurons is fully connected. CNN stands for Convolutional Neural
Network. The connections between neurons follow the classical
convolutional network structure [19].

The following seven SNN applications are realistic Artificial Neu-
ral networks (ANN). They are: LeNet [20] trained inMNIST [10] and
ImageNet [9] datasets, AlexNet [19], MobileNet [17], InceptionV3
[38], and ResNet [15]. We trained these networks using Tensorflow
[1] and converted them into SNN form using the ANN-to-SNN
conversion tool SNNToolBox [31].

5.1.3 Comparison Approaches. We mainly evaluate the following
five approaches.

(1) The baseline: Randomlymapping, clusters are randomlymapped
into the neuromorphic hardware.

(2) Truenorth: Amethod proposed in [33]. It is used in Truenorth
[8], a large-scale neuromorphic computing system.

(3) DFSynthesizer: A greedy mapping algorithm proposed in
[36].

(4) PSO: Particle Swarm Optimization is a classic optimization
algorithm used by many mapping approaches [4, 36, 37]. We
take the PSO configuration from this SOTA work [37].

(5) Proposed approach: In the first part of the experiment, we
show our method’s performance under different configu-
rations in detail. In the second part of the experiment, we
compare our approach against other methods.

5.1.4 Evaluation Metrics. All the metrics for measuring the quality
of the placement are detailed in section 3.3, including:

• Energy consumption (9)
• Average latency (10)
• Maximum latency (11)
• Average congestion (12)
• Maximum congestion (14)

Another metric we use to measure the efficiency of the technique
is:

• Algorithm execution time

which measures how long it takes for a given technique to get a
solution.

5.2 Performance of the Proposed Approach
The experiment consists of two parts. In the first part, we show the
advantages of HSC compared with other space-filling curves and
how HSC can cooperate with the FD algorithm to obtain optimal
performance. In addition, the influence of different potential func-
tions on the FD algorithm is also shown. In the second part, we
use the benchmark to compare our approach against other existing
methods.

Figure 8 shows the results of the first part of the experiment. The
experiment is based on ResNet, a representative SNN application
from the benchmark. The experiment involves ten mapping meth-
ods, marked a) to j). Where method a) is the baseline method, i.e.,
random mapping. Methods b), c), and d) directly obtain placement
based on space-filling curves. e) to j) are six methods that contain
the optimization phase of the FD algorithm, where methods e) and
f) use the potential function described by equation 19 , while g) and
h) use 20, i) and j) use 21. Methods e), g), and i) run the FD algo-
rithm beginning with a randomly initialized placement. Methods
f), h), and j) use the FD algorithm on an initial placement given by
HSC. The left part of the figure shows the solution quality given
by the ten methods through the designed metrics. All metrics are
normalized to the baseline method. In the bar for latency and con-
gestion, light and dark colors represent this metric’s maximum and
average values, respectively. The right part shows the solving time
required by some methods. Since there is no iterative optimization
process for methods a) to e), their time consumption is less than
0.001 seconds.

Based on the experimental results shown in Figure 8, we have
the following observations:

(1) HSC has significantly better performance than other space-
filling curves.
Other space-filling curves, ZigZag and Circle, will wander
in a wide range of 2D space, which may lead to the adjacent
and connected neurons being assigned to locations far away
from each other, resulting in the solution’s performance
being even worse than the baseline method. While HSC, by
its nature, is well suited for mapping SNN, which has been
discussed before.
Compared with the baseline, HSC’s energy consumption is
reduced by 77.3%; average and maximum delay is reduced by
64.2% and 62.4%, respectively; average congestion is reduced
by 77.4%, while maximum congestion is increased by 12.6%.
As for the increment of maximum congestion, we find that
HSC places many densely connected neurons in a centralized
area, resulting in local routing hotspots, which can be solved
by subsequent optimization of the FD algorithm.

(2) Neither HSC nor FD algorithm can complete the mapping
task well alone.
On the one hand, the HSC provides a placement that only
maps clusters at a macro level, so there is a large room for
local optimization. Based on the placement given by HSC,
using the FD algorithm can further reduce energy consump-
tion by 23.3%, average and maximum latency by 26.5% and

428

Mapping Very Large Scale Spiking Neuron Network to Neuromorphic Hardware ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

17.45 9.30

Figure 8: Performance of the space-filling curve and FD algorithm at ResNet

Figure 9: Results on execution time

16.4%, and average and maximum congestion by 23.5% and
31.6%. Reducing maximum congestion also solves the router
hotspots problem involved by HSC.
On the other hand, the results show that the FD algorithm
heavily depends on the quality of the initial solution. With-
out the initial solution provided by HSC, the metrics of the
solution given by the FD algorithm become significantly
worse, and the solution time becomes very long. According
to our analysis, the huge performance reduction of the FD
algorithm is due to the lack of macro guidance and dataflow
layout provided by HSC. Each iteration of the FD algorithm
only makes local optimization and adjustment, so it isn’t
easy to affect the overall layout. And without a proper ini-
tial placement, clusters will be far from the ideal converge
position, increasing the time cost of convergence.

