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AMBEA: Aggressive Maximal Biclique
Enumeration in Large Bipartite Graph Computing
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Abstract—Maximal biclique enumeration (MBE) in bipartite
graphs is a fundamental problem in data mining with widespread
applications. Many recent works solve this problem based on the
set-enumeration (SE) tree, which sequentially traverses vertices
to generate the enumeration tree nodes representing distinct
bicliques, then checks whether these bicliques are maximal or not.
However, existing MBE algorithms only expand bicliques with
untraversed vertices to ensure distinction, which often necessitate
extensive node checks to eliminate non-maximal bicliques, result-
ing in significant computational overhead during the enumeration
process. To address this issue, we propose an aggressive set-
enumeration (ASE) tree that aggressively expands all bicliques
to their maximal form, thus avoiding costly node checks on
non-maximal bicliques. This aggressive enumeration may pro-
duce multiple duplicate maximal bicliques, but we efficiently
eliminate these duplicates by leveraging the connection between
parent and child nodes and conducting low-cost node checking.
Additionally, we introduce an aggressive merge-based pruning
(AMP) approach that aggressively merges vertices sharing the
same local neighbors. This helps prune numerous duplicate
node generations caused by subsets of merged vertices. We
integrate the AMP approach into the ASE tree, and present the
Aggressive Maximal Biclique Enumeration Algorithm (AMBEA).
Experimental results show that AMBEA is 1.15× to 5.32× faster
than its closest competitor and exhibits better scalability and
parallelization capabilities on larger bipartite graphs.

Index Terms—Graph computing, bipartite graph, maximal
biclique enumeration.
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I. INTRODUCTION

B IPARTITE graphs are widely used in various domains
to represent relationships between two distinct sets of

entities [1]. In a bipartite graph, vertices are divided into two
disjoint sets and edges only connect vertices from different
sets. A biclique is a complete bipartite subgraph that contains
all possible edges connecting two disjoint sets of vertices. A
maximal biclique is the biclique that cannot be further extended
to include additional vertices. The main focus of this paper is
to develop an efficient algorithm for enumerating all maximal
bicliques (MBE) in large bipartite graphs.

MBE has emerged as a crucial tool in a wide range of applica-
tions, including anomaly detection in e-commerce networks [2],
[3], [4], [5], [6], gene expression analysis in expression datasets
[7], [8], [9], identification of overlapping communities detection
[10], GNN information aggregation [11], and social recommen-
dation in social networks [12] as well. For instance, in an e-
commerce network like eBay or Alibaba, bipartite graphs are
employed to represent the relationship between customers and
their purchases. It is suspicious for a large group of customers to
purchase a set of products because there is a high probability
that online sellers ask crowdsourcing platforms to click farm
for their products to increase exposure [2], [3], [4], [5]. Such
suspicious transactions can be well modeled by maximal bi-
cliques, as shown in Fig. 1. If there exists a fast MBE algorithm
capable of identifying all the maximal bicliques in the network,
it becomes possible to detect suspicious groups to a significant
extent. Consequently, the research on MBE has attracted great
attention from both academia and industry in recent years [7],
[13], [14], [15], [16], [17], [18], [19], [20], [21].

Enumerating all maximal bicliques in large bipartite graphs
is known to be a computationally challenging task [22]. Re-
cent studies have employed the set-enumeration (SE) tree
approach to address this challenge [23]. The SE tree systemat-
ically traverses all vertex sets in a bipartite graph, generating
enumeration tree nodes that represent all possible bicliques.
Subsequently, MBE algorithms determine whether these bi-
cliques are maximal or non-maximal. However, this approach
requires extensive node checks to eliminate non-maximal bi-
cliques. Consequently, this process incurs a significant compu-
tational overhead. To mitigate this issue, several state-of-the-art
MBE algorithms have proposed various techniques to reduce
the enumeration space, such as node pruning and vertex order-
ing [7], [16], [18]. Despite these optimization efforts, the node
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Fig. 1. An example of maximal biclique in the e-commerce network.
Customers C2, C3, C4 purchase products P3, P4, P5, P6 together. ({C2,
C3, C4}, {P3, P4, P5, P6}) forms a maximal biclique.

checking for non-maximal bicliques remains the performance
bottleneck. For instance, experiments conducted on the Github
dataset [18] demonstrate that even the latest MBE algorithm,
OOMBEA, requires 25.69× more node checks for non-maximal
bicliques than those for maximal bicliques.

Our research has identified two main reasons for the per-
formance issue. First, the existing SE trees for MBE have
structural limitations. They traverse vertices sequentially to
generate new nodes. To ensure that each node represents a
distinct biclique, each node only expands its corresponding bi-
clique with untraversed vertices, excluding those that have been
traversed. Consequently, the biclique may be non-maximal due
to the exclusion of these vertices. For example, node z in Fig. 1
produces a non-maximal biclique because it cannot expand its
biclique with v2 since its ancestor node x has traversed v2 to
generate node y. Second, the mainstream pruning approaches
work passively. They start from a special vertex v∗ and prune
nodes with non-maximal bicliques based on the relationship
between v∗ and other vertices [7], [16], [18]. Therefore, the
pruning efficiency heavily relies on the selection of v∗ and
whether the node generated by v∗ produces a maximal biclique.

To address the aforementioned structural limitation, first, we
propose an aggressive set-enumeration (ASE) tree for MBE.
Unlike the existing SE trees, the ASE tree allows for the ag-
gressive expansion of bicliques in new nodes using all available
vertices. As a result, all bicliques within the ASE tree are guar-
anteed to be maximal, albeit with the possibility of duplicate
bicliques. Then the ASE tree leverages the connection between
parent and child nodes to eliminate these duplicates. We also
prove the correctness of the ASE tree. Notably, the ASE tree for
MBE offers two significant advantages. (1) It enables efficient
node pruning through low-cost node checking. And (2) the ASE
tree tends to exhibit a more balanced structure compared to
other trees, making it highly suitable for parallelization.

Second, to enhance the pruning efficiency of the existing
passive pruning approaches, we further introduce an aggressive
merge-based pruning (AMP) approach. We observe that ver-
tices with the same local neighbors always appear together in
maximal bicliques across all MBE algorithms. This insight al-
lows us to safely merge these homogeneous vertices in advance,
pruning duplicate nodes that would be generated by subsets of
these merged vertices. The challenge lies in identifying vertices
with the same local neighbors. Directly comparing the local
neighbors of each vertex pair within each node leads to high

computation overhead. To overcome this challenge, the AMP
approach initially treats all candidate vertices as a unified entity
and partitions them based on their local neighbors. This parti-
tioning step is performed at once, enabling efficient merging of
vertices with the same local neighbors during node generation.

Third, we design the Aggressive Maximal Biclique Enumer-
ation Algorithm (AMBEA) by integrating the AMP approach
into the ASE tree. To evaluate the performance of AMBEA,
we conducted experiments using 12 representative real-world
datasets and 5 synthetic datasets of varying scales. The experi-
mental results demonstrate that AMBEA outperforms its closest
competitor by 1.15× to 5.32×, while also reducing the number
of unproductive nodes by 2.37× to 8.98×. Moreover, AMBEA
exhibits enhanced scalability and parallelization capabilities,
making it well-suited for handling large bipartite graphs.

Our principal contributions are summarized as follows.
• We propose an innovative aggressive set-enumeration

(ASE) tree, which constantly expands bicliques to their
maximal form using all available vertices, and efficiently
eliminates duplicate maximal bicliques by utilizing the
parent-child relationship between nodes. This ASE tree not
only enables efficient elimination of unproductive nodes
but also enhances parallelization by creating a more bal-
anced enumeration tree (Section III).

