
Enumeration of Billions of Maximal Bicliques in
Bipartite Graphs without Using GPUs

Zhe Pan1,2,3, Shuibing He3, Xu Li3, Xuechen Zhang4, Yanlong Yin3,
Rui Wang1,2, Lidan Shou1,2,3, Mingli Song3, Xian-He Sun5, Gang Chen3
1The State Key Laboratory of Blockchain and Data Security, Zhejiang University
2Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

3College of Computer Science and Technology, Zhejiang University
4Washington State University Vancouver 5Illinois Institute of Technology

{panzhe, heshuibing, fhxu, yinyanlong, rwang21, should, brooksong, cg}@zju.edu.cn,
xuechen.zhang@wsu.edu, sun@iit.edu

Abstract—Maximal biclique enumeration (MBE) is crucial
in bipartite graph analysis. Recent studies rely on extensive
set intersections on static bipartite graphs to solve the MBE
problem. However, the computational subgraphs dynamically
change during enumeration, leading to redundant memory ac-
cesses and degraded set intersection performance. To overcome
this limitation, we propose an AdaMBE algorithm. First, we
redesign its core operations using local neighborhood information
derived from computational subgraphs to minimize redundant
memory accesses. Second, we dynamically create computational
subgraphs using bitmaps leveraging its fast bitwise operations
to accelerate set intersections. Finally, we integrate them in
AdaMBE. Our experimental results show that AdaMBE is
1.6×−49.7× faster than its closest CPU-based competitor and
successfully enumerates all 19 billion maximal bicliques on the
TVTropes dataset, a large task beyond the capabilities of existing
algorithms. Notably, on certain datasets, our parallel version,
ParAdaMBE, on CPUs even outperforms GMBE on GPUs by
up to 5.07×.

Index Terms—Bipartite graph, maximal biclique enumeration,
bitmap

I. INTRODUCTION

Bipartite graphs are popular in diverse domains for captur-
ing relationships between two different sets of entities. In a
bipartite graph G(U, V,E), there are two distinct vertex sets,
U and V , and the edges in set E only connect vertices from
these two sets. A biclique is a complete bipartite subgraph
that includes all possible edges between the two sets of
vertices. A maximal biclique is a biclique that cannot be
further expanded to include more vertices. This paper aims to
efficiently enumerate all maximal bicliques in large bipartite
graphs, known as the MBE problem.

The MBE problem offers a versatile approach for analyzing
various real-world scenarios. For instance, E-commerce giants
like Alibaba, eBay, and Amazon use bipartite graphs to
represent the user-purchase-item relationships with each edge
denoting a purchase transaction [1]–[4]. Then, they use MBE
algorithms to detect click farming [5] in which fraudulent users
purchase a set of products on behalf of malicious merchants.

Corresponding Author: Shuibing He

Additionally, the MBE approach finds applications in gene
expression analysis in biology [6]–[8], community search in
social networks [9], [10], and information aggregation in
Graph Neural Networks [11], [12]. As a result, the research
on MBE has garnered significant attention from both academia
and industry in recent years [6], [13]–[21].

Mainstream MBE algorithms [6], [15], [16], [18], [21]–[24]
typically solve the MBE problem through backtracking using
enumeration trees. The enumeration process involves exten-
sive set intersections on static bipartite graphs. To enhance
performance, researchers have proposed various techniques,
such as vertex ordering [6], [16], [18], pruning [6], [16],
[18], and parallelization [15], [21]. Recent efforts explored
GPUs to accelerate MBE, leveraging hundreds of thousands of
threads [21]. However, all of them ignore the characteristics of
the computational subgraphs derived from the original bipartite
graphs during enumeration, leading to limited scalability. For
example, within 48 hours, they can only process bipartite
graphs that contain no more than 263 million maximal bi-
cliques, i.e., the CebWiki dataset [25] (Section IV).

Our research reveals three new observations regarding the
computational subgraphs. First, the computational subgraphs
dynamically change at runtime and their sizes can be much
smaller than those of the original bipartite graphs. Second,
the vertex in the computational subgraphs of the current
node in the enumeration tree can be directly used for node
generation. We do not need the neighborhood information
from the original graphs. Third, the existing algorithms need to
access vertices that do not belong to their corresponding com-
putational subgraphs, leading to redundant memory accesses
and degraded set intersection performance.

In this paper, we present AdaMBE, a novel MBE algorithm
that exploits the characteristics of computational subgraphs to
accelerate the enumeration process on CPUs. AdaMBE uses
local neighborhood information derived from computational
subgraphs in the key operations of MBE and a hybrid graph
representation in memory to achieve both high memory effi-
ciency and fast set intersections. Specifically, we propose two
primary techniques and integrate them to enable AdaMBE.

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

First, we keep the current computational subgraph by
maintaining local neighbors of vertices, which are essential
intermediate results in recent studies [6], [15], [16], [18], [21].
Additionally, we leverage the local neighbor data to efficiently
minimize accesses to unnecessary vertices, prevent repetitive
set intersection operations, and direct node pruning.

Second, we employ bitmaps to represent small computa-
tional subgraphs. Recent studies [15], [16], [18], [21] avoid
using the bitmap due to its extensive memory usage up to
O(|U | × |V |). Because the sizes of computational subgraphs
can be much smaller than those of the original static bipartite
graphs, we could store the bitmaps of selective computa-
tional subgraphs in memory. Additionally, we use the high-
performance bitwise operations to expedite set intersections
required for key MBE operations such as node generation.

Finally, we design AdaMBE by integrating the two afore-
mentioned approaches and then develop its parallel version,
ParAdaMBE. Specifically, AdaMBE primarily employs the
local neighborhood cache and its hybrid in-memory represen-
tation. It adaptively enables bitmap-based representations for
small computational subgraphs.

In summary, we make the following contributions.
• We use derived computational subgraphs in the enu-

meration. Because the computational subgraphs corre-
sponding to a vertex can be retrieved from its parent’s
neighborhood information, we don’t need to access its
neighborhood information in the original bipartite graph.
Moreover, we store the parent’s neighborhood informa-
tion in a cache to support high-performance access.

• We introduce a hybrid representation of computational
subgraphs in memory. AdaMBE selectively generates
bitmap-based subgraphs for small computational sub-
graphs. This approach expedites extensive set intersec-
tions through efficient bitwise operations.

• We propose an adaptive maximal biclique enumeration
algorithm, named AdaMBE, which integrates the neigh-
borhood data cache and the bitmap representation.

• We conduct extensive experiments on real-world and
synthetic datasets, including large datasets with billions
of maximal bicliques. Experimental results show that
AdaMBE outperforms its closest competitor by up to
49.7× and efficiently handles large datasets with billions
of maximal bicliques. Our parallel version, ParAdaMBE,
running on CPUs even outperforms GMBE [21] running
on GPUs by up to 5.07× on three time-consuming
datasets out of twelve general datasets.

II. BACKGROUND AND MOTIVATION

A. Baseline MBE Solutions

Problem formulation. Our problem is defined over a bipartite
graph G(U, V,E), where U and V represent two disjoint
vertex sets, and E denotes the edge set with E ⊆ U × V .
The vertices in U or V are denoted by u or v, respectively.
N(v) represents the set of neighbors of vertex v, and Γ(X)
represents the common neighbors of vertices in the vertex set

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

v0 v1 v2 v3

Fig. 1. An example of a bipartite graph G0 and a maximal biclique
({u0, u4, u5, u6}, {v0, v2, v3}) in G0.

Algorithm 1: Baseline MBE Solution
Input: Bipartite graph G(U, V,E)
Output: All maximal bicliques

1 biclique_search(U, ∅, V);
2 procedure biclique_search(L,R,C):
3 foreach v′ ∈ C do
4 L′ ← L ∩N(v′); R′ ← R; C′ ← ∅;
5 foreach vc ∈ C do // Node generation
6 if L′ ∩N(vc) = L′ then
7 R′ ← R′ ∪ {vc};
8 else if L′ ∩N(vc) ̸= ∅ then
9 C′ ← C′ ∪ {vc};

10 if R′ = Γ(L′) then // Node check
11 Output(L′, R′) as a maximal biclique;
12 biclique_search(L′, R′, C′)

13 C ← C \ {v′};

X , i.e., Γ(X) =
⋂︁

v∈X N(v). ∆(v) denotes the degree of
vertex v, i.e., the number of vertices it is connected to, and
∆(X) denotes the maximum degree among the vertices in
set X . A biclique B(L,R,E′) is a complete subgraph of G
where L ⊆ U , R ⊆ V , and E′ = L × R ⊆ E. We denote
the biclique B as the set pair (L,R) for brevity. A maximal
biclique is a biclique B(L,R) that is not a proper subset of any
other biclique B′(L′, R′) in G, namely (L ∪R) ̸⊂ (L′ ∪R′).
For instance, Figure 1 shows a bipartite graph G0 and one
of maximal bicliques in G0. This paper focuses on efficiently
enumerating all maximal bicliques in large bipartite graphs,
which is known as the MBE problem.
Baseline approach. Recent works [6], [15], [16], [18], [21]–
[24] commonly employ backtracking to generate an enumera-
tion tree for MBE on a static bipartite graph G(U, V,E). This
approach guarantees that each maximal biclique is represented
within a single node in the enumeration tree. Typically, most
of these works [15], [16], [21]–[24] use a 3-tuple (L,R,C)
to represent each enumeration tree node, where L is a subset
of U , while R and C are two disjoint subsets of V . (L,R)
represents the current biclique, while C contains candidate
vertices for expanding R during the backtracking. Each node
corresponds to a unique biclique (L,R) because their R
sets differ during backtracking. Consequently, all maximal
bicliques are derived from this enumeration tree.