(3) Among the three methods f), h), and j), methods j) can
achieve better solution quality.
These three methods represent the complete method pro-
posed by us, i.e., HSC combined with FD. Method j) uses the
potential energy function described by formula A, which
can better punish the long-distance connection relation than
other potential energy functions to obtain better quality

solutions. Although the computing complexity of the for-
mula is higher, this disadvantage is eliminated when using
HSC. We analyze that the total number of iterations needed
to converge is reduced due to the better optimization and
adjustment strategy of method j).

Based on the above experimental observations, we let method j)
represent our proposed approach to participate in all subsequent
experiments.

5.3 Comparison with Other Approaches
In the second part, we present the major experimental results: the
performance of the existing mapping method and our approach
under the benchmark.

Figure 9 shows the time required by each method to solve SNN
mapping problems of different scales. The X-axis indicates the size
of the SNN application, which is represented by the number of
neuron clusters. The Y-axis represents the time required for the
method to execute. Notice that we are taking logarithms of both
axes.

Since existing algorithms may not solve the very large-scale SNN
mapping task in a reasonable time, some tasks in the dataset have
no data points, and some data points are estimated. The data points
in Figure 9 that took more than 100 hours (where painted gray)
are our estimates, not actual data. It is estimated by forcing the
algorithm to stop at 100 hours and then dividing the current time
by the percentage of the number of iterations completed. Since the
total number of iterations in PSO and DFSynthesizer is known, we
can obtain the estimated time using this approach. TrueNorth was
not able to estimate time this way.

Results show that the efficiency of our approach is significantly
higher than the existing algorithms. Our approach is also the only
method to solve the SNN mapping problem of 4 billion neurons and
1 million cores in a reasonable time (26 seconds). While all other
methods failed to provide a solution under 100 hours.

Figures 10, 11, and 12 respectively illustrate the performance of
the placements obtained by approaches in terms of three metrics:
energy consumption, latency, and congestion. In figure 11 and
12, the light and dark parts represent the maximum and average
values of the corresponding indexes. The test SNN applications in

429

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ouwen Jin, Qinghui Xing, Ying Li, Shuiguang Deng, Shuibing He, and Gang Pan

ES

ES

ES
ES: Early Stop at 100 hours

ESES ESES

Figure 10: Results on energy consumption

ES

ES

ES: Early Stop at 100 hours

ES ESES

ESES

Figure 11: Results on average and maximum latency

ES

ESES ES

ES

ESES

ES: Early Stop at 100 hours

Figure 12: Results on average and maximum congestion

all figures are listed from left to right in order of scale. The Y-axis
in figure 11 is logarithmic.

Just like in the case of Figure 9, some existing algorithms cannot
complete the solution on some data sets due to the too-slow solution
time. Therefore, some test points have no data, and others have
incorrect data. For practical reasons, we put an upper bound on
the execution time of 100 hours for all methods. If the algorithm
exceeds 100 hours, it will be forced to stop and take its current
optimization result as its solution to be measured. These particular
incorrect data points will be marked "early stop" in the figures. Since
both PSO and DFSynthesizer algorithms are iteratively optimized,

it makes sense to retire early. While TrueNorth cannot use this
technique.

The results show that the quality of the solution obtained by
our algorithm is significantly better than the existing algorithms
in each metric. In average, compared with the best results of the
other three methods, our algorithm reduces energy consumption
by 47.8%, average latency by 31.7%, maximum latency by 36.5%,
average congestion by 42.9%, and maximum congestion by 36.7%.
For the largest test application, the corresponding performance
improvement is 93.9%, 92.7%, 93.8%, 93.9%, and 93.8%.

430

Mapping Very Large Scale Spiking Neuron Network to Neuromorphic Hardware ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

One observation is that when the SNN application scale is small,
the solutions of approaches are of similar quality. As the problem
size increases, the performance of existing methods sharply de-
creases compared to the baseline while our method improves. Our
analysis is that when the size of the problem is small, the problem’s
solution space is small, and each method can obtain results close
to the optimal solution. When the size of the problem increases,
the solution space grows exponentially, and the existing methods
are difficult to approach optimal solutions from a random starting
point. On the other hand, Our algorithm can start from a relatively
good starting point provided by the HSC and benefit from the larger
optimization space to achieve more improvement compared to the
baseline.