• We introduce an efficient aggressive merge-based pruning
approach (AMP), which efficiently merges vertices with
the same local neighbors, resulting in the pruning of du-
plicate nodes that would otherwise be generated by subsets
of these merged vertices. The merge-based pruning tech-
nique can be universally applied to other MBE algorithms,
making it a practical and versatile tool in various scenarios
(Section IV).

• We integrate the AMP approach into the ASE tree and
propose an efficient MBE algorithm AMBEA (Section V).
Extensive experiments demonstrate the superior perfor-
mance of AMBEA compared to the state-of-the-art algo-
rithms in terms of running time, pruning efficiency, scal-
ability, and parallelization (Section VI).

II. BACKGROUND

In this section, we formulate the MBE problem, review re-
cent popular SE-tree-based MBE algorithms, and analyze the
limitations associated with these algorithms.

A. Problem Formulation

Let G(U, V,E) denote an undirected bipartite graph, where
U and V are two sets of disjoint vertices in G, and the edge set
E consists of edges in G with E ⊆ U × V . We denote a vertex
as u or v, where u ∈ U and v ∈ V . N(v) denotes the neighbors
of a vertex v in G. d(v) denotes the degree, i.e., number of
neighbors, of a vertex v, and d(V ) denotes the maximum degree
of vertices in V . Γ(X) represents the common neighbors of the
vertices in X , i.e., Γ(X) =

⋂
v∈X N(v). Υ(X) represents the

union neighbors of the vertices in X , i.e., Υ(X) =
⋃

v∈X N(v).
In a bipartite graph G(U, V,E), a biclique B(L,R,E′) is a

complete bipartite subgraph of G that is induced by two vertex
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Fig. 2. Input bipartite graph G0.

sets L and R, satisfying L⊆ U,R⊆ V , and E′ = L×R⊆ E.
In short, we denote the biclique B using the set pair (L,R).
A maximal biclique is a biclique (L,R) for which there is no
larger biclique (L∗, R∗) such that (L ∪R) is a proper subset
of (L∗ ∪R∗). The main objective of this paper is to enumerate
all maximal bicliques in a bipartite graph.

B. SE-Tree-Based MBE Algorithms

To systematically enumerate all maximal bicliques, the set-
enumeration (SE) [23] approach is commonly used and forms
the basis for some of the most efficient maximal biclique enu-
merating (MBE) algorithms [7], [15], [16], [18], [21]. The SE
tree defines a tree node structure that represents a distinct
biclique and performs node generation for enumerating all pos-
sible bicliques. Afterward, it examines each biclique through
node checking to determine if it is a maximal biclique. In
the following, we formulate the SE tree from the above three
perspectives: (1) How to define the node structure in the SE
tree? (2) How to generate new nodes? (3) How are nodes
identified as maximal bicliques or not?

Node structure: Each tree node is represented as a 3-tuple
(L,R,C). In a bipartite graph G(U, V,E), L is a subset of U ,
while R and C are two disjoint subsets of V . The biclique of the
current node is formed by L, R, and the fully connected edges
between them. C consists of candidate vertices that can poten-
tially be added to expand R in the subsequent node generation
process.

Node generation: The tree traversal starts with a root node
(L,R,C), where L is initialized as U , R is empty, and C is set
to V . We perform the node generation process from the cur-
rent node (L,R,C), and sequentially traverse each candidate
vertex v′ in C to generate a new child node (L′, R′, C ′). In
the new child node, L′ consists of vertices that belong to both
L and N(v′), i.e., L′ = L ∩N(v′), representing the common
neighbors of R ∪ {v′}. R′ adds the untraversed vertices in C
(including v′) that have edge connections with all vertices in
L′ to R, i.e., R′ =R ∪ (Γ(L′) ∩ C). C ′ contains the remain-
ing vertices in C that connect with some but not all vertices
in L′, i.e., C ′ = C ∩ (Υ(L′) \ Γ(L′)). After traversing v′, it
is removed from the current node, specifically C = C \ {v′},
and we proceed to select another candidate vertex from C to
generate another child node. This process continues until C
becomes empty.

Node checking: The node (L′, R′, C ′) is valid and outputs
a maximal biclique if and only if Γ(L′) =R′.

Algorithm 1: SE-tree-based MBE Algorithm
Input: Bipartite graph G(U, V,E)
Output: All maximal bicliques

1 biclique_search_se(U, ∅, V );
2 procedure biclique_search_se(L,R,C):
3 foreach v′ ∈ C do
4 L′ ← L ∩N(v′); R′ ←R; C′ ←∅;
5 foreach vc ∈ C do
6 if L′ ∩N(vc) = L′ then
7 R′ ←R′ ∪ {vc};

8 else if L′ ∩N(vc) �= ∅ then
9 C′ ← C′ ∪ {vc};

10 if Γ(L′) =R′ then
11 Output(L′, R′) as a maximal biclique;
12 biclique_search_se(L′, R′, C′)

13 C ← C \ {v′};

Fig. 3. The basic SE tree TSE on the bipartite graph G0.

We summarize the SE-tree-based MBE algorithms in Algo-
rithm 1. The algorithm starts with the root node (U, ∅, V ) and
recursively calls the procedure biclique_search_se (line
#1). When processing a current node (L,R,C), the procedure
sequentially traverses each vertex v′ in C (lines #3, 13) to
generate new child node (L′, R′, C ′) (lines #4-9) followed by
a node checking (line #10). If the biclique (L′, R′) is maximal,
the procedure reports the maximal biclique and proceeds to
explore new nodes from (L′, R′, C ′) (line #12).

Example 1: Fig. 3 depicts an enumeration tree TSE on a
bipartite graph G0 using Algorithm 1.1 The enumeration pro-
cess commences from the root node, where we recursively
explore subspaces by sequentially traversing candidate ver-
tices in a depth-first manner. Initially, we generate node k
by traversing v1. Node k passes the node checking since
Γ(Lk) = {v1}=Rk. Next, node k generates node r by travers-
ing v2, resulting in Lr =N(v2) ∩ Lk = {u3, u4, u5, u6, u7} ∩
{u1, u2, u6, u7}= {u6, u7} and Rr =Rk ∪ (Ck ∩ Γ(Lr)) =

1To facilitate comparison, all MBE algorithms operate on the same bipartite
graph G0. In the enumeration tree, nodes with identical letters in their
identifiers share the same set L. Only nodes without subscripts in their
identifiers output maximal bicliques. For example, nodes s, s1, and s2 have
the same set L, but only node s outputs a maximal biclique. We use subscripts
on the vertex set, such as Ls denoting set L of node s.
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{v1} ∪ ({v2, v3, v4, v5} ∩ {v1, v2}) = {v1, v2}. Cr solely con-
tains v6 because v3, v4, and v5 do not connect with any
vertex in Lr. Continuing this process, we generate node s
with biclique ({u1, u2}, {v1, v3, v4}) and node s1 with bi-
clique ({u1, u2}, {v1, v4}). However, node s1 corresponds to a
non-maximal biclique because Γ(Ls1) = {v1, v3, v4} �=Rs1 =
{v1, v4}. Compared to node s, node s1 generates a non-
maximal biclique because node k fails to expand set R of node
s1 with v3 since v3 has been removed after generating node s.
Thus, we remove node s1 after the node checking phase. The
similar generation of other nodes is exemplified in Fig. 3.