In the following, we present the baseline MBE approach in
Algorithm 1. The algorithm starts at a root node (U, ∅, V) (line
#1) and then recursively computes each node (L,R,C) using
the biclique_search procedure (line #2). Specifically, the

L :u0 u1 u2 u3 u4 u5 u6 u7 u8 u9
R : ∅
C : v0 v1 v2 v3

L :u0 u1 u2 u4 u5 u6 u7
R : v0
C : v1 v2 v3

L :u0 u1 u2 u3
R : v1
C : v2 v3

L :u0 u1 u3 u4 u5 u6 u7 u8
R : v2
C : v3

L :u0 u3 u4 u5 u6 u8 u9
R : v3
C : ∅

L :u0 u1 u2
R : v0 v1
C : v2 v3

L :u0 u1 u4u5 u6 u7
R : v0 v2
C : v3

L :u0 u4 u5 u6
R : v0 v3
C : ∅

L :u0 u1 u3
R : v1 v2
C : v3

L :u0 u3
R : v1 v3
C : ∅

L :u0 u3 u4 u5 u6 u8
R : v2 v3
C : ∅

L :u0 u1
R : v0 v1 v2
C : v3

L :u0
R : v0 v1 v3
C : ∅

L :u0 u4u5 u6
R : v0 v2 v3
C : ∅

L :u0 u3
R : v1 v2 v3
C : ∅

L :u0
R : v0 v1 v2 v3
C : ∅

v0 v1 v2 v3

v1 v2 v3 v2 v3 v3

v2 v3 v3 v3

v3

root node
maximal biclique
non-maximal biclique

w:

x: y:

s:

root:

p:

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

v0 v1 v2 v3

G0

q:

t:

z:

r:

Fig. 2. The enumeration tree on the bipartite graph G0. Each node represents
a unique biclique (L,R) with distinct set R (highlighted in blue) during
backtracking.

procedure iterates through each vertex v′ in C (lines #3, 13) to
generate each new child node (L′, R′, C ′) (lines #4-9). After
node generation, the procedure checks if the corresponding
biclique (L′, R′) is maximal (line #10). If it is, the maximal
biclique is reported (line #11), and exploration of new nodes
continues from the node (L′, R′, C ′) (line #12). The time
complexity for computing each node is O(|V |∆(V)), because
each node involves O(|V |) set intersections and each set
intersection takes O(∆(V)) time based on the adjacency lists.

Example 1. Figure 2 illustrates an enumeration tree for a
bipartite graph G0 using Algorithm 1. We start from the root
node and generate the enumeration tree through backtracking.
Initially, we enter node w by traversing v0 ∈ Croot (line #3) 1.
We know Lw = Lroot ∩ N(v0) = {u0, u1, u2, u4, u5, u6, u7}
(line #4). Subsequently, we know that Rw = {v0} and Cw =
{v1, v2, v3} because v0 connects with all vertices in Lw, while
v1, v2, and v3 connect with some of vertices in Lw (lines #5-
9). Node w corresponds to a maximal biclique since Rw =
{v0} = Γ(Lw) (line #10). Continuing this process, we then
enter node x by traversing v1 ∈ Cw and finally generate the
complete enumeration tree. Node z represents a non-maximal
biclique because Lz ∪ Rz = {u0, u4, u5, u6, v0, v3} ⊂ Ls ∪
Rs = {u0, u4, u5, u6, v0, v2, v3}.

Recent optimizations. To improve the enumeration perfor-
mance, various algorithmic optimizations have been employed,
such as vertex ordering [6], [16], [18], node pruning [6],
[16], [18], and parallelization [15], [21]. However, despite
these efforts, the current state-of-the-art approaches still lack
efficiency when applied to large-scale datasets, as they over-
look the characteristics of dynamic computational subgraphs
(See Section II-C). As a result, existing MBE algorithms are
constrained and capable of exploring relatively small real-
world datasets with millions of maximal bicliques.

u0 u9 u5 u8 u3
u4 u6

u0 u1 u5 u8 u3
u7 u4 u6

u0 u1 u2 u3

u0 u1 u2 u5
u7 u4 u6

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9
v0 1 1 1 0 1 1 1 1 0 0

v1 1 1 1 1 0 0 0 0 0 0

v2 1 1 0 1 1 1 1 1 1 0

v3 1 0 0 1 1 1 1 0 1 1

v0 → u0 u1 u2 u4 u5 u6 u7
v1 → u0 u1 u2 u3
v2 → u0 u1 u3 u4 u5 u6 u7 u8
v3 → u0 u3 u4 u5 u6 u8 u9

v0 →

v1 →

v2 →

v3 →

(a) Adjacency list representation. It
involves a collection of lists, where
each list represents the neighbors of
a vertex 𝑣 in order.

(b) Bitmap representation. It contains
a 𝑈 × |𝑉| binary matrix, where each
bit (𝑖, 𝑗) indicates whether 𝑣 is
connected with 𝑢 .

Table size = 19
Hash function = (id × id) % Table size
e.g., when we insert u5 at position 6,
as (5 × 5) % 19 = 6.

(c) Hash table representation. It
consists of multiple hash tables,
where each table contains the
neighbors of a vertex 𝑣 .

Time for set intersection: 𝑂 Δ 𝑉

Space complexity: 𝑂(|𝐸|)

Time for set intersection: 𝑂 Δ 𝑉

Space complexity: 𝑂(|𝐸|)

Time for set intersection: 𝑂 1 for small
graphs and 𝑂 |𝑈| for large graphs.
Space complexity: 𝑂 |𝑈| × |𝑉|

Fig. 3. Three representations of the bipartite graph G0(U, V,E).

B. Graph Representation in Memory

The representation of a bipartite graph plays a critical role
in the performance of MBE solutions, as it directly affects the
efficiency of extensive set intersections in MBE algorithms,
e.g., lines #4,6,8,10 in Algorithm 1. Figure 3 depicts three
common representations of bipartite graphs used in existing
MBE algorithms: adjacency lists, bitmaps, and hash tables.
Each data structure has its own advantages and trade-offs
between memory usage and running time of set operations.

Adjacency lists. The adjacency list representation is widely
employed in recent MBE algorithms designed for large graphs,
such as PMBE [4], OOMBEA [18], and GMBE [21]. It excels
in memory efficiency by only storing necessary connections
in O(|E|). However, each set intersection operation requires
O(∆(V)) time complexity since it sequentially accesses the
neighbors of a vertex, which are bounded by O(∆(V)).

Bitmaps. The bitmap representation is widely used in earlier
research on small graphs, including LCM-MBC [23] and
iMBEA [6]. It achieves the time complexity of O(|U |) for
each set intersection through bitwise AND operations between
two |U |-bit bitmaps. Notably, for small graphs, it efficiently
performs set intersections in O(1), accomplished by several
bitwise AND operations. However, it is not suitable for
large sparse graphs due to its extensive memory usage (e.g.,
O(|U | × |V |)), as it needs to store all missing edges as bit 0.

Hash tables. The hash table representation is only utilized
in ParMBE [15]. It accelerates set intersections by employing
efficient lookup operations, especially when the sizes of the
input vertex sets vary significantly. Each set intersection op-
eration using hash tables requires O(∆(V)) time complexity
to access all neighbors of a vertex. Additionally, the memory

1For clarity, we use subscripts to denote the corresponding vertex sets of
enumeration nodes. For instance, Croot denotes the set C of the root node.