6 CONCLUSION
This paper proposes a novel approach to map SNNs to neuromor-
phic hardware, motivated by our findings that existing approaches
are inadequate for the mapping requirements of new large-scale
hardware. The main idea of our approach is to use the Hilbert space-
filling curve to obtain an initial placement and generate an optimal
overall layout of the data flow for the SNN, and then use the FD
algorithm to optimize the placement further. We discuss how the
unique properties of the space-filling curve and SNN fit together
to obtain a high-quality placement. We present the FD algorithm,
which we have made much effort to make efficient when mapping
large-scale SNN. Experimental results demonstrate that our ap-
proach shows significantly better performance in both solution
quality and solving speed compare to existing methods.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Devel-
opment Program of China (No. 2022YFB4500100), Natural Science
Foundation of China (No. 61925603), Zhejiang Lab (No. 2021KC0AC01,
No. 2020KC0AC01) and The Key Research and Development Pro-
gram of Zhejiang Province in China (No. 2020C03004).

A HSC IN ARBITRARY RECTANGLE

16×8

13×19
16×12

Figure 13: Some instances of modified Hilbert curve in arbi-
trary rectangle

One issue that arises when mapping sequence using HSC is
that discrete Hilbert curve is defined only on squares with sides
length being the powers 2, i.e., 2𝑛 , while the hardware system size
is usually a rectangle of arbitrary size. To address this issue, we use
a modified Hilbert curve based on Rong’s work [29] to generate the
mapping function. This modification aims to extend the domain of
the Hilbert curve into a rectangle of arbitrary size while preserving
the locality property as much as possible. Figure 13 shows some
instances of the modified Hilbert curve.

B EXPECTATION FUNCTION

Algorithm 4: function 𝐸𝑥𝑝𝑒 ()
Input: 𝑥,𝑦, (𝑥𝑠 , 𝑦𝑠), (𝑥𝑡 , 𝑦𝑡)

1 𝑃𝑠 , 𝑃𝑡 = (𝑥𝑠 , 𝑦𝑠), (𝑥𝑡 , 𝑦𝑡);
2 if (𝑥,𝑦) is outside the area enclosed by 𝑃𝑠 and 𝑃𝑡 then
3 return 0;
4 end
5 𝐿 = [all grid points within the area enclosed by 𝑃𝑠 and 𝑃𝑡];
6 sort 𝐿 by the Manhattan distance from the 𝑃𝑠 ;
7 Build array 𝐸 [];
8 foreach points 𝑃𝑖 within the area enclosed by 𝑃𝑠 and 𝑃𝑡 do
9 𝐸 [𝑃𝑖] = 0;

10 end
11 E[𝑃𝑠] = 1;
12 foreach 𝑃𝑛𝑜𝑤 = (𝑥𝑛𝑜𝑤 , 𝑦𝑛𝑜𝑤) in 𝐿 do
13 if 𝑥𝑛𝑜𝑤 == 𝑥𝑡 then
14 𝐸 [(𝑥𝑛𝑜𝑤 , 𝑦𝑛𝑜𝑤 + 1)]+ = 𝐸 [𝑃𝑛𝑜𝑤];
15 end
16 else if 𝑦𝑛𝑜𝑤 == 𝑦𝑡 then
17 𝐸 [(𝑥𝑛𝑜𝑤 + 1, 𝑦𝑛𝑜𝑤)]+ = 𝐸 [𝑃𝑛𝑜𝑤];
18 end
19 else
20 𝐸 [(𝑥𝑛𝑜𝑤 , 𝑦𝑛𝑜𝑤 + 1)]+ = 𝐸 [𝑃𝑛𝑜𝑤]/2;

𝐸 [(𝑥𝑛𝑜𝑤 + 1, 𝑦𝑛𝑜𝑤)]+ = 𝐸 [𝑃𝑛𝑜𝑤]/2;
21 end
22 end
23 return 𝐸 [(𝑥,𝑦)]

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283.

[2] Adarsha Balaji, Prathyusha Adiraju, Hirak J Kashyap, Anup Das, Jeffrey L Krich-
mar, Nikil D Dutt, and Francky Catthoor. 2020. PyCARL: A PyNN interface
for hardware-software co-simulation of spiking neural network. arXiv preprint
arXiv:2003.09696 (2020).

[3] Adarsha Balaji and Anup Das. 2019. A framework for the analysis of throughput-
constraints of SNNs on neuromorphic hardware. In 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 193–196.