The SE-tree-based MBE algorithms have a time complexity
of O(|V |d(V )β), where node generation takes O(|V |d(V ))
time because it involves a maximum of |V | set intersections
(each taking O(d(V )) time), node checking takes O(|E|) =
O(|V |davg(V )) time because we can obtain O(Γ(L′)) by ac-
cessing each edge once in bipartite graph, and β represents the
total biclique count, including non-maximal instances removed
by node checking. The basic SE tree leads to an extensive
enumeration space as the power set of the vertex set V , i.e., β =
O(2|V |), causing the performance bottleneck. Various recent
optimizations have been proposed to reduce the enumeration
space and expedite the MBE process, which can be categorized
into the following groups:

Pivot-based pruning approaches. To reduce the need for
costly node checks, some node pruning techniques are proposed
to proactively remove non-maximal bicliques before generating
the corresponding tree nodes. PMBE [16] and OOMBEA [18]
employed the pivot-based pruning approaches. A “pivot” refers
to a vertex that aids in node pruning based on the neighborhood
containment relationship. Specifically, given a node (L,R,C)
and a pivot v∗ in C, nodes induced by vertices v′ ∈ C can be
safely pruned if N(v′) ∩ L⊂N(v∗) (excluding v∗), as their
corresponding bicliques can be further expanded using v∗. Ini-
tially, PMBE leveraged the pivot technique based on the global
containment relationship but overlooked local containment re-
lationships. To address this limitation, OOMBEA proposed the
batch-pivots technique by performing a 2-hop depth-first search
(DFS) on each vertex in C. However, it should be noted that this
additional DFS operation incurs a time complexity of O(|E|)
per vertex, equivalent to other node checking approaches.

Passive merge-based pruning approach. iMBEA [7] con-
ducted proactive node pruning through vertex merging. Specif-
ically, when a node (L,R,C) traverses a vertex v∗ to generate
a node (L′, R′, C ′), vertices are merged only if (L′, R′) is
maximal. This process merges vertices v′ in C such that
N(v′) ∩ L= L′, resulting in the pruning of nodes induced
by those vertices. The rationale behind this merging is that
the nodes generated by the merged vertices will always pro-
duce non-maximal bicliques, as they can be further expanded
using the traversed vertex v∗. However, this approach has
limitations as it only passively performs the vertex merg-
ing when the node induced by v∗ passes the maximality
checking process.

Vertex ordering approaches. SE-tree-based MBE algorithms
typically employ a specific traversal order for candidate vertices
(line #3 in Algorithm 1) to help prune the search space [12].

While iMBEA [7] and FMBE [15] enforce the vertex order at
each node, PMBE [16] and OOMBEA [18] establish a global
vertex order. Specifically, for a current node (L,R,C), iMBEA
and FMBE sort vertices v′ ∈ C based on |N(v′) ∩ L| in in-
creasing order. On the other hand, PMBE and OOMBEA pre-
sort all vertices in V before enumeration, utilizing their newly
proposed orders known as rev-topological order and unilateral
order, respectively. The choice of vertex order is flexible and its
effectiveness depends on how well it works together with the
algorithm.

Node checking facilitation. Some studies [7], [18] include
an extra set Q, which stores traversed vertices, at each node
to facilitate node checking. A node generates a non-maximal
biclique if there exists a vertex vq in Q such that L is a subset of
N(vq) because this biclique can be further expanded by vertex
vq. However, set Q introduces inefficiency as it requires extra
memory and computation. Therefore, we omit the use of the set
Q and determine if a node produces a non-maximal biclique
by checking if there exists a vertex v∗ in N(ul), where ul is a
vertex in L, such that L is a subset of N(v∗) and v∗ is not in
R or C.

C. Performance Issue in Existing Algorithms

Despite optimization efforts, SE-tree-based MBE algorithms
struggle with performance due to node checks for eliminating
non-maximal bicliques, with two main limitations:

(1) Existing SE trees for MBE have structural limi-
tations. SE-tree-based MBE algorithms typically involve two
steps. First, the SE tree is used to generate all possible bicliques
without repetition. In this step, nodes in existing SE trees are
restricted to expanding their set R only with untraversed ver-
tices, excluding those that have already been traversed. This
limitation can result in numerous non-maximal bicliques since
some traversed vertices are omitted. Second, non-maximal
bicliques are removed to output only the maximal ones.
However, the node generation and checking for these extensive
non-maximal bicliques often become the performance bottle-
neck. For example, our experiments show that even the recent
MBE algorithm OOMBEA [18], despite its optimizations, needs
to check and remove 25.69× more nodes with non-maximal
bicliques compared to maximal bicliques on the Github dataset
[24]. Therefore, reducing the generation of unproductive nodes
is crucial to alleviate the computational burden of the node
checking process.

(2) Mainstream pruning approaches work passively. We
conduct a comprehensive review of current pruning approaches
for MBE and identified their passive nature. To our observa-
tion, both existing pivot-based and merge-based pruning ap-
proaches rely on specific vertices to initiate the pruning process,
rather than directly pruning nodes. Specifically, pivot-based
approaches involve selecting specific vertices, known as pivots,
and incur additional computational overhead for node pruning
using these pivots. On the other hand, the passive merge-based
approach only conducts vertex merging if the node induced by
the traversing vertex v∗ passes the maximality checking, and it
only merges vertices that share the same local neighbors with
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v∗, where the local neighbors of a vertex vc ∈ C in a node
(L,R,C) are represented by the intersection between N(vc)
and set L, denoted as NL(vc). Hence, these passive pruning
approaches have limitations as their pruning efficiency heavily
depends on specific vertices.

III. AGGRESSIVE SET-ENUMERATION TREE

We introduce an aggressive set-enumeration (ASE) tree for
MBE to tackle the structural limitation in existing SE trees.
Then, we prove its correctness and analyze its benefit.

A. Proposed ASE Tree for MBE

Main idea: Existing SE-tree-based MBE algorithms have a
limitation in that they only generate tree nodes (bicliques) with
untraversed vertices to ensure distinction, but often require
extensive node checks to eliminate non-maximal bicliques.
To overcome this limitation, we propose a novel aggressive
set-enumeration (ASE) tree, which aggressively expand all
bicliques to their maximal form during the node generation
process, by allowing the inclusion of all vertices, to avoid
checking their maximality. While this aggressive expansion
may result in duplicate bicliques, we address this during the
node checking process by using a low-cost method to eliminate
duplicate instances and output the distinct maximal bicliques.

Prior definition: Before delving into the details of the ASE
tree, we define some important terms and notations:

Definition 1: �v. �v refers to the traversed candidate vertex
on the edge from the parent node to the child node in the
enumeration tree. For instance, in Fig. 3, �v of node k is v1.

Definition 2: X+
v ,X

−
v . Given a predetermined order, set X

can be divided into two parts: X+
v contains vertices with higher

orders (larger IDs) than v, and X−
v contains the other vertices,

i.e., vertices with lower and equal orders than v.
Node generation: The ASE tree traversal starts from a root

node (U, ∅, V ) and sequentially traverses each candidate ver-
tices v′ in C from the current node (L,R,C) to generate a new
node (L′, R′, C ′). In the new node, L′ represents the common
neighbors of R ∪ {v′}, i.e., L′ = L ∩N(v′). The difference
now is that R′ contains all common neighbors of vertices in
L′, i.e., R′ = Γ(L′). C ′ consists of vertices in C with higher
orders than v′ and connect with any vertices in L′, i.e., C ′ =
C+

v′ ∩ (Υ(L′) \ Γ(L′)).
Node checking: The node checking mechanism comprises

two main components:
(1) Basic node checking for duplication elimination: To

identify and eliminate all duplicate maximal bicliques gener-
ated by the above node generation process, we use the basic
node checking based on mapping that assigns a unique target
vertex v′T and a unique target parent node (LT , RT ) to each
maximal biclique (L′, R′). We only output maximal bicliques
on the nodes generated from these unique target vertices and
target parent nodes, and eliminate other duplicates.

