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Abstract—Emerging ReRAM-based accelerators support in-
memory computation to accelerate deep neural network (DNN)
inference. Weight matrix pruning is a widely used technique to
reduce the size of DNN models, thereby reducing the resource
and energy consumption of ReRAM-based accelerators. However,
existing pruning works for ReRAM-based accelerators have three
major issues. First, they use heuristics or rules from domain experts
to prune the weights, leading to sub-optimal pruning policies.
Second, they use row or column-level coarse-granularity methods
to prune weights, resulting in poor compression rates with model
accuracy constraints. Third, they only apply the weight pruning
technique individually, losing the compression opportunity of both
pruning and quantization. In this article, we propose an Auto-
mated DNN Pruning and Quantization framework, named APQ,
for ReRAM-based accelerators. First, APQ adopts reinforcement
learning (RL) to automatically determine the pruning policy for
DNN layers for a global optimum. Second, it prunes and maps
weight matrices to a ReRAM-based accelerator in a finer granular-
ity of column-vector, which improves the compression rates with the
accuracy constraints. To address the dislocation problem, it uses a
new data path in ReRAM-based accelerators to correctly index and
feed input to matrix-vector computation. Third, to further reduce
resource consumption, APQ also leverages reinforcement learning
to automatically determine the quantization bitwidth of each layer
of the pruned DNN model. Experimental results show that, APQ
achieves up to 4.52X compression rate, 4.11X area efficiency, and
4.51X energy efficiency with similar or even higher model accuracy,
compared to the state-of-the-art work.

Index Terms—ReRAM-based accelerator, pruning, quantiza-
tion, reinforcement learning.

I. INTRODUCTION

D EEP neural networks (DNNs) have become the dom-
inant approach to solving a variety of computing
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problems in computer vision, natural language processing,
robotics among many other fields. Leveraging emerging de-
vices and non-traditional computing systems [1], [2], [3], [4]
is an ideal approach to accelerate DNN training and inference.
Resistive random access memory (ReRAM) is an attractive
candidate for DNN accelerators because of its superior charac-
teristics of extremely low energy leakage, high-density storage,
and high-parallel in-situ computation, compared to other NVM
devices such as spin-transfer torque MRAM (STT-MRAM) and
phase-change memory (PCM).

ReRAM-based accelerators can perform matrix-vector mul-
tiplication efficiently in the convolutional (CONV) layers and
fully-connected (FC) layers of DNNs [5], [6]. They store weight
matrices of DNN filters in crossbar arrays. The weights are
represented as the conductances, which conduct dot-product
with the voltages converted from the input feature maps. The
current at the end of each bitline can be summed up and the dot-
product operations are executed simultaneously, thus reducing
the massive amount of data movements between memory and
arithmetic units required in the von Neumann computer archi-
tecture. However, considering the limited resource and energy
supply of modern ReRAM-based accelerators, it is inefficient to
directly store the whole weight matrix on the accelerator.

A prevalent solution is to compress DNN models before
mapping them to the hardware. Recent researches show that
weight sparsity increases as the bits-per-cell decreases [7]. After
applying weight sparsifying algorithms (e.g., quantization [8]
and low-rank matrix factorization [9]) during training, up to
78% of crossbar cells may store zero weights. As a result,
pruning these values before mapping to hardware saves the usage
of crossbars and removes unnecessary computations. However,
existing DNN pruning algorithms designed for ReRAM-based
accelerators have the following three major issues.

First, these algorithms prune the weights using heuristics or
rules. For example, they typically used heuristics (e.g., patterns
and all-zero rows/columns) to direct the pruning process [10],
[11], [12]. Because of the nature of heuristics-based algorithms,
they may prune some nontrivial weights or preserve some trivial
weights. Besides, they mainly aim to maximize the compression
rate but ignore its impact on model accuracy [7], [10]. Therefore,
it would be very difficult for them to find a pruning policy on
ReRAM-based accelerators that achieves a global optimum for
DNN models.

Second, they usually use coarse-granularity methods to prune
DNN models. To reduce the hardware design complexity of
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ReRAM-based accelerators, existing algorithms tend to prune
weight matrices in a coarse granularity, i.e., rows or columns
of DNN weight matrices. SNrram [13] and XCS [14] prune the
unimportant columns of the weight matrix to exploit the sparsity.
SRE [7] prunes all-zero vectors in weight matrices in either row
or column direction for OU-based ReRAM-based accelerators.
However, as some nontrivial elements in the row or column
are also removed, these approaches may lead to a low model
compression rate with the model accuracy constraint.

Third, they do not take the advantages of both pruning and
quantization. Quantization [15], [16] is another technique that
uses low bitwidth instead of full precision to represent weight
matrices for DNN compression. However, existing pruning
works [10], [11] only focus on removing unimportant elements
but ignore the opportunity of quantization. Although other stud-
ies [17] pay attention to quantization, they omit the effects
of weight pruning. Therefore, none of them obtain the most
compacted DNN models.

In this paper, we propose an Automated DNN Pruning and
Quantization framework, named APQ, for ReRAM-based ac-
celerators. First, it adopts reinforcement learning (RL) to au-
tomatically make the pruning policy for each DNN layer for
a global optimum. The RL agent receives the configuration
and characteristic of the layer as observation. Then it outputs
the expected pruning rate of the weight matrix for the layer.
After the pruning rates of all the layers are decided, we leverage
the simulator of ReRAM-based accelerators as the environment
to obtain feedback. The RL agent then uses the feedback to
compute reward of this pruning policy (i.e., a list of pruning rates
for all layers). After multiple epochs of searching both locally
and globally, the reward converges and the optimal pruning
policy is decided.

Second, APQ prunes and maps weight matrices on ReRAM-
based accelerators in a finer granularity of column-vector. It
removes less important column-vectors and shifts the remain-
ing vectors left. Then it maps the pruned weight matrices to
crossbar arrays. To solve the dislocation problem, we add a
weight indexing structure to the data path of the architecture of
ReRAM-based accelerators. The control unit can feed matching
input to conduct matrix-vector multiplication at the level of the
operation unit (OU) [7].

Third, to take the advantages of both pruning and quantiza-
tion, we also leverage another reinforcement learning algorithm
to automatically determine the quantization bitwidth of each
layer of the pruned DNN model. It takes the bitwidth in the
action space and also uses the feedback of the simulator to
compute the reward of the quantization policy (i.e., a list of
bitwidths for all layers). Compared to AUTO-PRUNE [18] (the
conference version) that only performs pruning, APQ supports
both pruning and quantization, thus further saving resources and
energy.

In summary, this paper offers the following contributions:
� We design an automated pruning framework for ReRAM-

based accelerators, APQ, which searches for a global opti-
mum pruning policy for each DNN layer without requiring
rule-based heuristics and domain experts.