8 16 24 32 ∞

8

16

24

32

∞

|L|

|C
|

0.4454

0

0.1083

0

0.0450

0

0.0245

0

0.0705

0

0.1847

0

0.0492

0

0.0219

0

0.0120

0

0.0302

0

0.0037

0

0.0012

0

0.0005

0

0.0004

0

0.0012

0

0.0003

0

0.0002

0

0.0001

0

0.0000

0

0.0002

0

0.0001

0

0.0001

0

0.0000

0

0.0000

0

0.0001

0

(a) BookCrossing.

8 16 24 32 ∞

8

16

24

32

∞

|L|

|C
|

0.5237

0

0.1343

0

0.0547

0

0.0296

0

0.0744

0

0.1017

0

0.0338

0

0.0132

0

0.0064

0

0.0168

0

0.0036

0

0.0018

0

0.0011

0

0.0005

0

0.0017

0

0.0006

0

0.0003

0

0.0002

0

0.0001

0

0.0004

0

0.0004

0

0.0002

0

0.0001

0

0.0001

0

0.0005

0

(b) Github.

Fig. 4. Distribution of CG sizes based on |L| and |C|. Each cell denotes the
frequency of occurrence for a specific combination of |L| and |C|, normalized
to the total number of occurrences.

UL UF Mti TM AM WC YG SO Pa IM BX GH
0

88%

90%

92%

94%

96%

98%

100%

P
e

rc
e

n
ta

g
e

Vertices inside CGs
Vertices outside CGs≈

Fig. 5. Percentage of vertices inside and outside CGs on real-world datasets.

usage of hash tables can be bounded by O(|E|) when employ-
ing cuckoo hashing. Although the hash table representation
has similar time and space complexities to the adjacency list,
it involves considerable random memory access and higher
memory usage, resulting in suboptimal performance compared
to the adjacency list representation.

C. Motivation

In this section, we provide the formal definition of com-
putational subgraphs in MBE, analyze its characteristics, and
discuss limitations in existing works.
Computational subgraphs (CG). At the current enumeration
node (L,R,C), the computational subgraph in MBE refers to
the subgraph formed by the vertices in L ∪ C, along with all
edges between L and C in the original bipartite graph.

By executing the baseline MBE approach (Algorithm 1) on
the graph datasets listed in Table I of Section IV, we observe
the following characteristics of computational subgraphs:

• O1: The size of CGs dynamically changes. It is due to
variations in the sizes of |L| and |C| for each node.
Notably, most of these CGs are relatively small. Figure 4
shows that 90% of CGs contain both |L| and |C| which
are less than 32.

• O2: The computational subgraph of the current enumer-
ation node can be directly used for node generation.
Specifically, in Algorithm 1, the current node (L,R,C)
generates node (L′, R′, C ′) by traversing v′. We know L′

is a subset of L (line #4). To our observation, it is feasible
to replace all neighborhood accesses on the original graph
with local neighborhood accesses on the current CG. To
elaborate, we derive L∩N(v′) (line #4) as L∩N(v′) =
L ∩ (L ∩N(v′)) and derive L′ ∩N(vc) (lines #6, 8) as
L′∩N(vc) = (L′∩L)∩N(vc) = L′∩(L∩N(vc)), where
L ∩N(v′) and L ∩N(vc) represent the local neighbors
of vertices v′ and vc in the current CG.

• O3: Existing algorithms require access to vertices outside
their corresponding CGs. Although CGs are adequate

for node generation, excessive vertex access outside CGs
significantly impairs performance. Figure 5 reveals that
these unnecessary vertex accesses account for more than
90% of memory accesses across the majority of datasets.

Limitations of existing works. The existing MBE works
ignore the characteristics of CGs, leading to two main draw-
backs. First, these studies typically operate on the original
graph, resulting in extensive access to vertices outside CGs.
Additionally, exploiting memory accesses within CGs could
aid in reducing repetitive set intersections and node pruning.
Further elaboration will be provided in Section III-A. Second,
current approaches commonly utilize the adjacency list as
the default choice for representing graphs [16], [18], [21].
However, as discussed in Section II-B, set intersections on
adjacency lists are less efficient than on bitmaps for smaller
graphs. Fortunately, as the CG dynamically changes during
enumeration, leveraging bitmaps can enhance set intersection
performance on smaller CGs.

III. ADAMBE

The design objectives of AdaMBE are (1) to use local
neighborhood information derived from the computational
subgraphs to accelerate the core operations of the MBE
algorithm; and (2) to use bitmaps to represent computational
subgraphs making a tradeoff between set intersection perfor-
mance and memory efficiency.

A. Redesign of Key Operations using Local Neighborhood
Information

Local neighbors. Assume we have node x in an enumeration
tree. Vertex v is a candidate vertex in Cx. Then, the local
neighbors of vertex v are the vertices that appear in both N(v)
and Lx, denoted as Nx(v). Nx(v) = N(v) ∩ Lx.

The local neighbors of vertex v can be derived from the
neighbors of its parent node in its corresponding computational
subgraph without accessing the global neighbors of v in the
original bipartite graph. To improve the performance, we use
local neighbors to redesign three key operations as follows:

(1) Reducing vertex access for computing R′ and C ′.
Existing MBE algorithms compute R′ and C ′ by calculating
L′ ∩N(vc) for each candidate vertex vc, as shown in lines #6
and #8 of Algorithm 1. N(vc) refers to the global neighbors
of vertex vc in the original graph. In AdaMBE, instead of
accessing N(vc), we only access local neighbors of vc in the
computational subgraph of the parent node x, i.e., Nx(vc),
according to characteristics O2 in Section II-C. Furthermore,
because |Nx(vc)| can be far smaller than |N(vc)|, the overhead
of computing L′∩Nx(vc) is much smaller than L′∩N(vc). In
order to provide fast retrieval of the intermediate data Nx(vc),
we store Nx(vc) in the local neighbor cache to avoid redundant
vertex accesses.

Local neighbors are necessary intermediate results in all ex-
isting MBE algorithms. Simply caching these local neighbors
can enable us to optimize their usage. By utilizing the rela-
tionships between parent and child nodes, we replace global
neighbors in the original graph with local neighbors in the CGs

Lw = N(v0) = {u0, u1, u2, u4, u5, u6, u7}

Nw(v1) = Lw ∩ N(v1)= {u0, u1, u2}
Nw(v2) = Lw ∩ N(v2)= {u0, u1, u4, u5, u6, u7}
Nw(v3) = Lw ∩ N(v3)= {u0, u4, u5, u6}

node generation

w:

v0→u0 u1 u2 u4 u5 u6 u7
v1→u0 u1 u2 u3
v2→u0 u1 u3 u4 u5 u6 u7 u8
v3→u0 u3 u4 u5 u6 u8 u9
computational subgraph

v0→u0 u1 u2 u4 u5 u6 u7
v1→u0 u1 u2 u3
v2→u0 u1 u3 u4 u5 u6 u7 u8
v3→u0 u3 u4 u5 u6 u8 u9
computational subgraph

t: Lt = Nq(v3) = {u0}

node generation

r:
Lr = Nx(v3) = {u0}

node generation

v0→ u0 u1 u2 u4 u5 u6 u7
v1→ u0 u1 u2 u3
v2→ u0 u1 u3 u4 u5 u6 u7 u8
v3→ u0 u3 u4 u5 u6 u8 u9
computational subgraph

v0→u0 u1 u2 u4 u5 u6 u7
v1→u0 u1 u2 u3
v2→u0 u1 u3 u4 u5 u6 u7 u8
v3→u0 u3 u4 u5 u6 u8 u9
computational subgraph

z:
Lz = Nw(v3) = {u0, u4, u5, u6}

node generation

s:
Ls = Ny(v3) = {u0, u4, u5, u6}

node generation

x:

Lx = Nw(v1) = {u0, u1, u2}

Nx(v2) = Lw ∩ Nw(v2)
= {u0, u1, u2} ∩

{u0, u1, u3, u4, u5, u6, u7, u8}
= {u0, u1}

Nx(v3) = Lw ∩ Nw(v3)
= {u0, u1, u2} ∩

{u0, u3, u4, u5, u6, u8, u9}
= {u0}

node generation

y:

Ly = Nw(v2) = {u0, u1, u4, u5, u6, u7}

Ny(v3) = Ly ∩ Nw(v3)
= {u0, u1, u4, u5, u6, u7} ∩

{u0, u3, u4, u5, u6, u8, u9}
= {u0, u4, u5, u6}

node generation

q:

Lq = Nx(v2) = {u0, u1}

Nq(v3) = Lq ∩ Nx(v3)
= {u0, u1} ∩

{u0, u3, u4, u5, u6, u8, u9}
= {u0}

node generation

root node
maximal biclique
non-maximal biclique

Reducing Unnecessary vertex accesses
Removing repetitive set intersections
Optimizing node pruning

v1 v2 v3

v2 v3

v3

v3

Fig. 6. Redesign of key operations using local neighborhood information. The local neighbors of vertices are those within the current computational subgraph
(CG). We illustrate this with the subtree rooted at node w in Figure 2. Local neighbors and CGs for different nodes are highlighted in different colors.

during node enumeration. Our approach significantly reduces
memory accesses by 97.1% for vertices outside the CGs on
average, leading to improved efficiency, as demonstrated in
Section II-C. Considering that memory is usually not the
bottleneck for computing-intensive MBE problems, consuming
some additional memory for storing local neighbors to reduce
running time is worthwhile.