The mapping details are as follows:

v′T =min{v ∈R′ | Γ(R′−
v ) = L′} (1)

Fig. 4. The ASE tree TASE on the bipartite graph G0. Unlike TSE ,
traversed vertices for aggressive node generation are highlighted in red.

⎧
⎪⎨

⎪⎩

vT =min{v ∈R′ | Γ(R′−
v ) ∩N(v′T ) = L′}

LT = Γ(R′−
vT

)

RT = Γ(LT )

(2)

In this mapping, v′T denotes the smallest vertex v in R′ for
which L′ exactly matches the common neighbors of all vertices
in R′ up to and including v according to Equation 1. After
determining v′T , if N(v′T ) is identical to L′, (LT , RT ) refers
to the root node. Otherwise, according to Equation 2 we can
obtain an intermediate vertex vT , which is the smallest vertex
v in R′ for which L′ exactly matches the intersection between
Γ(R′−

v ) and N(v′T ). Then, we can derive LT as Γ(R′−
v ), and

RT as the common neighbors of vertices in LT .
Based on this mapping, the node (L′, R′, C ′) is valid and

outputs a maximal biclique if two conditions holds:
• O1: The current node’s �v is the target vertex v′T .
• O2: The parent node corresponds to the target parent max-

imal biclique (LT , RT ).
(2) Low-cost node checking for further node pruning. To

speed up the examination of duplicates in the ASE tree, we
further introduce a low-cost node checking that only exam-
ines the local neighbors of candidate vertices. This approach
allows us to safely prune the node generated by candidate vertex
vcif local neighbors of vc at the current node remain identical
to those at the parent node, denoted by Lparent ∩N(vc) =
Lcurrent ∩N(vc), because both the parent and current nodes
would generate identical bicliques by traversing vertex vc based
on the node generation rule. According to Equation 2, the map-
ping mechanism selects the minimum vT with maximum |LT |,
so the current node cannot correspond to the biclique (LT , RT )
since |Lcurrent|< |Lparent|. This low-cost node checking only
requires set intersections inO(d(V )), whereas other approaches
require at least O(|E|) for computing Γ(L′) or Γ(R′−

vT
).

Example 2: Fig. 4 depicts an enumeration tree TASE on the
bipartite graph G0. The main difference between TASE and
TSE in Fig. 3 lies in the node generation process. Specifically,
in TASE , each node can be further expanded with traversed
vertices, as highlighted in the figure. For instance, when node
k in TSE traverses v6, it generates node t1 with a non-maximal
biclique because TSE cannot expand Rt1 using v2, as v2 has
already been traversed to generate node r. In contrast, in TASE ,
node k in TASE traverses v6 to generate node t with a maximal
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Fig. 5. The enumeration tree TAMBEA on the bipartite graph G0 based
on AMBEA.

biclique because TASE can expand Rt with v2. Therefore, all
bicliques in TASE are maximal but duplicate bicliques may
exist, such as node t and node t1.

TASE employs an aggressive node checking rule to eliminate
duplicate bicliques. To illustrate the conditions for node check-
ing, we will use nodes x1 and t1 as examples. For node x1,
according to Equation 1, we sequentially add vertices from Rx1

to an empty set X until Γ(X) equals Lx1
. By doing so, we de-

termine that v′T of node x1 is v3, as Γ({v2, v3}) = {u5}= Lx1
.

Consequently, node x1 does not satisfy condition O1 since its
�v is v5, not v3. For node t1, we obtain its v′T as v6 in the same
way. Similarly, using Equation 2, we deduce that its vT is v1
since Γ({v1}) ∩N(v6) = {u7}= Lt1 . Then, we find that its
LT = Γ({v1}) = {u1, u2, u6, u7}. Consequently, node t1 does
not satisfy condition O2 since set L of its parent node r (i.e.,
Lr = {u6, u7}) is not identical to its LT .

Compared to TSE , TASE outputs the same set of maxi-
mal bicliques. Moreover, TASE prunes more nodes than TSE

through a low-cost node checking, as seen with nodes t1, y1, z1,
and y2. For instance, node r proactively prunes node t1 since
Lk ∩N(v6) = {u7}= Lr ∩N(v6).

In terms of time complexity, each node takes O(|V |d(V ))
for both node generation and node checking, as it involves
O(|V |) set intersections, each taking O(d(V )) time. Finally,
ASE-tree-based MBE algorithms run in O(|V |d(V )β), which
is equivalent to the time complexity of Algorithm 1.

B. Correctness of the ASE-Tree-Based MBE Algorithm

Below, we provide a proof of the correctness of our ASE-
tree-based MBE algorithm by establishing Theorem 1.

Theorem 1: The ASE tree precisely outputs all maximal
bicliques while eliminating non-maximal or duplicate bicliques.

Proof: The ASE tree avoids outputting non-maximal bi-
cliques due to its node generation rule, which states that L′ =
L ∩N(v′) = Γ(R ∪ {v′}) and R′ = Γ(L′). This guarantees
that (L′, R′) always meets the definition of a maximal biclique.

Furthermore, the node checking rule ensures that each maxi-
mal biclique is output without duplicates. Specifically, the map-
ping mechanism ensures that each maximal biclique (L′, R′)
has a unique target vertex v′T and a unique target parent max-
imal biclique (LT , RT ). For a given node corresponding to
(LT , RT ), we know that v′T is always included in its candidate

set CT because v′T is always greater than vT and connects with
some but not all vertices in LT . Thus, if target parent node
(LT , RT , CT ) exists, it can generate the node with (L′, R′)
by traversing v′T . By following this process, the corresponding
node of each maximal biclique can recursively obtain its unique
target parent node until reaching the root node. Thus, the ASE
tree enumerates all maximal bicliques exactly once, eliminating
duplicates.

C. Characteristics of the ASE Tree

Notably, the ASE tree for MBE has two advantageous prop-
erties. (1) It enables aggressive node pruning through low-cost
node checking. When no pruning techniques are considered,
both TSE and TASE trees always involve the same number of
nodes. For instance, both TSE in Fig. 3 and TASE in Fig. 4
involve 10 valid maximal bicliques and 9 invalid bicliques. This
is because both trees ensure that v′T in Equation 1 is always
�v of a valid node (L′, R′, C ′), and candidate set C ′ is always
(Υ(L′) \ Γ(L′))+v′

T
. Thus, compared to the basic SE tree, the

ASE tree proactively prunes invalid nodes through low-cost
node checking, reducing the number of nodes that need to
undergo the costly node checking process. (2) The ASE tree is
generally more balanced than others, making it more suitable
for parallelization. For nodes that output the same maximal
biclique (L′, R′) in different trees, the parent node in the ASE
tree always has the minimum �v, i.e., vT in Equation 2. As a
result, the depth of such nodes is always the smallest, leading
to a more balanced ASE tree.

IV. AGGRESSIVE MERGE-BASED PRUNING

We further propose a novel aggressive merge-based pruning
(AMP) approach to tackle the passive pruning limitation in
existing SE trees for MBE. This section first introduces this
AMP approach and then analyzes its benefit.