� We prune and map weight matrices in a finer granular-
ity of column-vector for improved compression rate and

Fig. 1. Illustration of mapping filter weights to a crossbar array used in the
architecture of ReRAM-based accelerators. BL: bitline; WL: wordline; OU:
operation unit.

accuracy. We also design a new data path to support the
column-vector pruning using the OU mechanism.

� To further compress the model, we propose another rein-
forcement learning algorithm to automatically determine
the quantization bitwidth of each DNN layer based on the
pruned result of the model.

� We evaluate APQ with three DNN models including
AlexNet [19], VGG16 [20], and Plain20 [21] on two
datasets, i.e., CIFAR10 [22] and MNIST [23]. Compared
to the state-of-the-art PIM-Prune [10], APQ achieves up to
4.52X compression rate, 4.11X area efficiency, and 4.53X
energy efficiency with a similar or even higher accuracy.

II. BACKGROUND AND RELATED WORK

A. Mapping Filter Weights of DNNs in ReRAM-Based
Accelerators

The architecture of ReRAM-based accelerators consists of
crossbar arrays and input/output peripheral components. In
a crossbar array, each bitline is connected to each wordline
through a ReRAM cell. Input peripheral circuits (e.g., wordline
decoders) convert inputs to the voltage pulses and feed them
into the corresponding wordlines. Each ReRAM cell conveys the
inner product between the driving voltage and the cell conduc-
tance and generates current which reaches the output peripheral
circuits, e.g., analog-to-digital converters (ADCs). The accumu-
lated current at the end of each bitline is converted by ADCs to
the digital values representing the partial sum of a convolution
operation. Because of the overhead from ADC, matrix-vector
multiplication in ReRAM-based accelerators must be executed
at a smaller granularity, called an operation unit (OU) [7]. Fig. 1
shows a simplified example of an 8× 4 crossbar array. When
OU is enabled, only two wordlines and two bitlines are turned
on concurrently within the crossbar array in one cycle.

When a DNN model is mapped onto a ReRAM crossbar array,
the synaptic weights of neurons are encoded as the conductances
of ReRAM cells in crossbars. Fig. 1 demonstrates a mapping
scheme for ReRAM-based accelerators. It shows the convolution
operations between four 2× 2× 2 filters and one 4× 4× 2
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input feature map in a convolution layer. Each element of the
filter is mapped to one bitline of the crossbar array. A set of
2× 2× 2 activation values derived from the input feature map
is sent to eight wordlines of the crossbar array after being
converted to the input voltages. Because only two wordlines
and two bitlines in one OU are activated in one cycle, the four
convolution operations through the four bitlines are completed
in eight cycles. At the end of each bitline, the accumulated
currents are converted to the digital value by ADC, which
corresponds to an element in one channel of the output feature
map. Then, the input sliding window moves right (or down) and
the corresponding elements in the input feature maps are fed
into the crossbar array in the next cycles. When all the elements
of the input feature map complete convolution operations with
the four filters in this layer, the output feature map of 3× 3× 4
can be stored in buffers and used as the input for the next layer.

B. Weight Pruning for ReRAM-Based Accelerators

Filter weight matrices of DNN models are sparse because they
often store zero or redundant weights, which have a trivial impact
on the accuracy of the models [13]. Therefore, before mapping
the weight matrices to crossbars of ReRAM-based accelerators,
they need to be pruned to reduce the number of occupied cross-
bars and their energy consumption. Researchers have designed
several weight pruning schemes considering the tightly coupled
crossbar structure in ReRAM-based accelerators [7], [10], [11],
[24]. They can be used to effectively reduce the number of trivial
elements exploiting the sparsity of the weight matrices.

The tightly coupled crossbar structure makes it difficult to
exploit the sparsity of neural networks for ReRAM-based ac-
celerators. ReCom is the first to exploit the sparsity of neu-
ral networks for ReRAM-based accelerators [25]. It explores
the weight sparsity only in the granularity of matrix-row and
crossbar-row. SNrram [13] and XCS [14] prune the unimportant
columns of the weight matrix to exploit the sparsity. Lin et
al. proposed to exchange columns of weight matrices to move
non-zero elements together and store them in clusters separated
from the clusters of zero elements [24]. Then the clusters of zero
elements can be pruned. Yang et al. designed a sparse ReRAM
engine that prunes all-zero vectors in weight matrices in either
row or column direction for OU-based ReRAM-based acceler-
ators [7]. They exploited the sparsity of weight matrices at the
granularity of row/column vectors for a higher compression rate.
For the pruning schemes designed for OU-based ReRAM-based
accelerators, additional indexing tables are required in the data
path to active correct OUs in subsequent cycles. PIM-Prune
exploits the sparsity at the level of blocks of weight matrices [10].
It prunes the elements in both row and column directions. Most
recently, pattern pruning uses patterns that represent irregular
vectors of a particular shape to identify more zero elements for
pruning [11].

C. Weight Quantization for ReRAM-Based Accelerator

DNN models typically use data types of certain lengths to rep-
resent their parameters and inputs/outputs. Recent research [15],
[16], [26], [27], [28], [29] shows that we can quantize the
high bitwidth data to a low bitwidth format with no accuracy

drop. Using quantization, the physical crossbars needed to store
the given weights will be reduced. As a result, the memory
usage will be saved and the data movement during training or
inference will be reduced. As different layers of DNNs may have
different sensitivity to quantization effects, it is better to adopt
a non-uniform quantization strategy for different DNN layers.
For example, Han et al. specified distinct bitwidths for CONV
and FC layers [8]. Choi et al. performed 2-bit quantization for
non-convolutional layers, leaving convolution layers in floating
format. However, empirical or rule-based methods to determine
the quantization strategy for a neural network may not work with
another network. Hence, some works use genetic algorithms to
automatically search the proper quantization policy for a given
network [30], [31].

We compare APQ to the major compression schemes in
Table I. APQ has four major differences from them. First,
the existing schemes only consider the pruning policy, APQ
leverages the poential of both pruning and quantization. Second,
the existing schemes use the proposed heuristics or rules to find
a compression policy. Because of the nature of heuristics-based
algorithms, it would be very difficult to find a global optimum for
the DNN model. APQ searches for an optimal solution globally
based on reinforcement learning. Third, they were designed to
maximize the compression rate of weight matrices. They may
not meet the accuracy requirements. In contrast, APQ involves
direct feedback from the ReRAM-based accelerators in the
design loop, which makes better trade-offs between compression
rate and accuracy. Fourth, existing approaches usually prune
weight matrices in the granularity of matrix, block, or crossbar
row/column. APQ performs the pruning in a finer granularity of
column-vector based on the OU mechanism. It delivers a higher
compression rate with the accuracy constraint.