(2) Removing repetitive set intersection for computing
L′. We have identified that there are repetitive set intersections
for computing L′. Notably, the operation L∩N(v′) in line #4
of Algorithm 1 precisely yields the local neighbors of v′ in the
computational subgraph of the node (L,R,C). Consequently,
we can remove these repetitive set intersections by directly
accessing local neighbors of v′ in the local neighbor cache.
Despite being a common occurrence in existing MBE algo-
rithms, this issue has yet to be addressed.

(3) Pruning enumeration nodes before node generation.
According to our observation, we note that the local neighbors
of each vertex consistently correspond to the set L of an
enumeration node, as illustrated in line #4 of Algorithm 1.
Thus, we can prove that identical local neighbors will result
in nodes with the same set L, leading to redundant nodes.
More formally, when node q is a child node of node p and
local neighborhood sizes of vertex v are equal in both nodes,
i.e., |Np(v)| = |Nq(v)|, node p can safely prune the node
enumerated by traversing vertex v. This is because the equality
in neighborhood sizes indicates that Np(v) and Nq(v) are
identical, given that Np(v) always contains all vertices in

Nq(v). Thus, we can achieve node pruning by ensuring that
each unique local neighborhood generates a node only once.

Example 2. Figure 6 demonstrates how AdaMBE works using
local neighborhood information from node w in Figure 2.
First, AdaMBE reduces unnecessary vertex accesses outside
the current CG by utilizing only local neighbors cached in
CGs. For instance, node x computes Nx(v2) using local neigh-
bors Nw(v2) cached in the CG of its parent node w, effectively
preventing access to unnecessary vertices like u3 and u8

outside the current CG. Next, AdaMBE removes repetitive set
intersections by directly obtaining set L for the current node
in the CG of its parent node. For instance, node x obtains
Lx by directly accessing local neighbors of v1, i.e., Nw(v1),
in the CG of its parent node w. Finally, AdaMBE optimizes
node pruning by comparing local neighborhood sizes between
parent and child nodes, leading to efficient pruning decisions.
For instance, node w prunes its child node z enumerated by
vertex v3 because local neighborhood sizes of v3 are equal in
both nodes w and y, i.e., |Nw(v3)| = |Ny(v3)| = 4.

B. Hybrid In-Memory Representation of CGs

The selection of the graph representations is a trade-off
between computation and memory efficiency. We could utilize
the adjacency list representation for large CGs leveraging its
memory efficiency while employing the bitmap representation
for small CGs leveraging its computational efficiency. Previous
MBE works only use one data structure in enumeration. They

L :u0 u1 u2 u3 u4 u5 u6 u7 u8 u9
R : ∅
C : v0 v1 v2 v3

L :u0 u1 u2 u4 u5 u6 u7
R : v0
C : v1 v2 v3

L :u0 u1 u2 u3
R : v1
C : v2 v3

L :u0 u1 u3 u4 u5 u6 u7 u8
R : v2
C : v3

L :u0 u3 u4 u5 u6 u8 u9
R : v3
C : ∅

L :u0 u1 u2
R : v0 v1
C : v2 v3

L :u0 u1 u4 u5 u6 u7
R : v0 v2
C : v3

L :u0 u4 u5 u6
R : v0 v3
C : ∅

L :u0 u1 u3
R : v1 v2
C : v3

L :u0 u3
R : v1 v3
C : ∅

L :u0 u3 u4 u5 u6 u8
R : v2 v3
C : ∅

L :u0 u1
R : v0 v1 v2
C : v3

L :u0
R : v0 v1 v3
C : ∅

L :u0 u4 u5 u6
R : v0 v2 v3
C : ∅

L :u0 u3
R : v1 v2 v3
C : ∅

L :u0
R : v0 v1 v2 v3
C : ∅

v0

v1

v2 v3

v1 v2 v3

v2 v3

v3

v2 v3 v3

v3v3

root node
maximal biclique
non-maximal biclique

w:

x:

root:v0 → u0 u1 u2 u4 u5 u6 u7

v1 → u0 u1 u2 u3

v2 → u0 u1 u3 u4 u5 u6 u7 u8

v3 → u0 u3 u4 u5 u6 u8 u9

u0 u1 u2

v2 1 1 0
v3 1 0 0

u0 u1 u2 u3

v0 1 1 1 0
v2 1 1 0 1
v3 1 0 0 1

p:

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

v0 v1 v2 v3

G0

G0 (adjlist)

CGbit0 CGbit1

s:

Fig. 7. Hybrid in-memory representation of CGs in MBE on the bipartite graph G0. We represent the entire graph using adjacency lists for memory efficiency.
When |L| of the current node is less than or equal to 4 and C is not empty, we create bitmaps dynamically. These bitmaps accelerate set intersections, enabling
faster generation of child nodes.

cannot achieve the best performance because the size of CGs
changes during enumeration as discussed in Section II.

In AdaMBE, our idea is to represent the original bipartite
graph using adjacency lists and create CGs on the fly using
bitmaps when the current CGs are small. Through efficient
bitwise operations on these bitmaps, we can accelerate set
intersections for MBE computations. Specifically, we cre-
ate bitmap-based CGs dynamically as the current CG tends
to shrink during enumeration. In Algorithm 1, each node
(L,R,C) only needs to access neighbors of vertices in L (line
#10) and C (lines #4,6,8). As L′ ⊂ L and C ′ ⊂ C, we can
infer that the CG induced by vertices in the child node (i.e., in
L′ and C ′) is always a subgraph of the CG induced by vertices
in the parent node (i.e., in L and C). Thus, we dynamically
create bitmap-based subgraphs when the CG is smaller than
our defined threshold and reuse them in the child nodes. In the
design, we need to answer the following two key questions.

(1) How do we create and utilize bitmap-based sub-
graphs? Given a node (L∗, R∗, C∗), we create a subgraph
CGbit(U

′, V ′, E′) using the bitmap from the original graph
G(U, V,E). To create U ′, we include all vertices in L∗ because
vertices in U \L∗ cannot exist in L′ and do not contribute to
intermediate results in Algorithm 1 (lines #4,6,8). To create
V ′, we include all vertices that connect with any vertex in
L∗ excluding vertices in R∗, denoted as

⋃︁
u∈L∗ N(u) − R∗.

This is because vertices that do not connect with any vertex
in L∗ cannot exist in C ′ or Γ(L′) and do not contribute to
intermediate results in Algorithm 1. We exclude vertices in
R∗ from V ′ since they always appear in R′ and Γ(L′) (line
#10) of all child nodes. This reduces redundant computations.

E′ contains all edges between U ′ and V ′. When the size of
U ′ (i.e., |L∗|) is bounded by a small constant τ , each set
intersection operation in lines #4,6-9,13 can be computed in
O(τ) = O(1) using bitwise AND operations. We compute
Γ(L′) by checking if L′ ∩ N(v) equals L′ for all vertices
v ∈ V ′. This node check takes O(τ∆(U)) = O(∆(U))
because V ′ contains at most τ∆(U) vertices, and each vertex
takes a set intersection in O(1). In summary, creating and
utilizing bitmap-based subgraphs enables efficient computation
of intermediate results in Algorithm 1, where each node takes
O(∆(U)) time in total.

(2) When do we create bitmap-based subgraphs? To op-
timize set intersection operations and improve computational
efficiency, we create bitmap-based subgraphs under two condi-
tions for the node (L∗, R∗, C∗): when |L∗| is less than or equal
to a threshold τ , and when C∗ is not empty. These conditions
are crucial because |L∗| directly affects the time required for
set intersections, while C∗ influences the reuse of the bitmap
in child nodes. However, selecting an appropriate threshold τ
is challenging. A larger τ increases set intersection time (i.e.,
O(τ)) and memory usage for each subgraph. Conversely, a
smaller τ leads to the creation of more small subgraphs, which
limits opportunities for bitmap reuse in child nodes. Hence, we
must strike a balance between the efficiency of set intersection
computations and the utilization of bitmaps when determining
τ . We empirically set the threshold τ to 64 (See Section IV-D).
This allows for efficient set intersection operations, as each
operation only requires a single bitwise AND between two
64-bit long long integers.