A. Proposed AMP Approach for MBE

Inspired by the neighborhood-based tree pruning approach in
[7], we notice that vertices with the same local neighbors (refer
to Section II-C) always appear together in maximal bicliques.
Therefore, we can aggressively merge these vertices with the
same local neighbors into a single group, and prune all nodes
induced by the subset of these merged vertices. We emphasize
that this aggressive merge-based pruning is quite different from
the existing passive merge-based pruning approach. The passive
approach only merges vertices when one of the merging vertices
is chosen as the traversing vertex for generating the child node,
thus limiting pruning efficiency which is determined by the
choice of the traversing vertex. In contrast, our AMP approach
aggressively merges these vertices during node generation,
thereby enabling complete pruning of all nodes induced by
these homogeneous vertices.

However, it is challenging to identify and merge all ver-
tices that have the same local neighbors within each node
due to the potential high merging overhead. To accomplish
this, one naive approach is to compute and store the local
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Fig. 6. Node generation processes for node m in Fig. 4.

neighbors of candidate vertices and compare them pairwise.
However, this straightforward method has a time complexity
of O(|V |2d(V )), as it involves O(|V |2) pairwise comparisons,
each taking O(d(V )) time. This complexity exceeds the time
complexity of conducting node generation and node checking
on each node, which runs in O(|V |d(V )).

To minimize the merging overhead, we optimize the node
generation process. Unlike existing MBE algorithms that com-
pute the local neighbors of candidate vertices sequentially to
generate nodes, the AMP approach treats candidate vertices
as a unified entity and partitions them based on their local
neighbors. Initially, all candidates in C are considered as a
single group. Then, vertices ul in L′ are sequentially selected
for group partition. By checking whether the vertex in a group is
connected to the incoming vertex ul, each group can be split into
two subgroups. Consequently, candidate vertices with the same
local neighbors are always placed in the same group. Finally, the
vertices within each group are merged in an aggressive manner.

Example 3: Following Example 2, Fig. 6 illustrates two
node generation processes for node m in Fig. 4. To facilitate
comparison, we assume that C contains all vertices in V . The
neighbors of each vertex are represented by solid rectangles,
with an incoming edge indicating the corresponding vertex.
Local neighbors are highlighted.

Fig. 6(a) shows that the baseline approach sequentially com-
putes local neighbors for each candidate vertex. On the other
hand, Fig. 6(b) demonstrates the AMP approach, which parti-
tions candidate vertices into multiple groups using the vertices
in L′ sequentially. At step (i), C is divided into two groups since
v1, v3, and v4 connect with u1, while v2, v5, and v6 don’t. At
step (iii), group {v1, v3, v4} is further divided into two groups
since v3 and v4 connect with u5, while v1 doesn’t. At step (iv),
we aggressively merge v2, v5, and v6 together since they have
the same local neighbors (i.e., {u5}).

As a result, the AMP approach successfully prunes node
x2 generated by v6 because it finds that candidate vertices v5
and v6 have the same local neighbors at node m. In contrast,
the passive merge-based pruning approach fails to prune node
x2 because node x1 generated by v5 does not pass the node
checking, thus not triggering the pruning condition. The AMP
approach can further prune nodes s1 and y3 similarly.

Algorithm 2 outlines the main procedure of the AMP
approach. The algorithm utilizes a structural array called
GroupArray to maintain the group information dynamically.
Each element in GroupArray represents a group and contains

Algorithm 2: Main procedure of the AMP approach
Data: Bipartite graph G(U, V,E)
Input: Original candidate set C, new set L′

Output: New candidate set C′

1 struct GroupInfo:
2 Integer incoming_v;
3 Integer next_gid;
4 Integer ln_size;

5 procedure partition_merge (C,L′):
6 Assign a new attribute gid= 0 on each vertex in C;
7 GroupArray.append(GroupInfo (∞,∞, 0));
8 foreach ul ∈ L′ do
9 foreach vc ∈ C ∩N(ul) do

10 cid← vc.gid;
11 if GroupArray[cid].incoming_v �= ul then
12 new_gid←GroupArray.size();
13 GroupArray[cid].incoming_v ← ul;
14 GroupArray[cid].next_gid← new_gid;
15 GroupArray.append(GroupInfo

(∞,∞, GroupArray[cid].ln_size+ 1));

16 vc.gid←GroupArray[cid].next_gid;

17 C′ ← merge vertices in C with the same gid, excluding
groups whose ln_size is 0 or |L′|;

18 return C′

three attributes: incoming_v, next_gid, and ln_size (lines #1-
4). incoming_v and next_gid attributes are used to dispatch
current vertex to an appropriate group, while ln_size attribute
indicates the local neighborhood size of any vertex within the
group. Additionally, each candidate vertex in C is assigned a
unique identifier, gid, which allows the vertex to retrieve its
group information through its group index (line #6). Initially,
GroupArray consists of only one group, which includes all
candidate vertices (line #7). Then, the algorithm iteratively
partitions the candidate vertices using each vertex ul in L′

(line #8). For vertices with the same gid, the algorithm dis-
patches vertices connected to ul into a new group (lines #9-16).
A new group is created when encountering the first vertex with
a specific gid. Upon creating a new group, the algorithm incre-
ments the local neighborhood size by 1. To optimize memory
usage, we suggest recycling groups with no elements, which
can be achieved using a stack structure. Finally, the algorithm
merges vertices that have the same local neighbors since they
always share the same gid (line #17). The time complexity
of the partition_merge procedure is O(|E|) as it only
requires accessing each edge in E once.

B. Characteristics of the AMP Approach

Note that the AMP approach offers two key contributes: (1) It
enables node pruning through aggressive vertex merging. The
AMP approach is the first pruning approach capable of effi-
ciently merging all homogeneous vertices with identical local
neighbors. Unlike other pruning methods, it proactively prunes
nodes without relying on specific vertices. It is applicable to all
MBE algorithms and improves performance across the board.
(2) It facilitates efficient processing by reducing the time
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Algorithm 3: Aggressive MBE Algorithm (AMBEA)
Input: Bipartite graph G(U, V,E)
Output: All maximal bicliques

1 Sort vertices in V based on their neighborhood sizes in
increasing order;

2 foreach v ∈ V do
3 biclique_search_ambea(U, ∅, V, v);

4 procedure biclique_search_ambea(L,R,C, v′):
5 L′ ← L ∩N(v′);R′ ← Γ(L′);
6 C′ ← partition_merge(C+

v′ , L
′);

7 L←∅′;R←R′−
v′ \ (R ∪ C);

8 foreach ul ∈ L \ L′ do
9 if (R′−

v′ \ {v′})⊆N(ul) then
10 L← L ∪ {ul};

11 if L �= ∅ ∧R= ∅ then
12 Output(L′, R′) as a maximal biclique;
13 foreach v′c ∈ C′ do
14 if N(v′c) ∩ L �= ∅ then
15 biclique_search_ambea(L′, R′, C′, v′c)

complexity for each enumeration node. Compared to existing
approaches, which require O(|V |d(V )) for processing each
node, the AMP approach can be easily applied to them and
reduce the time complexity for node processing to O(|E|) =
O(|V |davg(V )), which is lower than O(|V |d(V )).

V. AGGRESSIVE MAXIMAL BICLIQUE

ENUMERATION ALGORITHM

In this section, we present an enhanced algorithm for MBE
called the aggressive maximal biclique enumeration algorithm
(AMBEA) by combining the aforementioned ASE tree and
AMP. We provide a comprehensive explanation of the design of
AMBEA, including algorithm analysis, and develop a parallel
version of the algorithm to achieve further acceleration.