D. Accelerator Design Using Reinforcement Learning

AutoML based on reinforcement learning is designed to
release human labor on searching configurations while there
are vast search space and limited computational budgets. It is
a popular search method with good performance, less assis-
tance from humans, and high computational efficiency [17],
[32]. Therefore, AutoML is widely used in neural architecture
search. Inspired by the AutoML framework, AMC compresses
DNN models automatically [21]. It achieves a higher compres-
sion rate and preserves better accuracy than heuristics-based
model compression algorithms. More importantly, it does not
require human expertise in the design. Recently, HAQ [33] was
designed to decide a hardware-aware quantization policy for
DNNs using AutoML. They targeted FPGA and ASCI-based
accelerators. Similar to them, APQ uses AutoML to determine
the pruning and quantization policies of weight matrices of DNN
models.

III. DESIGN OF APQ

The design objective of APQ is to automatically compress
the original DNN weight matrix and map it to the ReRAM-
based accelerator with reduced amount of crossbars and energy
consumption considering the accuracy constraint. To reduce
the crossbar consumption, APQ considers both pruning and
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TABLE I
COMPARISON OF APQ WITH EXISTING WEIGHT MATRIX COMPRESSION SCHEMES FOR RERAM-BASED ACCELERATORS

Fig. 2. Overview of the APQ framework.

quantization optimizations. While it is theoretically feasible to
integrate these two aspects into a single reinforcement learning
(RL) algorithm to achieve near-optimal compression decisions,
doing so will introduce an immense search space, resulting in an
excessively long execution time for the approach. To overcome
this issue, we adopt a greedy approach to obtain the local opti-
mal decisions for pruning and quantization separately with two
individual RL algorithms. The goal of the first RL algorithm is
to learn a pruning policy that minimizes the number of occupied
crossbars used in ReRAM-based accelerators with the accuracy
constraint. Based on the final result of the pruning searching,
we then run the second RL algorithm to obtain a quantization
policy that further reduces the number of occupied crossbars
with the accuracy constraint. Fig. 2 shows the general archi-
tecture of the APQ framework, which includes the following
components.

DDPG Agent for Pruning: APQ uses deep deterministic pol-
icy gradient (DDPG) to generate a pruning action, i.e., pruning
policy for all layers of the DNN. The agent is a pair of actor-
critic network [34]. The actor network predicts a new pruning
policy for hardware feedback given the input of a state vector
consisting of features of DNN models (e.g., the number of input

channels) and ReRAM-based accelerators (e.g., the number of
crossbars required before pruning). The critic network evaluates
the importance of the action-state pair using Q-function [35].

Pruning Policy: The agent needs to explore a large action
space of pruning policies. We use a list of pruning rates, each
corresponds to a layer of the DNN model, to denote one pruning
policy. In Fig. 2, the policy to be evaluated by the hardware
assigns the pruning rate of 0.6 to layer 2, meaning that APQ will
need to prune 60% of the elements in the filter weight matrix of
layer 2 before mapping it to crossbars.

Pruned Weight Matrices: They are a list of filter weight matri-
ces to be mapped to ReRAM-based accelerators after pruning.
Different pruning policies may result in different pruned weight
matrices, leading to the accuracy variation of the pruned DNN
models and the changing resource consumption of hardware.

ReRAM-Based Accelerator: It is simulated using MN-
SIM [36]. Because APQ leverages the OU mechanism to explore
fine-grained pruning, we add indexing modules to the data path
of the processing elements (PEs) of ReRAM-based accelerators
in the simulator.

DDPG Agent for Quantization: It is used to generate a quan-
tization action, i.e., quantization policy for all layers of the DNN
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TABLE II
SYMBOLS USED IN THE DDPG ALGORITHM

model. It has a similar input as the DDPG agent for pruning, but
the output is different.

Quantization Policy: Similar to the pruning policy, we use
a list of quantization bitwidths, each related to a layer of a
DNN model, to denote one quantization policy. In Fig. 2, the
quantization policy assigns 5 to layer 3, meaning that we will use
5-bit width to represent the elements in layer 3 when mapping
them to crossbars.

To efficiently support the weight quantization, we use the
existing approach in MNSIM [36] to map multiple-bit weights
to the crossbars in a flexible manner with low hardware overhead,
as shown in Section III-E.

A. DDPG Algorithm for Pruning

In this section, we describe the DDPG algorithm to search for
an optimal pruning policy given direct hardware feedback. In
the design of a DDPG agent, we need to define its state space,
action space, and reward function.

State Space: For each layerk, we use a 12-dimensional feature
vector as our observation. Specifically, the state vector Sk for
layer k is defined as

(k, t, inc, outc, ks, h, w, s, xb[k], xbsaved[k], xbrest[k], ak−1)
(1)

where all the features are defined in Table II. It is worth noting
that for fully-connected layers their inc and outc are equal to the
number of input and output neurons respectively. To make the
reinforcement learning model effective for both convolutional
layers and fully-connected layers, we set both ks and s to 1 for
the fully-connected layers even though they do not have such
attributes.

Action Space: In order to achieve a fine-grained pruning
decision, we choose the Actor’s action space ak ∈ (0, 1] and
prune the current layer with a pruning rate ak at the granular-
ity of column-vectors. We describe the pruning algorithm in
Section III-B.

Reward Function: As direct feedbacks, the simulator passes
the number of occupied crossbars and the accuracy of the
compressed DNN models to the DDPG agent to compute the
reward for reinforcement learning given the current pruning
policy. Specifically, we define our reward function to be related
to both compression rate and DNN model accuracy in (2).
It is challenging to design an effective reward function. Our
research shows that directly adopting a linear form only achieves
a suboptimal performance as discussed in Section IV-F. In this
paper, we design the reward function empirically. The agent uses
the reward function to obtain a reward and adjusts its policy
based on the reward. The reward function is also designed to
balance the impact of the compression rate and the accuracy of
pruned DNN models. As a result, we can avoid the situation of
a significant accuracy drop when exploring pruning policies to
maximize the compression rate of crossbars.

Reward =

(
1− 1

ratexbcompression

)α

× accreram (2)

In the equation, α is a scaling factor which is set to 2 in our
experiments. ratexbcompression is a rate of the number of occupied
crossbars for all the layers without pruning (xbori) to the number
of occupied crossbars using the current pruning policy (xbcur)
as shown in (3).

ratexbcompression =
xbori
xbcur

(3)

xbori =
L−1∑
k=0

(xbori[k]) (4)

xbcur =

L−1∑
k=0

(xbcur[k]) (5)

xbori[k] and xbcur[k] are the number of occupied crossbars
for layer k without pruning and with the current pruning policy
respectively. xbcur[k] is obtained from the simulator. xbori[k] is
calculated using the following equations.

For convolutional layer k,

xbori[k] =

⌈
ks× inc

sizexb

⌉
×
⌈

outc

sizexb

⌉
(6)

For FC layer k,

xbori[k] = �inc/sizexb� × �outc/sizexb� (7)

B. Column-Vector Based Pruning and OU Formation

Given a pruning policy generated by the DDPG actor, APQ
needs to run pruning algorithms to mark nontrivial elements in
filter weight matrices based on their weights. It only maps the
nontrivial elements to crossbars. To save the resource and en-
ergy consumption of ReRAM-based accelerators, APQ prunes
weight matrices in a granularity of column-vector and adjacently
places the remaining vectors on the crossbars by shifting them.
APQ’s pruning policy differs from PIM-Prune [10] in two-fold.
First, it prunes the model with a finer granularity (i.e., column-
vector) while PIM-Prune prunes at the level of the rows/columns
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Algorithm 1: The Column-Vector Based Pruning Algo-
rithm.