Example 3. Figure 7 illustrates the application of the hybrid
in-memory representation of CGs in MBE on the bipartite
graph G0. In this example, we set τ to 4. Initially, the graph G0

is represented using the adjacency list as the default method
(referred to as G0(adjlist)). When we enter node x, we observe
that |Lx| = 3 < τ , and thus create a bitmap-based subgraph
CGbit0. In CGbit0(U0, V0, E0), U0 contains all vertices in Lx,
namely u0, u1, and u2. V0 contains v2 and v3 since they have
connections with some vertices in Lx. However, v0 and v1
are not part of V0 because they belong to Rx. Consequently,
all child nodes of x can expedite set intersections by utilizing
the bitmap in CGbit0. Similarly, at node p, we create another
bitmap-based subgraph CGbit1, benefiting all child nodes of
node p. Although |Ls| = 4 = τ , we avoid creating the
subgraph at node s because Cs is empty, which means no
child node can reuse the bitmap.

C. Adaptive MBE Algorithm

Proposed AdaMBE. To explore an efficient MBE algorithm,
we propose AdaMBE as demonstrated in Algorithm 2. For
clarity, we highlight the utilization of local neighbor informa-
tion in blue and the bitwise AND (&) operations in red. Given
a bipartite graph G(U, V,E), AdaMBE initially sorts vertices
in V based on their degrees in ascending order (line #1) due to
its high efficiency as shown in Section IV-D. Next, AdaMBE
recursively calls the AdaMBE_search procedure. For large
CGs where |Lp| > τ , AdaMBE accelerates enumeration using
local neighborhood information (lines #8-23). This involves a
redesign of key operations in lines #9,12-16,18, leading to
reduced unnecessary vertex access, repetitive set operations,
and redundant nodes. Conversely, for small CGs with |Lp| ≤ τ
(lines #5-6, 24-40), AdaMBE expedites set operations using
bitwise AND (&) operations (lines #26,29,34,36). We set τ to
64 by default based on experimental results in Section IV-D.
Parallel version of AdaMBE. To enhance performance, we
devise a parallel version of AdaMBE called ParAdaMBE. It
harnesses the power of the Intel TBB library [26] to com-
pute multiple nodes concurrently in the enumeration tree. By
employing loop unrolling techniques, ParAdaMBE achieves
efficient parallelization of the for loops, maximizing compu-
tational performance.

Unlike existing MBE techniques that overlook the charac-
teristics of CGs, AdaMBE utilizes them to accelerate vertex
accesses and set operations. Additionally, by adapting to the
sizes of CGs, AdaMBE substantially improves performance
with high memory efficiency. Despite operating on CPUs with
limited parallel computational resources compared to GPUs,
AdaMBE remains competitive on datasets containing billions
of maximal bicliques, due to its efficient memory usage and
adaptive strategies.

IV. EVALUATION

A. Experimental Setup

Platform. We run all experiments on a machine equipped with
four Intel Xeon(R) Gold 5318Y 2.10GHz CPUs (24 cores

Algorithm 2: AdaMBE Algorithm
Input: Bipartite graph G(U, V,E)
Output: All maximal bicliques

1 Sort vertices in V based on their degrees in ascending order;
2 AdaMBE_search(U, ∅, V,G);
3 procedure AdaMBE_search(Lp, Rp, Cp, CGp):
4 if |Lp| ≤ τ and Cp is not empty then
5 Create bitmap CGbit(Ubit, Vbit, Ebit);
6 AdaMBE_search_bit(Lp, Rp, Cp, CGbit);
7 Return;

8 foreach v′ ∈ Cp do
9 Lq ← Np(v

′);
10 Rq ← Rp; Cq ← ∅;CGq ← ∅;
11 foreach vc ∈ Cp do
12 Nq(vc) ← Lq ∩ Np(vc);
13 CGq.insert(Nq(vc));
14 if Np(vc) = Nq(vc) then // Node prune
15 CGp.delete(Np(vc));

16 if Nq(vc) = Lq then
17 Rq ← Rq ∪ {vc};
18 else if Nq(vc) ̸= ∅ then
19 Cq ← Cq ∪ {vc};

20 if Rq = Γ(Lq) then
21 Output(Lq, Rq) as a maximal biclique;
22 AdaMBE_search(Lq, Rq, Cq, CGq)

23 free(CGq); Cp ← Cp \ {v′};

24 procedure AdaMBE_search_bit(Lp, Rp, Cp, CGbit):
25 foreach v′ ∈ Cp do
26 Lq ← Lp & Nbit(v

′);
27 is maximal← True;
28 foreach v′′ ∈ Vbit \ (Rp ∪ Cp) do
29 if Lq = Lp & Nbit(v

′′) then // Node check
30 is maximal← False;

31 if is maximal then // Node generation
32 Rq ← Rp; Cq ← ∅;
33 foreach vc ∈ Cp do
34 if Lq & Nbit(vc) = Lq then
35 Rq ← Rq ∪ {vc};
36 else if Lq & Nbit(vc) ̸= 0 then
37 Cq ← Cq ∪ {vc};

38 Output(Lq, Rq) as a maximal biclique;
39 AdaMBE_search_bit(Lq, Rq, Cq, CGbit)

40 Cp ← Cp \ {v′};

per CPU), 128GB of main memory, and an NVIDIA A100
GPU [27] with 40GB of global memory. The CPUs have a
combined system bandwidth of 204.8 GB/s, achieved through
8 memory channels operating at 25.6 GB/s each [28]. In
contrast, the A100 GPU delivers a significantly higher system
bandwidth of 1,555 GB/s [29]. The operating system is Linux
kernel-5.4.0.
Baselines. We evaluate both serial and parallel MBE algo-
rithms. For serial algorithms, we compare AdaMBE against
three state-of-the-art algorithms: FMBE [15], PMBE [16],
and OOMBEA [18]. We run these algorithms on a single

TABLE I
REAL-WORLD DATASET STATISTICS.

General Datasets Category Type |U(G)| |V (G)| |E(G)| Maximal Bicliques
Unicode (UL) Feature Country-Hosts-Language 614 254 1,255 460
UCforum (UF) Intersection User-Post-Forum 899 522 7,089 16,261

MovieLens (Mti) Feature Tag-Assignment-Movie 16,528 7,601 71,154 140,266
Teams (TM) Affiliation Athlete-Membership-Team 901,130 34,461 1,366,466 517,943

ActorMovies (AM) Affiliation Movie-Appearance-Actor 383,640 127,823 1,470,404 1,075,444
Wikipedia (WC) Feature Article-Inclusion-Category 1,853,493 182,947 3,795,796 1,677,522
YouTube (YG) Affiliation User-Membership-Group 94,238 30,087 293,360 1,826,587

StackOverflow (SO) Rating User-Favorite-Post 545,195 96,680 1,301,942 3,320,824
DBLP (Pa) Authorship Author-Authorship-Publication 5,624,219 1,953,085 12,282,059 4,899,032
IMDB (IM) Affiliation Movie-Appearance-Actor 896,302 303,617 3,782,463 5,160,061

BookCrossing (BX) Interaction User-Rating-Book 340,523 105,278 1,149,739 54,458,953
Github (GH) Authorship User-Membership-Project 120,867 56,519 440,237 55,346,398

Large Datasets Category Type |U(G)| |V (G)| |E(G)| Maximal Bicliques
CebWiki (ceb) Authorship User-Edit-Article 8,483,068 3,132 11,792,890 263,138,916

TVTropes (DBT) Feature Work-HasFeature-Trope 87,678 64,415 3,232,134 19,636,996,096

0.01
0.1

1
10

100
1k

10k
100k

UL UF Mti TM AM WC YG SO Pa IM BX GH

0.01
0.1

1
10

100
1k

10k
100k

R
u

n
n

in
g

 t
im

e
 (

s
)

AdaMBE FMBE PMBE ooMBEA ParAdaMBE ParMBE GMBE

(a) Running time (log scaled).

10

100

1k

10k

UL UF Mti TM AM WC YG SO Pa IM BX GH

10

100

1k

10k

M
e

m
o
ry

 u
s
a
g

e
 (

M
B

)

AdaMBE FMBE PMBE ooMBEA ParAdaMBE ParMBE GMBE

(b) Memory usage (log scaled).