[4] Adarsha Balaji, Anup Das, Yuefeng Wu, Khanh Huynh, Francesco G. Dell’Anna,
Giacomo Indiveri, Jeffrey L. Krichmar, Nikil D. Dutt, Siebren Schaafsma, and
Francky Catthoor. 2020. Mapping Spiking Neural Networks to Neuromorphic
Hardware. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28, 1
(2020), 76–86. https://doi.org/10.1109/tvlsi.2019.2951493

[5] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary,
Anand R Chandrasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V

431

https://doi.org/10.1109/tvlsi.2019.2951493

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Ouwen Jin, Qinghui Xing, Ying Li, Shuiguang Deng, Shuibing He, and Gang Pan

Arthur, Paul A Merolla, and Kwabena Boahen. 2014. Neurogrid: A mixed-analog-
digital multichip system for large-scale neural simulations. Proc. IEEE 102, 5
(2014), 699–716.

[6] Anup Das, Yuefeng Wu, Khanh Huynh, Francesco Dell’Anna, Francky Catthoor,
and Siebren Schaafsma. 2018. Mapping of local and global synapses on spiking
neuromorphic hardware. In 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 1217–1222.

[7] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 1 (2018), 82–99.

[8] Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander An-
dreopoulos, William P Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak,
Rathinakumar Appuswamy, et al. 2019. TrueNorth: Accelerating from zero to 64
million neurons in 10 years. Computer 52, 5 (2019), 20–29.

[9] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. IEEE, 248–255.

[10] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[11] Shuiguang Deng, Pan Lv, Ouwen Jin, Schahram Dustdar, Ying Li, De Ma, Zhaohui
Wu, and Gang Pan. 2022. Darwin-S: A Reference Software Architecture for
Brain-Inspired Computers. Computer 55, 5 (2022), 51–63. https://doi.org/10.1109/
MC.2022.3144397

[12] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. 2014. The
spinnaker project. Proc. IEEE 102, 5 (2014), 652–665.

[13] Francesco Galluppi, Sergio Davies, Alexander Rast, Thomas Sharp, Luis A Plana,
and Steve Furber. 2012. A hierachical configuration system for amassively parallel
neural hardware platform. In Proceedings of the 9th conference on Computing
Frontiers. 183–192.

[14] Michael R Gary and David S Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-completeness.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] David Hilbert. 1935. Dritter Band: Analysis · Grundlagen der Mathematik · Physik
Verschiedenes, Nebst Einer Lebensgeschichte. (1935), 1–2. https://doi.org/10.
1007/978-3-662-38452-7_1

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[18] Yangfan Hu, Huajin Tang, and Gang Pan. 2021. Spiking Deep Residual Networks.
IEEE Transactions on Neural Networks and Learning Systems (2021), 1–6. https:
//doi.org/10.1109/TNNLS.2021.3119238

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[20] Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet 20, 5 (2015), 14.

[21] Chenchen Liu, Bonan Yan, Chaofei Yang, Linghao Song, Zheng Li, Beiye Liu,
Yiran Chen, Hai Li, Qing Wu, and Hao Jiang. 2015. A spiking neuromorphic
design with resistive crossbar. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 1–6.

[22] Qianhui Liu, Gang Pan, Haibo Ruan, Dong Xing, Qi Xu, and Huajin Tang. 2020.
Unsupervised AER Object Recognition Based on Multiscale Spatio-Temporal
Features and Spiking Neurons. IEEE Transactions on Neural Networks and Learning
Systems 31, 12 (2020), 5300–5311. https://doi.org/10.1109/TNNLS.2020.2966058

[23] Xiaoxiao Liu, Wei Wen, Xuehai Qian, Hai Li, and Yiran Chen. 2018. Neu-NoC: A
high-efficient interconnection network for accelerated neuromorphic systems. In

2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,
141–146.

[24] De Ma, Juncheng Shen, Zonghua Gu, Ming Zhang, Xiaolei Zhu, Xiaoqiang Xu,
Qi Xu, Yangjing Shen, and Gang Pan. 2017. Darwin: A neuromorphic hardware
co-processor based on spiking neural networks. Journal of Systems Architecture
77 (2017), 43–51.

[25] Wolfgang Maass. 1997. Networks of spiking neurons: The third generation
of neural network models. Neural Networks 10, 9 (1997), 1659–1671. https:
//doi.org/10.1016/s0893-6080(97)00011-7

[26] Christian Mayr, Sebastian Hoeppner, and Steve Furber. 2019. Spinnaker 2: A 10
million core processor system for brain simulation and machine learning. arXiv
preprint arXiv:1911.02385 (2019).