Require: g: the granularity of the column-vector;
ratepruning: the pruning rate generated by DDPG

agents;
outc: number of output channels of a layer;
inc: number of channels of input feature map of

the layer;
ks: kernel size of the layer;
W : 2D-weight matrix of the layer;

1: num← �ks× inc/g�
2: dict← {}, list← []
3: for i← 0, 1,..., (outc− 1) do
4: for j ← 0, 1,..., num− 1 do
5: tmp_sum← 0
6: for k← 0, 1, . . . , g do
7: tmp_sum← tmp_sum+ abs(W [g × j + k][i])
8: end for
9: dict.append(key : (j, i), value : tmp_sum)

10: end for
11: end for
12: sorted_list← ascend_sort_by_value(dict)
13: for i← �ratepruning × num× outc� − 1,...,

len(sorted_list)-1 do
14: list.append(sorted_list[i].key)
15: end for
16: return list

of a logical block (whose size is larger than the array size
but smaller than the weight matrix size). Second, it supports
a dynamic pruning rate for different layers while PIM-Prune is
executed with a fixed pruning rate (i.e., the block size/array size).

We use Algorithm 1 for matrix pruning in APQ. Specifically,
it calculates the number of column-vectors in a column of the
weight matrix given the kernel size of the layer, the number
of input channels, and the granularity of column-vectors (Line
#1). Then for each column in the matrix, it scans through all the
column-vectors and records their coordinates and the accumu-
lated weights of the vectors in a dictionary (Line #3-11). Then
we sort the vectors based on their weights (Line #14). Finally,
based on the pruning rate, the vectors consisting of nontrivial
weight elements are selected and returned (Line #15-18).

We use an example to illustrate the pruning and OU formation
process in Fig. 3. In the example, we assume the granularity
of a column-vector is 2. The weight matrix W can be divided
into 18 column-vectors. Each column-vector is indexed using
its coordinate in the vector space. For example, the coordinate
of the vector [1, 6]T in filter F1 (column 1) is (3, 1), where
3 represents that it is located in the third row in the vector
space and 1 represents that it is in the first column in the vector
space. After running the algorithm for the pruned weight matrix
W ′, nine vectors are pruned to achieve a pruning rate of 50%
because their accumulated weights are smaller than those of the
remaining vectors. One observation from the example is that the
pruned vectors are randomly located in the weight matrix. In

Algorithm 2: Vector Sequence Creation Algorithm.
Require:h: the number of column-vectors in each OU;

list[i]: the list of index pairs from Algorithm 1;
1: Index← {}
2: L← getIndexLen(list)
3: cnt← 0
4: for i =0, 1, . . . , (L− 1) do
5: tag[i]← 1
6: end for
7: for i =0, 1, . . . , (L− 1) do
8: if tag[i] == 1 then
9: Index.append(list[i])

10: tag[i]← 0
11: cnt← 1
12: for j = i+ 1, . . . , (L− 1) do
13: if list[i].x == list[j].x and tag[j] == 1 then
14: Index.append(list[j])
15: tag[j]← 0
16: cnt← cnt+ 1
17: if cnt==h then
18: break
19: end if
20: end if
21: end for
22: end if
23: end for
24: return Index

Fig. 3. Example of the pruning and OU formation process. The value in
each cell represents the weight of the corresponding element in the filter. (x,y)
represents the coordinate of a vector in the vector space. W and W ′ denote the
original and pruned weight matrices respectively.

order to exploit the sparsity, APQ accumulates the remaining
vectors to remove the holes. Then it leverages the support of
OUs in ReRAM-based accelerators to perform matrix-vector
multiplication.

For the formation of OUs after pruning, we need to create
a list of indexes of column-vectors based on the order of their
access in crossbars in the sequence of computation of OUs. Then
we will add a corresponding indexing module to the data path
of ReRAM-based accelerators as discussed in Section III-C. We
use Algorithm 2 to form OUs and create the index. Each OU
has a fixed number of column-vectors h. In the vector space, we
need to find h vectors that are next to each other (Line #11-20).
Theseh vectors are computed together in one OU. The algorithm
assigns all vectors in the list output from Algorithm 1 to their
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Fig. 4. Overview of the data path for the weight pruning approach.

corresponding OUs. The output of Algorithm 2 is an indexing
list to be used by data paths of ReRAM-based accelerators. We
continue using the example in Fig. 3 for illustration. The index
output of Algorithm 2 is {(3, 1), (3, 3), (2, 2), (2, 5), (1, 3), (1, 4),
(3, 4), (3, 6), (1, 5)}. We assume that the OU size is 2× 2 and two
column-vectors are assigned to one OU. The data path hardware
in ReRAM-based accelerators will map the weight vectors onto
5 OUs. For example, [1, 6]T at (3, 1) in F1 and [2, 3]T at (3, 3)
in F3 are assigned to OU1.

C. Data Path for Column-Vector Based Pruning

Because we use semi-structural pruning in APQ, vectors of
different filters may be placed to the same crossbar-column. As
shown in Fig. 3, [3, 3]T of F3, [3, 2]T of F2, and [1, 6]T of F1
are placed to the first column in the crossbar, resulting in the
dislocation problem [10]. In this section, we introduce a novel
data path to solve the dislocation problem in ReRAM-based
accelerators.

Fig. 4 shows the data path designed for the column-vector
pruning algorithm used in the APQ framework. Because the
crossbar arrays only store nontrivial weights, we only need to
fetch the input activations corresponding to the weights. Weight
index buffers store the index of column-vectors generated by
Algorithm 2. In each cycle, control units fetch a few index tuples
having the same x coordinate from the weight index buffer. The
number of tuples fetched should be smaller than or equal to the
number of column vectors in one OU. Input address generators
generate the address of an activation vector in the input feature
map to be accessed by the crossbar given the x coordinate of
index tuples from the weight index buffer. Specifically, the buffer
address of the activation vector is g × (x− 1) + 1 where g is
the granularity of column-vectors. Input registers store the input
to the crossbar array. To perform computation on OUs, control
units issue commands to active corresponding wordlines and
bitlines given the coordinates of column-vectors. Then we need
to place the output of crossbars at a matching location in the
output. For this purpose, we use position mask generators to
produce position masks whose length is equal to the number
of columns of the original weight matrix. The currents from
crossbar arrays are converted by ADCs and then stored in OU
outputs. Then XB (crossbar) outputs recover the final output by
padding the value from the OU output with zeros according to
the position mask. Then adders add the previous output from

Fig. 5. States of data path components after the execution of OU1 and OU2.

intra-layer output and the new value from XB output. Finally,
they store the partial sum to the intra-layer output.