Fig. 8. Overall evaluation on twelve general datasets. Parallel MBE algorithms are represented with diagonal lines.

core. For parallel algorithms, we compare ParAdaMBE with
two advanced algorithms: ParMBE [15] and GMBE [21]. We
run ParAdaMBE and ParMBE on a 96-core CPU machine
using 96 threads, and GMBE on an A100 GPU. We obtain
all competitors in the repository [30] and run them with the
default configurations in their papers. We default τ to 64 in
our AdaMBE and ParAdaMBE.
Datasets. We utilize both real-world and synthetic datasets.
Real-world datasets are sourced from the KONECT reposi-
tory [25], encompassing diverse domains. Table I summarizes
the statistics of these datasets, comprising twelve commonly
used general datasets in recent research [15], [16], [18], [21],
along with two large datasets containing over 200 million
maximal bicliques. We arrange all datasets in ascending order
based on their maximal biclique count and designate the vertex
set with fewer vertices as V , as done in [21]. Synthetic datasets
are generated by sampling edges from the extensive LiveJour-

nal dataset (|U |=7,489,073, |V |=3,201,203, |E|=112,307,385),
which is also obtained from the KONECT repository.
Metrics. We measure the running time and memory usage for
all competitors on the datasets. The running time excludes the
graph loading from the disk and the memory usage represents
the maximum memory occupation of the corresponding pro-
cess. Given that certain algorithms may require considerable
time for execution, we have set a 48-hour time limit to prevent
Time Limit Exceeded (TLE) errors, as done in [18].

B. Overall Evaluation

General datasets. Figure 8(a) shows that our serial algo-
rithm, AdaMBE, consistently outperforms the next-best serial
competitor by 1.6×−49.7× on average, and our parallel
algorithm, ParAdaMBE, is 1.3×−33.7× faster than other
parallel competitors. Particularly, on the most time-consuming
dataset, Github, AdaMBE completes the task in 194 seconds,

Parallel algorithmsSerial algorithms

0

2

4

6

8

10

AdaMBE
FMBE

PMBE
ooMBEA

ParAdaMBE

ParMBE
GMBE

0

2

4

6

8

10
R

u
n

n
in

g
 t

im
e

 (
h

)

572s

1.9h

5.5h

9.8h

79s
1.3h

OOM

(a) Evaluation on CebWiki. We report the running time of all competitors
excluding GMBE, which runs out of memory (OOM).

Parallel algorithmsSerial algorithms

0

AdaMBE
FMBE

PMBE
ooMBEA

ParAdaMBE

ParMBE
GMBE

0

5b

10b

15b

20b

25b

M
a

x
im

a
l
b

ic
liq

u
e

s

19.6b (all)

365m 372m 477m

19.6b (all)

1.7b

13.1b

(44.8h)

(TLE) (TLE) (TLE)

(6.4h)

(TLE)

(TLE)

(b) Evaluation on TVTropes. We report the maximal biclique count after 48
hours. The acronym “TLE” stands for “Time Limit Exceeded.”

Fig. 9. Overall evaluation on two large datasets.

while the other serial competitors require over 9,638 sec-
onds. Similarly, ParAdaMBE finishes in 40 seconds, while
the other parallel competitors take over 132 seconds. By
effectively utilizing the characteristics of CGs, our 96-thread
CPU algorithm ParAdaMBE is even up to 5.07× faster than
the cutting-edge GPU algorithm GMBE on an A100 GPU
on StackOverflow, BookCrossing, and Github. ParAdaMBE
underperforms GMBE on TM, AM, and Pa because they
contain a large number of small workloads, which are well-
suited for extensive parallel processing on GPUs.

Figure 8(b) shows that AdaMBE reduces memory usage by
28.0% and 29.8% on average, respectively, compared to serial
algorithms such as PMBE and OOMBEA. In comparison to
parallel algorithms like ParMBE and GMBE, ParAdaMBE
diminishes memory consumption by 29.7% and 96.4% on
average, respectively. GMBE requires the largest memory due
to its pre-allocation of memory for thousands of threads on
the GPU [21]. Although FMBE performs slightly better than
AdaMBE in terms of memory usage, its running time signifi-
cantly lags behind AdaMBE. Consequently, we can conclude
our approaches achieve notable performance improvements
while maintaining high memory efficiency.
Large datasets. We further evaluate our algorithms on large
datasets with over 200 million maximal bicliques. Figure 9(a)
shows that all other competitors take several hours to fin-
ish MBE on the CebWiki dataset, while our AdaMBE
and ParAdaMBE require 572 seconds and 79 seconds, re-
spectively. As no existing competitor completes enumeration
within TLE on the TVTropes dataset with 19.6 billion maximal
bicliques, we report the maximal biclique counts for all
algorithms after 48 hours. Figure 9(b) shows that the GPU
algorithm GMBE enumerates 66.5% of the total maximal
bicliques, while other competitors enumerate less than 8.5%
within 48 hours. Notably, AdaMBE and ParAdaMBE enu-
merate all maximal bicliques in 44.8 hours and 6.4 hours,

1

10

100

1k

10k

AM WC YG SO Pa IM BX GH

1

10

100

1k

10k

R
u

n
n

in
g

 t
im

e
 (

s
) Baseline

AdaMBE-LN
AdaMBE-BIT
AdaMBE

(a) Running time (log scaled).

0

200

400

600

800

1000

AM WC YG SO Pa IM BX GH
0

200

400

600

800

1000

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

Baseline
AdaMBE-LN
AdaMBE-BIT
AdaMBE

(b) Memory usage.

0

0.2

0.4

0.6

0.8

1

UL UF Mti TM AM WC YG SO Pa IM BX GH
0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 n

o
d

e
s

Baseline - non-maximal bicliques
Baseline - maximal bicliques

AdaMBE-LN - non-maximal bicliques
AdaMBE-LN - maximal bicliques

(c) Node pruning efficiency of LN. AdaMBE-LN efficiently reduces the nodes
with non-maximal bicliques.

0

0.2

0.4

0.6

0.8

1

UL UF Mti TM AM WC YG SO Pa IM BX GH
0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 t

im
e

Baseline - small nodes
Baseline - large nodes

AdaMBE-BIT - small nodes
AdaMBE-BIT - large nodes

(d) Time breakdown of BIT. Small nodes represent the nodes with |L| smaller
than τ . AdaMBE-BIT reduces the running time of these nodes.

Fig. 10. Breakdown Analysis.

respectively, significantly outperforming existing competitors.

C. Breakdown Analysis

For simplicity, we denote the approach discussed in Sec-
tion III-A as LN (indicating the utilization of Local Neighbor-
hood information), and the approach in Section III-B as BIT
(representing the use of BITmap on small subgraphs). We eval-
uate their effectiveness using three AdaMBE variants: Base-
line (disabling both LN and BIT in AdaMBE), AdaMBE-LN
(enabling LN only), and AdaMBE-BIT (enabling BIT only).
Running time and memory usage. Figure 10(a) shows both
LN and BIT consistently accelerate Baseline on eight larger
datasets. AdaMBE outperforms other variants by combining
both approaches effectively. Notably, on Github, AdaMBE re-
duces the running time of Baseline from 3,911 seconds to 194
seconds. Figure 10(b) illustrates that LN increases memory
usage due to storing local neighbors at runtime. However, since
MBE is a computationally intensive task, utilizing limited
memory to expedite computation is a reasonable trade-off. For

32 64 96 128160192224256
0

500

1000

1500

2000

Threshold τ

R
u

n
n

in
g

 t
im

e
 (

s
)

AdaMBE-BIT

(a) BookCrossing.

32 64 96 128160192224256
0

1000

2000

3000

4000

Threshold τ

R
u

n
n

in
g

 t
im

e
 (

s
)

AdaMBE-BIT

(b) Github.

Fig. 11. Impact of threshold (τ) in BIT.

AdaMBE-ASC AdaMBE-RAND AdaMBE-UC

0

2

4

6

8

10

12

AM WC YG Pa
0

2

4

6

8

10

12

R
u

n
n

in
g

 t
im

e
 (

s
)

0

50

100

150

200

250

SO IM BX GH
0

50

100

150

200

250
R

u
n

n
in

g
 t

im
e

 (
s
)

Fig. 12. Impact of vertex ordering.

all datasets, AdaMBE requires less than 1.3 GB of memory
(on CebWiki), which is acceptable for a contemporary server.
Effect of the LN approach. LN enhances three key operations
using local neighborhood information. We assess the effective-
ness of these three aspects respectively. First, LN eliminates
all vertex accesses outside computational subgraphs, reducing
over 90% of vertex accesses across most datasets, as demon-
strated in Figure 5 of Section II-C. Second, LN eliminates
all repetitive set intersections for computing set L, as detailed
in Section III-A. Third, LN exhibits node pruning efficiency
in Figure 10(c): it reduces 25% of nodes with non-maximal
bicliques on average across twelve general datasets.
Effect of the BIT approach. BIT targets accelerating com-
putation for small nodes (L,R,C) whose |L| is equal to or
less than the threshold τ . Figure 10(d) shows the running
time breakdown of Baseline and AdaMBE-BIT on twelve
general datasets. While the computation time for large nodes
remains the same in Baseline and AdaMBE-BIT, BIT reduces
computation time for small nodes by over 50% across most
datasets. Note that BIT achieves a remarkable 91% reduction
on Github, resulting in a 10.7× acceleration of AdaMBE-BIT
compared to Baseline.