[27] Carver Mead. 1990. Neuromorphic electronic systems. Proc. IEEE 78, 10 (1990),
1629–1636.

[28] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. 2017. A
Scalable Multicore Architecture With Heterogeneous Memory Structures for
Dynamic Neuromorphic Asynchronous Processors (DYNAPs). IEEE Trans-
actions on Biomedical Circuits and Systems 12, 1 (11 2017), 106–122. https:
//doi.org/10.1109/TBCAS.2017.2759700

[29] Yibiao Rong, Xia Zhang, and Jianyu Lin. 2021. Modified Hilbert Curve for
Rectangles and Cuboids and Its Application in Entropy Coding for Image and
Video Compression. Entropy 23, 7 (2021), 836. https://doi.org/10.3390/e23070836

[30] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. 2019. Towards spike-
based machine intelligence with neuromorphic computing. Nature 575, 7784
(2019), 607–617. https://doi.org/10.1038/s41586-019-1677-2

[31] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and
Shih-Chii Liu. 2017. Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification. Frontiers in neuroscience 11 (2017),
682.

[32] Pradip Kumar Sahu and Santanu Chattopadhyay. 2013. A survey on application
mapping strategies for Network-on-Chip design. Journal of Systems Architecture
59, 1 (2013), 60–76. https://doi.org/10.1016/j.sysarc.2012.10.004

[33] Jun Sawada, Filipp Akopyan, Andrew S Cassidy, Brian Taba, Michael V Debole,
Pallab Datta, Rodrigo Alvarez-Icaza, Arnon Amir, John V Arthur, Alexander
Andreopoulos, et al. 2016. Truenorth ecosystem for brain-inspired computing:
scalable systems, software, and applications. In SC’16: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 130–141.

[34] Johannes Schemmel. 2021. The BrainScaleS accelerated analogue neuromorphic
architecture. Brain-inspired Computing (2021), 14.

[35] Luping Shi, Jing Pei, Ning Deng, Dong Wang, Lei Deng, Yu Wang, Youhui Zhang,
Feng Chen, Mingguo Zhao, Sen Song, et al. 2015. Development of a neuromorphic
computing system. In 2015 IEEE international electron devices meeting (IEDM).
IEEE, 4–3.

[36] Shihao Song, Harry Chong, Adarsha Balaji, Anup Das, James Shackleford, and
Nagarajan Kandasamy. 2022. DFSynthesizer: Dataflow-based synthesis of spiking
neural networks to neuromorphic hardware. ACM Transactions on Embedded
Computing Systems (TECS) 21, 3 (2022), 1–35.

[37] Shihao Song, M Lakshmi Varshika, Anup Das, and Nagarajan Kandasamy. 2021.
A design flow for mapping spiking neural networks to many-core neuromorphic
hardware. In 2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 1–9.

[38] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
CoRR abs/1512.00567 (2015). arXiv:1512.00567 http://arxiv.org/abs/1512.00567

[39] Giulio Tononi, Olaf Sporns, and Gerald M Edelman. 1994. A measure for brain
complexity: relating functional segregation and integration in the nervous system.
Proceedings of the National Academy of Sciences 91, 11 (1994), 5033–5037.

Received 2022-10-20; accepted 2023-01-19

432

https://doi.org/10.1109/MC.2022.3144397
https://doi.org/10.1109/MC.2022.3144397
https://doi.org/10.1007/978-3-662-38452-7_1
https://doi.org/10.1007/978-3-662-38452-7_1
https://doi.org/10.1109/TNNLS.2021.3119238
https://doi.org/10.1109/TNNLS.2021.3119238
https://doi.org/10.1109/TNNLS.2020.2966058
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1016/s0893-6080(97)00011-7
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.3390/e23070836
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1016/j.sysarc.2012.10.004
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background of SNN Mapping Problem
	2.2 Related Work

	3 Problem Formulation
	3.1 Neuromorphic Hardware Model
	3.2 SNN Application and Partitioned Cluster Network (PCN) Model
	3.3 Problem Definition

	4 The Proposed approach
	4.1 Overview
	4.2 Initial Placement Based on Hilbert Space-filling Curve
	4.3 A Statistical Analysis of HSC
	4.4 Force Directed Algorithm for Finetuning
	4.5 Design Choices of FD Algorithm

	5 Experiments and Evaluations
	5.1 Experimental Setting
	5.2 Performance of the Proposed Approach
	5.3 Comparison with Other Approaches

	6 Conclusion
	Acknowledgments
	A HSC in Arbitrary Rectangle
	B Expectation function
	References