We continue to use the example in Fig. 3 for illustration. Given
the output of Algorithm 2, the weight index buffer stores {(3,
1), (3, 3), (2, 2), (2, 5), (1, 3), (1, 4), (3, 4), (3, 6), (1, 5)}. In
OU1, two vectors [1, 6]T and [2, 3]T with indexes (3, 1) and
(3, 3) respectively (marked in the red square in Fig. 5(a)) are
selected to perform computation. For the selected weights, the
input address generator outputs buffer address 5 which is equal
to 2 × (3 -1)+ 1. Then given the address, [9, 10] in the feature
map are fetched to the input register. The crossbar array then
performs multiplication between [9, 10] and the selected weights
in OU1 and then outputs [69, 48]. However, because [1, 6]T

and [2, 3]T are from F1 and F3 respectively as shown in Fig. 3,
we cannot store it in the intra-layer output directly. Instead, we
need to find the corresponding positions of 69 and 48 in the
XB output. The positions indicated by the position mask are
[1, 0, 1, 0, 0, 0] because the accumulated sum for Filter 1 and
Filter 3 should be placed at positions 1 and 3 respectively. As
a result, the adder adds [69, 0, 48, 0, 0, 0] from the XB output
and [0, 0, 0, 0, 0, 0] from the intra-layer output and then sends
the result [69, 0, 48, 0, 0, 0] to the intra-layer output.

In OU2, two vectors [3, 2]T and [4, 4]T with indexes (2, 2)
and (2, 5) respectively (marked in the red square in Fig. 5(b))
are selected to perform computation. For the selected weights,
the input address generator outputs buffer address 3. Then
given the address, [5, 6] in the feature map is fetched to the
input register. The crossbar array then performs multiplication
between [5, 6] and the selected weights in OU2 and outputs [27,
44]. However, because [3, 2]T and [4, 4]T are from F2 and F5
respectively as shown in Fig. 3, we need to find the corresponding
positions of 27 and 44 in the XB output. The position mask is
[0, 1, 0, 0, 1, 0] because the accumulated sum for Filter 2 and
Filter 5 should be placed at positions 2 and 5 respectively. As a
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result, the adder adds [0, 27, 0, 0, 44, 0] from the XB output and
[69, 0, 48, 0, 0, 0] from the intra-layer output and then sends the
result [69, 27, 48, 0, 44, 0] to the intra-layer output.

D. DDPG Algorithm for Quantization

To further compress the DNN model, APQ trains another rein-
forcement learning agent to determine the optimal quantization
policy for the final pruned matrices. It explores the search space
layer by layer. In this section, we describe its state space, action
space, reward function, and agent.

State Space: For each layerk, we use a 12-dimensional feature
vector as our observation. Specifically, the state vector Sk for
layer k is defined as

(k, t, inc, outc, ks, h, w, s, xb[k], xbsaved[k], xbrest[k], bk−1)
(8)

where all the features are defined in Table II. It is worth noting
that for fully-connected layers their inc and outc are equal to the
number of input and output neurons respectively. To make the
reinforcement learning model effective for both convolutional
layers and fully-connected layers, we set both ks and s to 1 for
the fully-connected layers even though they do not have such
attributes.

Action Space: The action space is formulated with the action
which the agent makes at each time step. As the quantization de-
cision is executed layer by layer, which may be time-consuming,
we limit the bitwidth candidates for all layers with a bound_list
using a profiling process to accelerate the quantization explo-
ration. Each bound_list includes N [lbound, rbound] vectors,
where N denotes the number of layers that the DNN model has,
lbound and rbound represent the min bitwidth and max bitwidth
of the corresponding DNN layer, respectively.

We shrink the bitwidth range for each layer because we
observe that (1) bitwidths larger than a high threshold always
bring such a high model accuracy that they are not necessary
for model representation, and (2) bitwidths less than a low
threshold usually render such a high accuracy loss that they
are unacceptable. For example, for the first layer of VGG16 on
CIFAR10, bitwidths larger than 12 always yield an accuracy loss
below 0.75% and those less than 3 incur accuracy losses more
than 5%, as shown in Fig. 6. We have similar observations for
other layers. As a result, we set the bound_list for all layers as
[[3, 12], [4, 12], [3, 12], [3, 12], [3, 12], [3, 12], [2, 12], [3, 12],
[2, 12], [3, 12], [3, 12], [4, 12], [3, 11], [2, 12], [2, 12], [3, 12]].

Since a bitwidth should be an integer, we convert the continu-
ous decision space into a discrete space to represent the range of
available bitwidths. Specifically, at the ith time step, we get the
action bi with a continuous range of [0,1], and then round it into
the integer bitwidth Qi by using Qi = round(bi × (rbound−
lbound+ 1) + lbound− 0.5).

Reward Function: In the quantization decision process, the
reward function of APQ aims to maximize the compression rate
of crossbars while preserving high model accuracy, as shown in
(9).

Reward = (accreram − accori)× θ

− log(ratexbcompression)× γ (9)

Fig. 6. Quantization bitwidth impact of each layer on the model accuracy for
VGG16 on CIFAR10.

In the equation, accreram and ratexbcompression are the same
as those symbols in the pruning searching process. θ and γ are
the factors of bias between the compression rate of crossbars
and the accuracy of quantized DNN models in the searching
process. accori is the accuracy on ReRAM-based accelerator
without quantization.

Agent: As for the RL agent, we leverage DDPG , which is an
actor-critic algorithm for continuous control problems. The actor
network is fed with the state embedding to make an action. The
critic network takes the last action and current state embedding
as input and computes the Q-function to get the maximal Q-value
(i.e., the minimal loss).

First, for each time step, the transition tuple (St, bt, r, St+1)
is put into the replay buffer. In the transition tuple, St is the state
embedding at the tth time step and St+1 is of the next time step.
bt is the action and r is the reward of this action.

Next, N transition tuples are sampled in the history buffer.
The actor computes the policy gradient and the critic updates
the loss.

Finally, the actor network and the critic network are updated
according to the policy gradient and loss, respectively. Specifi-
cally, the loss function is defined as:

Q′t = rt − ε+ ξ ×Q(St+1, A(St+1|θq)) (10)

Loss =
1

N

∑
i

(Q′t −Q(St, bt|θf ))2 (11)

where Q′t is the Q-value at the tth time step, ε is an exponential
moving average of all previous rewards to reduce the variance
of the gradient estimation, and ξ is the discount factor which we
set to 1 with the assumption that the action made for each layer
should contribute equally to the reward.Q(St, bt|θf ) is the critic
network with parameter θf . N is the number of sampled data
from the replay buffer.