D. Sensitivity Analysis

Impact of threshold (τ) in the BIT approach. Figure 11
shows the performance of AdaMBE-BIT with various values
of τ on two datasets; other datasets exhibit similar trends. As τ
increases from 4 to 64, the running time consistently decreases
due to fewer created subgraphs and increased opportunities for
reusing bitmaps. Notably, when τ is not greater than 64, the set
intersection time remains unchanged, as each set intersection
only requires a single bitwise AND operation between two
64-bit long long integers. However, when τ exceeds 64, the
running time increases due to the additional time required for
each set intersection. Furthermore, the running time is shorter

TABLE II
SYNTHETIC DATASET STATISTICS. “LJX” REPRESENTS X% OF

LIVEJOURNAL’S EDGES ARE USED.

Datasets |U(G)| |V (G)| |E(G)| Max. Bicliques
LJ10 2,301,031 1,421,088 11,227,130 7,430,705
LJ20 2,704,651 2,357,485 22,456,757 61,836,924
LJ30 3,163,966 2,889,804 33,686,334 343,257,225
LJ40 3,894,262 2,992,774 44,917,368 1,524,229,722
LJ50 4,572,628 3,057,410 56,150,150 6,387,845,280

LJ10 LJ20 LJ30 LJ40 LJ50
10

100

1k

10k

100k

R
u

n
n

in
g

 t
im

e
 (

s
)

PMBE
FMBE
ooMBEA
AdaMBE

TLE

Fig. 13. Impact of dataset size (log scaled).

1 4 8 16 32 6496

100

1k

10k

100k

The number of threads

R
u

n
n

in
g

 t
im

e
 (

s
)

ParMBE
ParAdaMBE

(a) Github

1 4 8 16 32 6496

100

1k

10k

The number of threads

R
u
n
n
in

g
 t
im

e
 (

s
)

ParMBE
ParAdaMBE

(b) CebWiki

Fig. 14. Impact of number of threads (log scaled).

when τ is a multiple of 64, as these cases enhance bitmap
reuse without increasing the time for each set intersection.
Consequently, AdaMBE defaults τ to 64.
Impact of vertex ordering. Figure 12 shows the performance
of AdaMBE with three vertex ordering schemes. AdaMBE-
ASC sorts vertices in ascending order based on their degrees,
AdaMBE-RAND sorts vertices randomly, and AdaMBE-
UC employs the unilateral order proposed by recent work
OOMBEA [18], which introduces additional overhead due
to the computation of their proposed “k unilateral core.”
Across eight large general datasets, we consistently observe
that AdaMBE-ASC outperforms both AdaMBE-RAND and
AdaMBE-UC. Consequently, we choose AdaMBE-ASC as
the default vertex ordering.
Impact of dataset size. We assess the efficiency of AdaMBE
using five synthetic datasets listed in Table II. Figure 13
shows AdaMBE outperforms all serial competitors by over
11.4×. Note that the absence of plotted points in the figure
indicates the running time exceeds the time limit (TLE).
Only AdaMBE completes MBE on LJ50, with over 6 billion
maximal bicliques, in just 6.6 hours, while other competitors
fail to complete it within 48 hours. These results indicate that
AdaMBE is the optimal choice for large datasets.
Impact of number of threads. Figure 14 shows the perfor-
mance of ParAdaMBE and ParMBE with 1 to 96 threads.
Each thread is assigned to a separate CPU core. Our machine
is equipped with 8 independent memory channels, providing

a total system bandwidth of 204.8GB/s. ParAdaMBE always
outperforms ParMBE on both Github and CebWiki. Addition-
ally, the running time decreases sub-linearly as the number
of threads increases, indicating its good performance across
various thread configurations.

V. RELATED WORK

Maximal biclique enumeration. Many MBE algorithms ac-
celerate the enumeration process by optimizing search or-
der [6], [16], [18], pruning unproductive nodes [6], [16],
[18], and utilizing parallelization [15], [21]. Recent researchers
focus on variants of the MBE problem, such as (p, q) biclique
enumeration [11], [12], [31], maximal similar biclique enumer-
ation [32], fair biclique enumeration [33], maximal τ -biclique
enumeration on uncertain graphs [34], and maximum biclique
finding [2], [3], [16], [35]–[37]. However, all these algorithms
neglect the local neighborhood information of computational
subgraphs. In contrast, we utilize this information to accelerate
key operations in enumeration and expedite set intersections
on small subgraphs using bitmaps. Moreover, our AdaMBE
can be applied to various biclique finding problems, includ-
ing finding maximum edge biclique [3], maximum balanced
biclique [36], and personalized maximum biclique [4].
Graph representation and redundancy optimization. Previ-
ous studies employ various methods for graph representation,
including bitmaps [6], [23], adjacency lists [38]–[42], and
hash tables [15]. However, these approaches often struggle
to achieve both computation and memory efficiency simulta-
neously. In contrast, our approach employs hybrid representa-
tions, utilizing adjacency lists for large graphs to save memory
and bitmaps for smaller graphs to speed up computation. Our
hybrid representation can be easily used for various subgraph
enumeration problems like maximal clique enumeration [43],
maximal quasi-clique enumeration [44], and (p,q)-clique enu-
meration [12]. This is because, like the MBE problem, their
computational subgraphs shrink during enumeration. While re-
cent graph mining algorithms focus on reducing redundancies
either at the set [38], [45] or enumeration node [18] levels,
we leverage the local neighborhood information to address
redundancies at the vertex, set operation, and enumeration
node levels at the same time.

VI. CONCLUSION

Maximal biclique enumeration (MBE) has posed a signifi-
cant challenge in the analysis of large-scale bipartite graphs.
In this paper, we propose AdaMBE, a novel adaptive MBE
approach for enumerating billions of maximal bicliques on
CPUs. AdaMBE utilizes local neighborhood information in
computational subgraphs to reduce unnecessary vertex ac-
cesses, repetitive set intersections, and useless node enumer-
ation. Furthermore, it applies an adaptive hybrid in-memory
representation (i.e., adjacency lists and bitmaps) for compu-
tational subgraphs to achieve both computation and memory
efficiency. Our results show that AdaMBE is 1.6×−49.7×
faster than its closest competitor and is capable of handling

large datasets with billions of maximal bicliques. Our 96-
thread CPU algorithm ParAdaMBE is up to 5.07× faster than
the cutting-edge GPU algorithm GMBE on an A100 GPU for
three time-consuming datasets out of twelve general datasets.

Note that although AdaMBE is designed to run on CPUs,
it can also be extended to a GPU implementation. We leave
the exploration of AdaMBE on GPUs for future work.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous re-
viewers for their valuable comments and feedbacks. This
work was supported in part by the National Key Re-
search and Development Program of China under Grant
2023YFB4502100, the Major Projects of Zhejiang Province
under Grant LD24F020012, the National Science Founda-
tion of China under Grant 62172361, the National Key
Research and Development Program of China under Grant
2021ZD0110700, and the US National Science Foundation
under CNS 2216108.

REFERENCES

[1] M. Allahbakhsh, A. Ignjatovic, B. Benatallah, S.-M.-R. Beheshti,
E. Bertino, and N. Foo, “Collusion detection in online rating systems,” in
Web Technologies and Applications: 15th Asia-Pacific Web Conference
(APWeb), 2013, pp. 196–207.

[2] B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou, “Maximum
biclique search at billion scale,” Proceedings of the VLDB Endowment
(PVLDB), vol. 13, no. 9, pp. 1359–1372, 2020.

[3] ——, “Maximum and top-k diversified biclique search at scale,” The
VLDB Journal, vol. 31, no. 6, pp. 1365–1389, 2022.

[4] K. Wang, W. Zhang, X. Lin, L. Qin, and A. Zhou, “Efficient personalized
maximum biclique search,” in IEEE 38th International Conference on
Data Engineering (ICDE), 2022, pp. 498–511.

[5] Z. Li, P. Hui, P. Zhang, J. Huang, B. Wang, L. Tian, J. Zhang, J. Gao,
and X. Tang, “What happens behind the scene? towards fraud com-
munity detection in e-commerce from online to offline,” in Companion
Proceedings of the Web Conference, 2021, pp. 105–113.