A. Proposed AMBEA

To explore a highly efficient MBE algorithm, we develop
the AMBEA as illustrated in Algorithm 3. Given a bipar-
tite graph G(U, V,E), AMBEA initially sorts vertices in V
based on their neighborhood sizes in increasing order (line
#1), since this order has been proven to be the most effec-
tive for AMBEA, as shown in Section VI-C. Next, this algo-
rithm sequentially traverses each v in V and recursively calls
the biclique_search_ambea procedure (lines #2-3). This
procedure incorporates the AMP approach for node generation
(lines #5,6) and maintains L and R for node checking in the
ASE tree (lines #7-10, 14). Specifically, L contains all ver-
tices in L \ L′ that connect with all vertices smaller than v′

in R′, given by L= Γ(R′−
v′ \ {v′}) \ L′. If L �= ∅ (line #11),

it implies Γ(R′−
v′ \ {v′}) �= L′(i.e.,Γ(R′−

v′)), ensuring that v′

satisfies Equation 1 and condition O1 is met. L is used for low-
cost node checking (line #14) since N(v′c) ∩ L= ∅ implies the
local neighbors of v′c have not changed. R contains all vertices
smaller than v′ in R′ that connect with all vertices in L′. Let �v of

node (L,R,C) be v∗. Because local neighbors of v′ change at
node (L,R,C) (line #14), we know Γ(R−

v∗ \ {v∗}) ∩N(v′) �=
Γ(R−

v∗) ∩N(v′). If R= ∅ (line #11), it implies R′−
v′ ⊆R ∪ C.

Then we know R′−
v∗ ⊆R−

v∗ , since v∗ < v′ and all vertices in C
are greater than v∗. We conclude R′−

v∗ =R−
v∗ because R′ ⊃R.

Hence, Γ(R′−
v∗ ) = Γ(R−

v∗) = L, which implies that (L,R) sat-
isfies Equation 2 and condition O2 is met.

Example 4: Fig. 5 illustrates the enumeration tree TAMBEA

generated on the bipartite graph G0 using Algorithm 3. In
comparison to TASE shown in Fig. 4, TAMBEA incorporates
additional pruning of nodes, namely s1, x2, and y3 utiliz-
ing the AMP approach. For instance, node n prunes node y2
through low-cost node checking (line #14), as N(v5) ∩ Lroot =
{u3, u5}=N(v5) ∩ Ln. Then node n prunes node y3 through
the AMP approach (line #6) since v5 and v6 at node n have
identical local neighbors, i.e., {u3, u5}. As a result, AMBEA is
able to prune all unproductive child nodes of node n. In contrast,
existing passive pruning approach cannot prune all unproduc-
tive child nodes because they have to check the node generated
by the special v∗ at least. By comparing TAMBEA with TSE

in Fig. 3, AMBEA successfully prunes 7 out of 9 unproductive
nodes, thus achieving superior pruning efficiency through the
combination of the ASE tree and the AMP approach.

Time complexity. The time complexity of AMBEA consists
of two parts: the vertex ordering time (line #1) and the gen-
eration time of the enumeration tree (lines #2,3). The vertex
ordering time can be bounded in O(|V |log(|V |)). To ensure a
fair comparison, we use β to represent the total number of nodes
in the enumeration tree, including both nodes that output max-
imal bicliques and unproductive nodes that are pruned by node
checking. We know AMBEA generates the enumeration tree
in O(|E|β) because AMBEA processes a total of β nodes and
all the computations for L′, R′, C ′, L,R in each node can be
bounded byO(|E|). Therefore, the time complexity of AMBEA
is O(|E|β + |V |log(|V |)) =O(|E|β) since the overhead for
vertex ordering is much smaller than the overhead for gener-
ating the enumeration tree.

AMBEA achieves the minimum time complexity of O(|E|)
for processing each node, which is equal to OOMBEA as
demonstrated in Section II-B. This time complexity is superior
to other algorithms that require at leastO(|V |d(V )). In practice,
the value of β for AMBEA can be significantly smaller than
that of other competitors due to its high pruning efficiency. The
experimental results in Section VI-B demonstrate that AMBEA
outperforms other algorithms because it can prune a larger num-
ber of unproductive nodes through low-cost node checking in
the ASE tree (Section III) and the AMP approach (Section IV).

Space complexity. The space complexity of AMBEA
consists of two components: the input bipartite graph and
the memory required to maintain the enumeration tree. The
space complexity of the input bipartite graph is O(|E|). As
AMBEA generates the enumeration tree in a DFS manner, it
needs to store one node at each level of the enumeration tree
for backtracking. The number of levels, namely the height
of the enumeration tree, can be bounded by O(d(V )). Each
node requires O(|L|+ |R|+ |C|+ |L|+ |R|) =O(d(V ) +
|V |) =O(|V |) space. Consequently, the space complexity
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TABLE I
DATASET STATISTICS

Datasets Type |U(G)| |V (G)| |E(G)| d(U) d(V ) Maximal Bicliques
Unicode (UL) Country-Hosts-Language 614 254 1,255 141 69 460
UCforum (UF) User-Post-Forum 899 522 7,089 99 126 16,261

MovieLens (Mti) Tag-Assignment-Movie 16,528 7,601 71,154 640 146 140,266
Teams (TM) Athlete-Membership-Team 901,130 34,461 1,366,466 17 2,671 517,943

ActorMovies (AM) Movie-Appearance-Actor 383,640 127,823 1,470,404 646 294 1,075,444
Wikipedia (WC) Article-Inclusion-Category 1,853,493 182,947 3,795,796 54 11,593 1,677,522
YouTube (YG) User-Membership-Group 94,238 30,087 293,360 1,035 7,591 1,826,587

StackOverflow (SO) User-Favorite-Post 545,195 96,680 1,301,942 4,917 6,119 3,320,824
DBLP (Pa) Author-Authorship-Publication 5,624,219 1,953,085 12,282,059 287 1,386 4,899,032
IMDB (IM) Movie-Appearance-Actor 896,302 303,617 3,782,463 1,590 1,334 5,160,061

BookCrossing (BX) User-Rating-Book 340,523 105,278 1,149,739 2,502 13,601 54,458,953
Github (GH) User-Membership-Project 120,867 56,519 440,237 3,675 884 55,346,398

LJ5 User-Membership-Group 1,837,928 853,994 5,610,437 25 52,775 2,181,295
LJ10 User-Membership-Group 2,301,031 1,421,088 11,227,130 49 105,454 7,430,705
LJ15 User-Membership-Group 2,548,619 1,912,139 16,843,216 63 158,562 22,727,251
LJ20 User-Membership-Group 2,704,651 2,357,485 22,456,757 79 211,506 61,836,924
LJ25 User-Membership-Group 2,812,080 2,771,510 28,068,423 88 263,711 151,468,807

of AMBEA is O(|E|+ |V |d(V )), which matches the state-
of-the-art methods. Since the ASE tree tends to generate a
balanced enumeration tree with a small height, as mentioned
in Section III-A, AMBEA can benefit from memory savings.

B. Parallel Version of AMBEA

In order to further improve the efficiency, we have de-
veloped a parallel version of AMBEA called ParAMBEA.
Drawing inspiration from [15], ParAMBEA executes multiple
AMBEA procedures concurrently and parallelizes operations
within each AMBEA procedure. Following the steps outlined in
Algorithm 3, ParAMBEA assigns a thread to each procedure
corresponding to each vertex v ∈ V (lines #2,3). Additionally,
whenever there are available threads, ParAMBEA dynamically
creates subprocedures (lines #13-15). To fully utilize paral-
lelism, ParAMBEA parallelizes all the for loops within the
biclique_search_ambea procedure (e.g., lines #8-10,
13-15) by utilizing loop unrolling techniques. Since the ASE
tree is inclined to generate balanced enumeration trees, as men-
tioned in Section III-A, this characteristic greatly helps in load
balancing for ParAMBEA.