E. Data Path Design for Weight Quantization

To enable weight quantization, APQ needs to map weights
in different layers to crossbars with different bitwidths. The
weights in the same layer use the same bitwidth. There are two
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TABLE III
STRUCTURE OF NEURAL NETWORKS

kinds of methods that can be adopted to map weights. The first
one is to map each quantized weight to the continuous ReRAM
cells on the same crossbar [3], [4] and we then merge the results
of adjacent columns to get the final results. As pointed out
by [36], the peripheral circuits connected to each bit line need
to be customized to support shift-and-add (S&A) operations for
different bitwidths, thus increasing the overhead of peripheral
circuits and lacking reconfigurability. Another recent approach
is to use multiple crossbars to store the quantized weight [36].
Each crossbar only stores one bit of the whole bitwidth. Since
it does not need to customize and reconfigure the peripheral
circuits of crossbars (e.g., S&As and ADCs), we adopt this
approach to support the proposed weight quantization in APQ.

IV. EVALUATION

A. Experimental Setup

Experimental Platform: We implement the proposed com-
pression and mapping framework for ReRAM-based accelera-
tors in Python. We use a ReRAM simulator in the experiments
because commercial ReRAM devices are unavailable to us. We
use MNSIM [36] as the simulator of ReRAM-based accelerators
owing to its efficiency, flexibility, and simplicity. To support
mixed-precision quantization, MNSIM stores multi-bit weights
in multiple crossbars, improving the flexibility of computing
units while reducing the overhead of peripheral modules [36].

We use the hardware model in MNSIM to evaluate the area and
energy consumption of crossbars and other modules (including
DAC, ADC, IR, OR, and other digital parts). In the setting of
the model, each memristor cell stores one bit, and both ADC
and DAC are set to be 1 bit. By default, each weight of the
DNN models uses 9-bit quantization, which means 9 crossbars
are needed to represent a weight. We set the crossbar size as
128 × 128 and the granularity of column-vector (g) as 32. The
operation unit (OU) size is set to g × g. All other configurations
are the same as the default ones used in MNSIM.

Workloads and Datasets: We evaluate APQ with three DNN
models, including AlexNet [19], VGG16 [20], and Plain20 [21].
Table III shows the structures of these DNN models. We execute
the inference of the models on two datasets, i.e., CIFAR10 [22]
and MNIST [23]. The CIFAR10 dataset consists of 60, 000
colorful images, each with 32× 32× 3 pixels. There are 50, 000
images for training and 10, 000 images for testing. The MNIST
dataset consists of 70, 000 grayscale 28× 28× 1 images. It

TABLE IV
CROSSBAR COMPRESSION RATE (CR) COMPARISON OF DIFFERENT

FRAMEWORKS ON CIFAR10

includes 60, 000 images for training and 10, 000 images for
testing.

Compared Systems: We compare APQ with the state-of-
the-art compression and mapping frameworks for ReRAM ar-
chitectures: PIM-Prune [10], Pattern-Prune [11], and AUTO-
PRUNE [18] (Our conference version). We do not compare APQ
with SRE [7] because SRE has not shown the inference accuracy
of the pruned networks in the paper, making the comparison
unfair as APQ provides both low accuracy losses and high
compression rates. Neither do we evaluate Lin et al. [24] and
XCS [14] because the evaluation results of PIM-Prune [10] have
shown PIM-Prune significantly outperforms them, making the
comparisons redundant.

As PIM-Prune and Pattern-Prune are not open-source, we
re-implement them as faithfully as possible according to the
descriptions in their papers respectively. Although PIM-Prune
supports three pruning methods (i.e., SC+XRS, SR+XCS, and
block-based pruning), we only implement the block-based prun-
ing method because it exploits the fine-grained block-level
sparsity in both directions (row and column) while the other
two methods can only exploit the sparsity in one direction.
PIM-Prune prunes the weights in each block within a fixed
compression rate, which may lead to sub-optimal pruning perfor-
mance. Pattern-Prune uses the pattern pruning algorithm [12] to
remove unimportant weights and then applies kernel-reordering
methods to map the pruned weight matrices to crossbar arrays.
Pattern-Prune only focuses on convolutional layers which usu-
ally have a large number of patterns. It fails to utilize the sparsity
in fully-connected layers. Consequently, the compression rate of
the whole network models may be very low using Pattern-Prune.
AUTO-PRUNE only considers the weight pruning policy but loses
the potential of weight quantization. Furthermore, we compare
APQ to the original system (Naive) where DNN models are not
compressed and directly mapped to ReRAM crossbar arrays.

B. General Results

Compression Rate: Table IV shows the compression rate (CR)
comparison of different compression and mapping methods on
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TABLE V
COMPRESSION RATE COMPARISON OF DIFFERENT FRAMEWORKS ON MNIST

the CIFAR10 dataset. The CR is defined as the rate of the number
of occupied crossbars (XBs) before compression to that after
compression. We can see that APQ achieves the highest com-
pression rate among the five methods within the accuracy drop of
1%. More specifically, compared to Naive, APQ can get 23.6X,
13.9X, and 14.6X compression rates for AlexNet, VGG16, and
Plain20, respectively, with 0.96%, 0.41%, and 0.86% accuracy
drops. Its compression rate is up to 4.9X, 20.5X, and 0.7X
higher than that of PIM-Prune, Pattern-Prune, and AUTO-PRUNE

respectively. AUTO-PRUNE has the best pruning performance
excluding APQ because of its automated pruning method using
reinforcement learning and a fine-grained mapping mechanism.
APQ has the best compression performance because it further
utilizes quantization to compress the model besides pruning.

We also notice that Pattern-Prune has the lowest compression
rate. This is because Pattern-Prune is efficient only for convo-
lutional layers but inefficient for fully-connected layers, which
have high weight sparsity. In contrast, PIM-Prune, AUTO-PRUNE,
and APQ work effectively for all the layers of the networks.
We also observe that AlexNet has the highest compression rate
among the networks. The reason is that AlexNet has 5% and 9%
higher weight sparsity than VGG16 and Plain20 respectively in
our experimental results.

Table V shows the compression rates of different com-
pression methods on the MNIST dataset. APQ also outper-
forms PIM-Prune, Pattern-Prune, and AUTO-PRUNE. Compared
to Naive, APQ achieves 32.2X, 17.5X and 9.9X compression
rates with 0.79%, -0.57%, and -0.16% accuracy drops for
AlexNet, VGG16, and Plain20 respectively, while PIM-Prune,
Pattern-Prune, and AUTO-PRUNE achieve up to 13.6X, 2.8X,
and 21.4X compression rates with at least 0.11%, 0.33%, and
0.13% accuracy drops. APQ has the highest compression rates
among all approaches because of its automated pruning policy,
fine-grained mapping mechanism, and joint compression with
quantization. We observe that the compression rates of APQ
are up to 36% higher on MNIST than those on CIFAR10 for
AlexNet and VGG16. This is because the images in the MNIST
dataset are easier to be classified than those in the CIFAR10
dataset. The trained networks using the MNIST dataset require

Fig. 7. Results of area efficiency on different datasets.