[6] Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker, E. J. Chesler, and
M. A. Langston, “On finding bicliques in bipartite graphs: A novel
algorithm and its application to the integration of diverse biological data
types,” BMC bioinformatics, vol. 15, no. 1, p. 110, 2014.

[7] T. Siswantining, A. Bustamam, O. Swasti, and H. S. Al-Ash, “Analysis
and prediction of protein interactions between hiv-1 protein and human
protein using lcm-mbc algorithm combined with association rule min-
ing,” Communications in Mathematical Biology and Neuroscience, vol.
2021, p. 64, 2021.

[8] Y. Liu, “Computational methods for identifying microrna-gene regu-
latory modules,” in Handbook of Statistical Bioinformatics, 2022, pp.
187–208.

[9] T. Alzahrani and K. Horadam, “Finding maximal bicliques in bipartite
networks using node similarity,” Applied Network Science (ANS), vol. 4,
pp. 1–25, 2019.

[10] Z. Chen, Y. Zhao, L. Yuan, X. Lin, and K. Wang, “Index-based biclique
percolation communities search on bipartite graphs,” in IEEE 39th
International Conference on Data Engineering (ICDE), 2023, pp. 2699–
2712.

[11] J. Yang, Y. Peng, and W. Zhang, “(p, q)-biclique counting and enu-
meration for large sparse bipartite graphs,” Proceedings of the VLDB
Endowment (PVLDB), vol. 15, no. 2, pp. 141–153, 2021.

[12] J. Yang, Y. Peng, D. Ouyang, W. Zhang, X. Lin, and X. Zhao, “(p,
q)-biclique counting and enumeration for large sparse bipartite graphs,”
The VLDB Journal, pp. 1–25, 2023.

[13] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and B. Simeone,
“Consensus algorithms for the generation of all maximal bicliques,”
Discrete Applied Mathematics, vol. 145, no. 1, pp. 11–21, 2004.

[14] Y. He, R. Li, and R. Mao, “An optimized mbe algorithm on sparse
bipartite graphs,” in International Conference on Smart Computing and
Communication (SmartCom), 2018, pp. 206–216.

[15] A. Das and S. Tirthapura, “Shared-memory parallel maximal biclique
enumeration,” in IEEE 26th International Conference on High Perfor-
mance Computing, Data, and Analytics (HiPC), 2019, pp. 34–43.

[16] A. Abidi, R. Zhou, L. Chen, and C. Liu, “Pivot-based maximal biclique
enumeration,” in Proceedings of the 29th International Conference on
International Joint Conferences on Artificial Intelligence (IJCAI), 2020,
pp. 3558–3564.

[17] C. Qin, M. Liao, Y. Liang, and C. Zheng, “Efficient algorithm for
maximal biclique enumeration on bipartite graphs,” in Advances in
Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-
FSKD), vol. 1075, 2020, pp. 3–13.

[18] L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, “Efficient maximal biclique
enumeration for large sparse bipartite graphs,” Proceedings of the VLDB
Endowment (PVLDB), vol. 15, no. 8, pp. 1559–1571, 2022.

[19] Z. Ma, Y. Liu, Y. Hu, J. Yang, C. Liu, and H. Dai, “Efficient maintenance
for maximal bicliques in bipartite graph streams,” World Wide Web,
vol. 25, no. 2, pp. 857–877, 2022.

[20] R. Sun, Y. Wu, C. Chen, X. Wang, W. Zhang, and X. Lin, “Maximal
balanced signed biclique enumeration in signed bipartite graphs,” in
IEEE 38th International Conference on Data Engineering (ICDE), 2022,
pp. 1887–1899.

[21] Z. Pan, S. He, X. Li, X. Zhang, R. Wang, and G. Chen, “Efficient max-
imal biclique enumeration on gpus,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2023, pp. 1–13.

[22] G. Liu, K. Sim, and J. Li, “Efficient mining of large maximal bicliques,”
in International Conference on Data Warehousing and Knowledge
Discovery (DaWaK), 2006, pp. 437–448.

[23] J. Li, G. Liu, H. Li, and L. Wong, “Maximal biclique subgraphs and
closed pattern pairs of the adjacency matrix: A one-to-one correspon-
dence and mining algorithms,” IEEE Transactions on Knowledge and
Data Engineering (TKDE), vol. 19, no. 12, pp. 1625–1637, 2007.

[24] A. P. Mukherjee and S. Tirthapura, “Enumerating maximal bicliques
from a large graph using mapreduce,” IEEE Transactions on Services
Computing, vol. 10, no. 5, pp. 771–784, 2016.

[25] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings
of the 22nd international conference on world wide web (WWW), 2013,
pp. 1343–1350.

[26] Intel, “oneapi threading building blocks,” https://github.com/oneapi-src/
oneTBB, 2024.

[27] NVIDIA, “Nvidia a100 tensor core gpu,” https://www.nvidia.com/en-gb/
data-center/a100/, 2024.

[28] Samsung, “M393a2k43db3-cwe,” https://semiconductor.samsung.com/
dram/module/rdimm/m393a2k43db3-cwe/, 2024.

[29] NVIDIA, “Nvidia a100 tensor core gpu specification,”
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf, 2024.

[30] Z. Pan, https://github.com/ISCS-ZJU/GMBE, 2023.
[31] X. Ye, R.-H. Li, Q. Dai, H. Qin, and G. Wang, “Efficient biclique count-

ing in large bipartite graphs,” Proceedings of the ACM on Management
of Data, vol. 1, no. 1, pp. 1–26, 2023.

[32] K. Yao, L. Chang, and J. X. Yu, “Identifying similar-bicliques in bipartite
graphs,” Proceedings of the VLDB Endowment (PVLDB), vol. 15, no. 11,
pp. 3085–3097, 2022.

[33] Z. Yin, Q. Zhang, W. Zhang, R.-H. Li, and G. Wang, “Fairness-
aware maximal biclique enumeration on bipartite graphs,” in IEEE 39th
International Conference on Data Engineering (ICDE), 2023, pp. 1665–
1677.

[34] J. Wang, J. Yang, Z. Ma, C. Zhang, S. Yang, and W. Zhang, “Efficient
maximal biclique enumeration on large uncertain bipartite graphs,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), 2023.

[35] J. Wang, J. Yang, C. Zhang, and X. Lin, “Efficient maximum edge-
weighted biclique search on large bipartite graphs,” IEEE Transactions
on Knowledge and Data Engineering (TKDE), 2022.

[36] L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, “Efficient exact algorithms for
maximum balanced biclique search in bipartite graphs,” in Proceedings
of the International Conference on Management of Data (SIGMOD),
2021, pp. 248–260.

[37] Y. Zhao, Z. Chen, C. Chen, X. Wang, X. Lin, and W. Zhang, “Finding
the maximum k-balanced biclique on weighted bipartite graphs,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), 2022.

[38] T. Shi, M. Zhai, Y. Xu, and J. Zhai, “Graphpi: High performance
graph pattern matching through effective redundancy elimination,” in

International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2020, pp. 1–14.

[39] X. Chen, R. Dathathri, G. Gill, L. Hoang, and K. Pingali, “Sandslash: A
two-level framework for efficient graph pattern mining,” in Proceedings
of the ACM International Conference on Supercomputing (ICS), 2021,
p. 378–391.

[40] X. Chen et al., “Efficient and scalable graph pattern mining on gpus,”
in 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2022, pp. 857–877.

[41] T. Shi, J. Zhai, H. Wang, Q. Chen, M. Zhai, Z. Hao, H. Yang, and
W. Chen, “Graphset: High performance graph mining through equivalent
set transformations,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
2023.

[42] M. Almasri, I. E. Hajj, R. Nagi, J. Xiong, and W.-m. Hwu, “Parallel k-
clique counting on gpus,” in Proceedings of the 36th ACM International
Conference on Supercomputing (ICS), 2022, pp. 21:1–21:14.

[43] M. Almasri, Y.-H. Chang, I. E. Hajj, R. Nagi, J. Xiong, and W.-m.
Hwu, “Parallelizing maximal clique enumeration on gpus,” in 32nd
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2023, pp. 162–175.

[44] L. Qiao, R. Li, Z. Zhang, Y. Yuan, G. Wang, and H. Qin, “Maximal
quasi-cliques mining in uncertain graphs,” IEEE Transactions on Big
Data, vol. 9, no. 1, pp. 37–50, 2023.

[45] C. Gui, X. Liao, L. Zheng, and H. Jin, “Cyclosa: Redundancy-free
graph pattern mining via set dataflow,” in USENIX Annual Technical
Conference (ATC), 2023, pp. 71–85.