VI. EVALUATION

In this section, we conduct extensive experiments to evaluate
performance of the proposed techniques.

A. Experimental Setup

Platform. All experiments are conducted on a machine
equipped with four Intel Xeon(R) Gold 5318Y 2.10GHz CPUs
(24 cores per CPU) and 128GB of main memory. The operating
system used is Linux kernel-5.4.0. Unless stated otherwise, the
algorithms are executed using a single core.
Competitors. In our experiments, we compare our serial al-
gorithm, AMBEA, with five state-of-the-art serial MBE al-
gorithms: MBEA [7], iMBEA [7], FMBE [15], PMBE [16],

and OOMBEA [18]. We also compare our parallel algorithm,
ParAMBEA, with the cutting-edge parallel MBE algorithms,
ParMBE [15] and GMBE [21]. Our code is available at
https://github.com/ISCS-ZJU/AMBEA. We obtain all competi-
tor implementations in the repository [25]. Additionally, we
implemented several other variants to assess the different tech-
niques proposed in this paper. We detail these variants in the
corresponding experiments.
Datasets. We use both real-world and synthetic datasets to val-
idate the proposed techniques. Synthetic datasets are generated
by sampling 5%, 10%, 15%, 20%, and 25% of the edges from
the large LiveJournal dataset (|U |=7,489,073, |V |=3,201,203,
|E|=112,307,385). These generated datasets are named as LJ5,
LJ10, LJ15, LJ20, and LJ25, respectively, based on the per-
centage of edges sampled from the original dataset. We collect
all real-world datasets, including the LiveJournal dataset, from
the KONECT repository [24] covering various domains. Since
the bipartite graph consists of two symmetrical vertex sets, we
denote the set with fewer vertices as V , where |U |> |V |. We
arrange real-world datasets in increasing order based on their
maximal biclique counts, as the running time of the MBE prob-
lem is mainly influenced by the number of maximal bicliques
present in the dataset. The dataset statistics are presented in
Table I.

B. Overall Evaluation

We evaluate each MBE algorithm on all 12 real-world
datasets using three metrics: running time, memory consump-
tion, and pruning efficiency on unproductive nodes. To ensure
fairness, we run each algorithm in a separate process. We mea-
sure the execution time of the process, excluding the time taken
for graph loading from the disk, and monitor the maximum
memory usage of the process. To gauge the pruning efficiency,
we record the number of node checks performed by each MBE
algorithm as β. Given that the count of nodes outputting max-
imal bicliques remains fixed (denoted as α), we can determine
the number of unproductive nodes as δ = β − α. Therefore,

Authorized licensed use limited to: Zhejiang Lab. Downloaded on January 04,2026 at 03:02:56 UTC from IEEE Xplore.  Restrictions apply. 



PAN et al.: AMBEA: AGGRESSIVE MAXIMAL BICLIQUE ENUMERATION IN LARGE BIPARTITE GRAPH COMPUTING 2673

Fig. 7. Overall evaluation.

pruning efficiency is measured by the ratio δ/α, where a smaller
ratio indicates higher pruning efficiency.

Fig. 7(a) compares the running time of AMBEA with main-
stream MBE algorithms on real-world datasets. It is evident
that the performance of existing MBE algorithms exhibits sig-
nificant variations with changes in datasets. For instance, on
datasets like StackOverflow, IMDB, and Github, OOMBEA
outperforms MBEA, iMBEA, FMBE, and PMBE. However,
on datasets with large d(V )/d(U) like YouTube, DBLP, and
BookCrossing, FMBE proves to be 1.59×-3.43× faster than
OOMBEA. Fortunately, our proposed AMBEA consistently
achieves the minimum running time across all test datasets
due to its aggressive pruning of unproductive nodes. Notably,
AMBEA surpasses its closest competitor by 1.15×-5.32×.
Specifically, on the BookCrossing dataset, AMBEA completes
in 1,609 seconds, while all other competitors require over 5,934
seconds.

Fig. 7(b) illustrates the memory usage of MBE algorithms.
The experimental results show that AMBEA, MBEA, iMBEA,
and FMBE exhibit comparable memory requirements across
all datasets. In contrast, PMBE and OOMBEA noticeably re-
quire more memory compared to the other algorithms. This

disparity arises due to the fact that AMBEA, MBEA, iMBEA,
and FMBE only require memory to store the input bipartite
graph and a set of nodes for backtracking purposes. However,
PMBE necessitates additional memory to store the CDAG index
structure, as mentioned in [16], and OOMBEA partitions the
input bipartite graph into multiple subgraphs, thereby requiring
additional memory to accommodate these subgraphs. Specifi-
cally, on the Github dataset, PMBE requires 55 MB of memory,
and OOMBEA requires 105 MB of memory, while the other
algorithms require no more than 20 MB of memory.

Fig. 7(c) compares the pruning efficiency of MBE
algorithms. The experiment results show that existing
algorithms have a major performance issue: they spend
considerable time checking and eliminating unproductive
nodes, as discussed in Section II-B. Specifically, on the Github
dataset, all existing MBE algorithms require 15.58× more node
checks than the number of maximal bicliques, resulting in a
substantial computational overhead. Fortunately, AMBEA
effectively addresses this issue by reducing the ratio δ/α by
2.37×-8.98× compared to the next-best competitors. This effi-
cient pruning is the key reason why AMBEA is faster than the
other algorithms.
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Fig. 8. Effect of the ASE tree and the AMP approach. Variants
AMBEA-ASE and AMBEA-AMP enable the ASE tree and the AMP, re-
spectively, on MBEA. Both AMBEA-ASE and AMBEA-AMP outperform
MBEA because their δ/α is far smaller than that of MBEA. AMBEA has the
minimum running time in most cases since it has the minimum δ/α.

C. Breakdown Evaluations

We evaluate the effects of the ASE tree, the AMP approach,
and the vertex ordering on 8 datasets with a larger number of
maximal bicliques.
Effect of the ASE tree. To study the effect of the ASE tree pro-
posed in Section III, we design a variant AMBEA-ASE that only
enables the ASE tree on MBEA. This is because MBEA gener-
ates the enumeration tree according to Algorithm 1 without any
optimizations. As shown in Fig. 8, AMBEA-ASE consistently
outperforms MBEA by aggressively pruning numerous nodes
that do not output maximal bicliques through the low-cost node
checking. In particular, AMBEA-ASE achieves a speedup of
14.7× compared to MBEA on the YouTube dataset, as it prunes
98.2% of unproductive nodes in MBEA.
Effect of the AMP approach. To study the effect of the
AMP approach proposed in Section IV, we design two vari-
ants for comparison: AMBEA-AMP, which enables only the
AMP approach on MBEA, and AMBEA-PMP, which en-
ables only the passive merge-based pruning (PMP) approach
in Section II-B. As shown in Fig. 8, both AMBEA-AMP and
AMBEA-PMP consistently outperform MBEA, as they both
prune numerous unproductive nodes through vertex merging.
Moreover, AMBEA-AMP shows superior pruning efficiency
compared to AMBEA-PMP. In particular, on the StackOverflow
dataset, AMBEA-AMP achieves a speedup of 12.5× compared
to AMBEA-PMP, as it is able to further prune 96.5% of un-
productive nodes that AMBEA-PMP could not eliminate. This
is due to the fact that AMBEA-AMP aggressively merges ver-
tices with the same local neighbors, whereas AMBEA-PMP can
only do so if the corresponding node passes the node checking
process.

Fig. 9. Effect of vertex ordering.

Fig. 10. Comparison of average node depth among MBE algorithms.