Fig. 8. Results of energy efficiency on different datasets.

a fewer number of parameters to achieve similar accuracy.
Consequently, more network weights can be pruned on MNIST.
We also notice that the compression rates of Plain20 on MNIST
are lower than those on CIFAR10. This is because (1) we choose
Acc1 on MNIST which is more sensitive to pruning than Acc5
and (2) the accuracy of Plain20 is more sensitive to pruning than
the other two networks.

Area Efficiency: Fig. 7(a) shows the crossbar area efficiency
of different methods on CIFAR10. The area efficiency is nor-
malized to that of the network without pruning (Naive). From
Fig. 7(a), we can observe that APQ achieves the best area
efficiency among the five schemes for all three networks. More
specifically, APQ improves the area efficiency by 16.7X, 9.9X,
and 10.4X on AlexNet, VGG16, and Plain20, respectively, while
PIM-Prune, Pattern-Prune, and AUTO-PRUNE can improve by up
to 5.3X, 2.1X, and 10.2X. These results demonstrate that our
proposed method is beneficial to improving the area efficiency
using joint pruning and quantization.

Fig. 7(b) shows the results of ReRAM crossbar area efficiency
on MNIST. APQ improves the area efficiency by 22.6X, 12.4X,
and 7.1X for AlexNet, VGG16, and Plain20, respectively. The
area efficiency is up to 2.3X, 21.1X, and 1.6X higher than those
of PIM-Prune, Pattern-Prune, and AUTO-PRUNE, respectively.

Energy Efficiency: Fig. 8 shows the energy efficiency com-
parison among the compression schemes for the networks on
CIFAR10 and MNIST. The energy efficiency is normalized
to that of Naive. We can observe that APQ achieves the best
energy efficiency among the five schemes for all three networks.
More specifically, APQ improves the area efficiency against
Naive by 23.6X, 13.9X, and 14.6X on AlexNet, VGG16, and
Plain20, respectively. Compared to PIM-Prune, Pattern-Prune,
and AUTO-PRUNE, APQ achieves up to 5.5X, 21.8X, and 1.7X
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TABLE VI
NUMBER OF OCCUPIED CROSSBARS FOR EACH LAYER OF ALEXNET ON

CIFAR10

TABLE VII
NUMBER OF OCCUPIED CROSSBARS FOR EACH LAYER OF ALEXNET ON

MNIST

higher energy efficiency on the CIFAR10 dataset. For MNIST,
APQ achieves 32.1X, 17.4X, and 8.3X energy efficiency
improvement for AlexNet, VGG16, and Plain20 respectively.
We also observe that AUTO-PRUNE is more energy efficient than
PIM-Prune and Pattern-Prune because AUTO-PRUNE requires up
to 95% fewer ReRAM crossbar arrays, making it more energy
efficient since fewer bitlines, wordlines, ADCs, and DACs are
activated. However, because APQ uses the automated quantiza-
tion technique to further reduce crossbars and other peripheral
circuits, it is more energy efficient than AUTO-PRUNE.

C. Occupied Crossbar Analysis

Tables VI and VII show the number of occupied crossbars for
each layer of the networks on CIFAR10 and MNIST with differ-
ent compression schemes. Due to the space limitation, we only
show the results of AlexNet. We have similar observations on
other networks. AlexNet has eight layers, where the first five lay-
ers are convolutional layers and the last three are fully-connected
layers. Because Pattern-Prune may map multiple layers to one
crossbar, we cannot compute the number of crossbars for each
layer individually. As a result, for Pattern-Prune, we only record
the total numbers of occupied crossbars for all convolutional
layers and all fully-connected layers respectively.

Table VI shows that different pruning schemes lead to differ-
ent numbers of occupied crossbars for each layer of AlexNet on
CIFAR10. However, APQ always occupies the fewest crossbars
for the whole network. Compared to Naive, APQ reduces the to-
tal number of occupied crossbars for by 95%, while PIM-Prune,
Pattern-Prune, and AUTO-PRUNE only reduce it by 77%, 7%, and
93% respectively. Reducing the number of occupied crossbars
results in 15.7X and 21.8X higher area efficiency and energy
efficiency of ReRAM-based accelerators as shown in Figs. 7(a)
and 8(a).

We also observe that AUTO-PRUNE performs 70% better than
PIM-Prune, especially for the fully-connected layers (i.e., L6,

Fig. 9. Quantization policies for each layer of AlexNet with different methods
on CIFAR10 and MNIST. The x-axis denotes the quantization bitwidth and
y-axis represents all the layers in the model. The orange diamond and the purple
triangle denote the bitwidths of a layer under APQ on CIFAR10 and MNIST,
respectively. The green circle represents the quantization policy of AUTO-PRUNE.

L7, and L8). This is because the fully-connected layers have
higher sparsity (as shown in Fig. 11 in Section IV-E) than other
layers. The RL agent prunes more unimportant weights in the
fully-connected layers with a higher pruning rate to achieve a
global optimum. In contrast, PIM-Prune uses a fixed pruning
rate for all layers without considering the sparsity variation of
individual layers, resulting in more occupied crossbar arrays
to realize the similar accuracy. As APQ inherits the advan-
tage of AUTO-PRUNE and its RL-based quantization technique
can further reduce crossbars, APQ performs better than AUTO-
PRUNE. Furthermore, we find that Pattern-Prune is inefficient for
fully-connected layers because it cannot reduce the number of
crossbars for such layers.

Table VII shows that APQ has better performance than other
schemes on the MNIST dataset. Specifically, it reduces the total
number of occupied crossbars by 96% compared to Naive, while
PIM-Prune, Pattern-Prune, and AUTO-PRUNE only reduce it by
93%, 9%, and 95% respectively.

We also note that all compression schemes occupy fewer
crossbars on MNIST than those on CIFAR10 for the same
network. For example, the total number of occupied crossbars
for APQ reduces from 554 to 421 when the dataset is switched
from CIFAR10 to MNIST. This is because MNIST is easier to
be classified than CIFAR10, thus APQ identifies more trivial
elements for pruning in weight matrices on MNIST. In addition,
we observe that APQ usually requires more crossbars for the
first layer of the network compared to AUTO-PRUNE. This is
because the weight matrix of the first layer usually retrieves more
non-trivial input information, which contributes more to the
model accuracy. Therefore, APQ quantizes them with a higher
bitwidth to reduce the overall quantization bitwidths globally.

D. Quantization Bitwidth Analysis

To understand the behavior of the automated quantization
in APQ, Fig. 9 shows the quantized bitwidths for each layer
of AlexNet under APQ and AUTO-PRUNE on CIFAR10 and
MNIST. Due to the space limitation, we exclude the results of
VGG16 and Plain20. AUTO-PRUNE maps the elements for all
the layers to the ReRAM-based accelerator using a fixed 9-bit
width for quantization on both datasets, as the default setting
in the MNSIM simulator. In contrast, APQ uses an automated
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Fig. 10. Compression rate, area efficiency and energy efficiency for AlexNet
on CIFAR10 with various crossbar sizes.

mixed bitwidth policy for quantization. We have the following
three observations.