Effect of vertex ordering. To study the effect of ver-
tex ordering as mentioned in Section V-A, we design three
variants AMBEA-INC, AMBEA-RAND, and AMBEA-UC
that sort vertices in V in increasing order based on de-
gree, random order, and the unilateral order proposed by the
latest MBE algorithm OOMBEA [18], respectively. Fig. 9
shows that AMBEA-INC outperforms both AMBEA-RAND
and AMBEA-UC on most datasets, particularly those with
a large number of maximal bicliques. For instance, on the
Github dataset, AMBEA-INC only requires 5,085 seconds,
while AMBEA-RAND and AMBEA-UC require 23,067 sec-
onds and 14,500 seconds, respectively. Thus, AMBEA always
sorts vertices in V in increasing order based on their degree.

D. Sensitivity Analysis

Impact of different algorithms on the balance of their enu-
meration trees. To explore the impact of different algorithms
on the balance of the enumeration tree, we measure the depth of
each tree node and calculate the average node depth for nodes
that output maximal bicliques across various MBE algorithms,
as shown in Fig. 10. A lower average node depth indicates
a more balanced enumeration tree. We observe that AMBEA
always generates a more balanced enumeration tree compared
to MBEA, as evidenced by the smaller average node depth. The
AMP approach does not affect the average node depth since it
does not impact the generation of nodes that output maximal
bicliques. PMBE and OOMBEA tend to generate imbalanced
enumeration trees. This can be attributed to their use of the
pivot-based pruning approach, where a candidate vertex v′ is
forced to generate a node with a maximal biclique in the next
level if its local neighbors are a subset of those of a pivot
vertex v∗, i.e., NL(v

′)⊆NL(v
∗). iMBEA and FMBE tend to

generate balanced enumeration trees by reordering vertices at
each node. However, this reordering process incurs significant
overhead at each node. Overall, the choice of algorithm has a
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Fig. 11. Evaluation on scalability (log scaled).

Fig. 12. Overall evaluation on parallelization (log scaled). ParAMBEA and
ParMBE run on a 96-core CPU machine. GMBE runs on an A100 GPU.

noticeable impact on the balance of enumeration trees, with
AMBEA achieving a better balance compared to other MBE
algorithms.
Evaluation on scalability. To evaluate the scalability of
AMBEA, we conduct experiments using synthetic datasets of
varying scales. For comparison, we focus on AMBEA in re-
lation to FMBE and OOMBEA, as these two algorithms have
demonstrated strong performance on large datasets, as depicted
in Fig. 7(a). As illustrated in Fig. 11, the results demonstrate
that AMBEA is significantly faster than FMBE by 47.2×
−141.7×, and outperforms OOMBEA by 6.7×−11.1× on
synthetic datasets. FMBE consistently lags behind ooMBEA
because all synthetic datasets are generated from the LiveJour-
nal dataset, resulting in d(V ) exceeding 50,000. Specifically, on
the LJ25 dataset, AMBEA completes in 1,870 seconds, while
FMBE and OOMBEA require 116,582 seconds and 12,614 sec-
onds, respectively. Experimental results indicate the scalability
of AMBEA when applied to large datasets.
Evaluation on parallelization. To evaluate the parallel
performance of AMBEA, we compare its parallel version,
ParAMBEA, with cutting-edge parallel algorithms, including
CPU-based ParMBE and emerging GPU-based GMBE. In
Fig. 12, we test ParAMBEA and ParMBE using 96 threads
on a 96-core CPU machine, while GMBE runs on an A100
GPU [26] using the default configuration in [21]. Through
highly efficient pruning, ParAMBEA achieves a speedup of
2.0× to 198.6× compared to ParMBE. Despite running on
a 96-core CPU machine, ParAMBEA performs comparably
to GMBE, which leverages the advanced A100 GPU with
thousands of lightweight cores. Notably, on the StackOverflow
dataset, ParAMBEA is 6.9× faster than GMBE due to the suc-
cessful workload balancing of the ASE tree. Additionally, we
test ParAMBEA and ParMBE on four time-consuming datasets

Fig. 13. Evaluations on parallelization with varying thread counts (log
scaled).

using varying numbers of threads (4 to 96). As shown in Fig. 13,
ParAMBEA achieves significant speedups of 17.4× to 293.8×
compared to ParMBE, demonstrating nearly linear scaling with
the increasing number of threads.

VII. RELATED WORK

Maximal biclique enumeration. Early methods employed a
brute-force BFS approach to solve the MBE problem [13], [27].
Recent studies have utilized the SE tree to enhance the enumer-
ation process in a DFS manner, incorporating optimization tech-
niques such as pruning and vertex ordering [7], [15], [16], [18].
Parallel MBE algorithms [15], [21] are also proposed for speed-
up the enumeration. However, these SE-tree based methods
still require extensive node checks for non-maximal bicliques,
causing performance bottlenecks. Our proposed AMBEA ad-
dressed this issue by leveraging ASE and AMP techniques. Ad-
ditionally, Gely et al. [28] reduced MBE to the maximal clique
enumeration problem but introduced extensive computational
overhead by adding additional edges to the bipartite graph. Li
et al. [29] reduced MBE to the frequent closed itemset mining
problem, but their method is not suitable for large bipartite
graphs due to high memory requirements for storing the graph
in binary format.

Customized biclique enumeration. Emerging studies have
explored the enumeration of customized bicliques in bipartite
graphs. Yang et al. [11], [30] and Ye et al. [31] addressed
the enumeration of all (p, q)-bicliques. Yao et al. [32] intro-
duced the concept of vertex similarity and enumerated maximal
similar bicliques, where vertices exhibit similarity. Yin et al.
[33] extended the problem by assigning attributes to vertices
and enumerating fair bicliques, where vertices with different
attributes are considered roughly equal. Chen et al. [34] focused
on biclique percolation communities, which are unions of maxi-
mal bicliques. Wang et al. [35] enumerated maximal τ -bicliques
on uncertain bipartite graphs, where each edge has an existence
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probability. However, these approaches are inadequate for solv-
ing the MBE problem, as they only conduct node checks for
their-defined bicliques, rather than maximal bicliques.

Maximum biclique finding. Other research has focused on
finding one or several special bicliques (L,R) among all max-
imal bicliques. Lyu et al. [3], [4] and Wang et al. [5] addressed
the problem of finding the Maximum Edge Biclique (MEB),
which maximizes |L| × |R|. Chen et al. [36] focused on finding
the Maximum Balanced Biclique (MBB) with |L| strictly equal
to |R| and the maximum number of vertices. Moreover, other
works have explored finding maximum bicliques in signed [20],
[37] or weighted bipartite graphs [38], [39]. Nonetheless, these
methods have limitations in effectively accelerating MBE be-
cause they selectively prune the search space that does not lead
to their target bicliques, but these pruned search spaces may still
be part of the MBE solution space.

VIII. CONCLUSION

In this paper, we proposed the ASE tree, which aggressively
expands bicliques with all vertices and eliminates potential du-
plicates through the connection between parent and child nodes.
The ASE tree effectively prunes unproductive nodes using a
low-cost node checking mechanism and maintains a balanced
enumeration tree. To further enhance pruning efficiency, we
introduced the AMP approach, which aggressively merges ver-
tices with the same local neighbors. This is achieved by optimiz-
ing the node generation process. We then presented AMBEA,
which applies the AMP approach to the ASE tree, along with
its parallel version, ParAMBEA. Through extensive experi-
ments, we demonstrated the effectiveness of AMBEA and all
the proposed techniques. The experimental results showed that
AMBEA can accelerate maximal biclique enumeration, while
also exhibiting better scalability on large bipartite graphs.
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