First, APQ usually assigns the quantization bitwidths less than
the default bitwidth, i.e., 9, to most of the layers of the models.
For example, the bitwidths of all layers except layer 1 of AlexNet
are between 3 and 8 on CIFAR10 and MNIST. Compared to the
fixed policy in AUTO-PRUNE, these fewer quantization bitwidths
lead to fewer occupied crossbars, as shown in Tables VI and VII.

Second, APQ may assign a bitwidth larger than the default
bitwidth to some layers of the models, especially the first several
layers. This is because the weight matrices of these first layers
can retrieve more important information, thus representing them
with higher bitwidths not only yields a positive effect on model
accuracy but also brings the opportunity to compress the weight
matrices of the rest of layers in a more aggressive manner to
further compress the whole model.

E. Sensitivity Studies

Crossbar Size: Fig. 10 shows the normalized compression
rate (CR), area efficiency, and energy efficiency of APQ with
various crossbar sizes. We only show the results of AlexNet with
CIFAR10 because other models on CIFAR10 or MNIST show
similar trends. For all the four crossbar sizes, the normalized
compression rates are consistently larger than 23 with less
than 1% accuracy drops. Further, as shown in Fig. 10(a), APQ
achieves the highest CR with the crossbar size 32 × 32. This
is because a small crossbar size usually makes a high crossbar
utilization, thus requiring less physical memory capacity for the
pruned model. The reduced crossbar resource also improves the
area/energy efficiency, as shown in Fig. 10(b) and (c). However,
the CR is affected by multiple factors, including the crossbar
size, the model sparsity, the dataset type, the compression al-
gorithm, and the mapping scheme. Therefore, the CR varies
non-linearly as we increase the crossbar size from 32 × 32 to
256 × 256. So do the area efficiency and energy efficiency.

To understand the characteristics of APQ with different cross-
bar sizes, Fig. 11 shows the layer sparsity of AlexNet. For the
same crossbar size, we can see that L6, L7, and L8 have higher
sparsity on average compared to the other layers, meaning that
the fully-connected layers are more sparse and prone to be
pruned. For the same layer in AlexNet, the pruning rates decided
by the reinforcement learning algorithm are also varied with
different crossbar sizes. To preserve the features in the original
input feature map as much as possible, APQ is designed not to
prune the first layer. As a result, the sparsity of L1 equals zero
in Fig. 11.

Fig. 11. Layer-by-layer sparsity of AlexNet with various crossbar sizes after
pruning.

Fig. 12. Compression rate, area efficiency, and energy efficiency for AlexNet
with various granularities of column-vectors.

Fig. 13. Layer-by-layer sparsity of AlexNet with various granularities of
column-vectors after pruning.

The Pruning Granularity: Fig. 12 shows the impact of prun-
ing granularity on system performance. As the granularity of
column-vector increases, the compression rate decreases. So do
the area efficiency and energy efficiency. When the granularity
of column-vectors is 8, APQ achieves the highest compression
rate. This is because using finer-grained column-vectors helps
exploit the sparsity of weight matrices, improving the chances of
pruning unimportant weights. However, the fine granularity re-
quires a large index structure, incurring high indexing overhead.
In this paper, we choose 32 as the granularity of column-vectors
in order to balance performance benefits and hardware overhead.

To understand the characteristics of APQ with various pruning
granularities, Fig. 13 shows the layer sparsity of AlexNet on
CIFAR10 when the granularity increases from 8 to 64. For each
layer except L1 and L7, as the granularity increases, the layer
sparsity decreases. When the granularity of the column-vector
is 8, the sparsity of each layer is above 87% and achieves the
highest.

F. Other Tests

Reward Function: The reward functions in (2) and (9) are
magic functions. In principle, the reward should be increased
with a higher model accuracy and a larger compression rate.
We normalize the value of compression rate in the functions for
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TABLE VIII
IMPACT OF DIFFERENT REWARD FUNCTIONS

TABLE IX
COMPARASION OF RL WITH OTHER SEARCH METHODS

the convenience of algorithmic design. We empirically choose
the reward functions used in (2) and (9). To show the efficiency
of our proposed reward functions, we added an experiment to
compare three possible functions listed in Table VIII for (9). As
Table VIII shows, the first one (adopted in our design) provides
the best tradeoff between accuracy and compression rate when
training AlexNet on MNIST.

Why Choose RL: We choose RL rather than evolutionary
algorithm (EA) and Bayesian optimization (BO) for two reasons.
First, RL usually requires a relatively smaller search space (i.e.,
decision time). This is because RL makes an action according
to the state of one layer each time while EA and BO make an
action for all the layers in one epoch. For example, when training
VGG16, the search space in one epoch is 100× 11 in RL and
10011 in EA and BO. Second, RL achieves better performance as
it can accurately perceive the state of the environment while EA
and BO cannot do this. To verify this, we added new experiments
to compare RL with an EA [37] and an BO algorithm [38]. As
Table IX shows, RL achieves a higher compression rate with less
accuracy loss compared with EA and BO in most of the cases.

The Training Time for RL: The RL training is an offline
process. The training time can be well amortized over the usage
of the compressed models. The actual training time varies with
different models and datasets. For example, for AlexNet and
Plain20, the training times are 7.7 and 11.3 hours, respectively.

Scalability Discussion: We also try to evaluate APQ on large
models and datasets. However, APQ may not scale very effi-
ciently on larger problems. For example, the RL algorithm with
ResNet152 model on ImageNet dataset does not converge even
after searching for 10 days. This is because the existing PIM
simulators (e.g., NeuroSim, MNISM) take about 10 minutes to
evaluate the performance of a single NN model [39] and the
large model on a large dataset requires more epochs to converge.
However, with the emergence of real ReRAM-based hardware
in the near future, we can evaluate the compression decision on
the real hardware instead of a simulator to significantly reduce
the search time. While APQ provides weaker scalability in per-
formance for large problems than existing heuristic approaches,
it provides a better crossbar compression rate and accuracy loss
because of the inherent nature of existing rule-based heuristic
approaches.

V. CONCLUSION

In this paper, we propose an Automated DNN Pruning and
Quantization framework, APQ, for ReRAM-based accelerators.
First, APQ leverages reinforcement learning to automatically
determine a global optimum pruning policy given the con-
straint of accuracy loss. Second, it prunes weight matrices in a
column-vector finer granularity and maps the nontrivial weights
to crossbars. To enable the fine-grained pruning, it devises a
new data path to correctly index and feed input to matrix-vector
computation. Third, it leverages another reinforcement learning
scheme to automatically determine the quantization bitwidth of
each layer based on the result of DNN pruning. Experimen-
tal results show that APQ achieves up to 4.52X compression
rate, 4.11X area efficiency, and 4.51X energy efficiency com-
pared to PIM-Prune while maintaining a similar or even higher
accuracy.
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