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Abstract—Traditional in-memory graph storage systems have
limited scalability due to the limited capacity and volatility of
DRAM. Emerging persistent memory (PMEM), with large
capacity and non-volatility, provides us an opportunity to
realize the scalable and high-performance graph stores. However,
directly moving existing DRAM-based graph storage systems to
PMEM would cause serious PMEM access inefficiency issues,
including high read and write amplification in PMEM and costly
remote PMEM accesses across NUMA nodes, thus leading to the
performance bottleneck. In this paper, we propose XPGraph,
a PMEM-based graph storage system for managing large-
scale evolving graphs, by developing an XPLine-friendly graph
access model with vertex-centric graph buffering, hierarchical
vertex buffer managing, and NUMA-friendly graph accessing.
Experimental results show that XPGraph achieves 3.01× to
3.95× higher update performance and up to 4.46× higher query
performance, compared with the state-of-the-art in-memory
graph storage system implemented on a PMEM-based system.

Keywords-graph processing; persistent/non-volatile memory;
storage systems;

I. INTRODUCTION

In recent years, graph storage systems have attracted wide

attention [14], [32], [48], [49], [62], [63], as a well-designed

graph store is essential to support high-performance graph

update and graph analysis. The most commonly used in-

memory storage formats for evolving graphs include: (1) edge

list [60], [61], which stores each edge as a record and can

support efficient data ingestion for evolving graph situations,

but suffers low query performance, and (2) adjacency list [4],

[22], [55], [84], which puts all neighbors of a vertex

in together, thus supporting efficient graph queries, but

not benefiting fast graph updates. The most recent work

GraphOne [36] combines the above two complementary

graph storage formats to a hybrid store, thus supporting

efficient graph updates and queries.

∗Shuibing He is the corresponding author.

However, as graphs get larger and larger, these in-memory

graph systems face scalability issues due to the limited

DRAM capacity. For example, GraphOne fails to run on

the medium-sized graph Yahoo Web [80] with 6.6 billion

edges by using a server with 128 GB DRAM, for the out-of-

memory error. Therefore, many distributed graph systems [7],

[8], [25], [42], [46], [83] and disk-based graph systems [23],

[33], [38], [40], [57], [71], [74], [85] are designed to handle

large graphs by placing them on clusters of machines or on

disk, respectively. But these systems also face performance

issues of high communication cost between cluster machines

or high I/O cost of internal and external memory interaction.

Furthermore, to keep crash consistency, graph updates need

to be persisted to the durable disk, incurring extra I/O

persistence and recovery cost.

Recently, the research for persistent memory (PMEM)

has gained a great breakthrough with the release of Intel

Optane Persistent Memory [50], to make the scalable PMEM

with larger storage capacity finally commercially available.

It provides us another way to solve the scalability problem

of in-memory graph stores, and is expected to achieve high-

performance graph stores for large-scale evolving graphs,

and meanwhile realizing the data persistence.

However, directly moving existing DRAM-based graph

systems to PMEM would suffer from a severe performance

drop, for the completely different performance characteristics

between DRAM and PMEM. For instance, when we use

GraphOne to import the Friendster graph [24], it costs 6.37×
time on PMEM than that on DRAM. We also find that,

besides the hardware performance gap between PMEM and

DRAM, software designs are the main causes of the perfor-

mance degradation. First, DRAM-based graph systems often

produce a lot of intensive small random writes, e.g., 4-byte

vertex IDs, to different adjacency lists of different vertices.

These random writes do not largely impact the performance

of DRAM-based systems for DRAM’s high random write
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performance, but each 4-byte random write to PMEM may

bring a 256-byte XPLine read-modify-write operation, thus

causing the serious read and write amplification problem

and becoming the performance bottleneck. Second, non-

uniform memory access (NUMA) architecture is a necessity

for providing massive bandwidth and capacity of PMEM, for

the limited DIMM slots and cores in a single CPU [73]. But

the latency of cross-NUMA access of PMEM is much higher

than that of DRAM, especially in the case of multi-threaded

accessing [81], which further exacerbates the PMEM access

efficiency problem of current in-memory graph systems.
Various design efforts have been made recently to carefully

manage the data stored in PMEM and improve the PMEM

access efficiency, which include PMEM allocators [3], [5],

[18], [43], [52], [59], PMEM indexes [9], [11], [31], [41],

PMEM based key-value stores [12], [30], [77], and PMEM

based file systems [10], [13], [20], [78]. However, as graph

systems have different access patterns compared to the above

systems, i.e., highly random accesses and poor data locality, it

is inefficient to directly apply the above efforts to graph stores.

Therefore, it is necessary to design a dedicated PMEM-based

graph storage system for efficiently handling the large-scale

evolving graphs.
An intuitive solution to the read-write amplification prob-

lem is to use DRAM as buffers to cache and merge data

updates to PMEM, but its application to dynamic graphs

is non-trivial for following challenges. First, edge updates

for evolving graphs have poor data locality, which makes it

difficult to design an efficient buffering strategy. And the data

stored in DRAM buffers would be lost after a power outage,

which may lead to data inconsistency issues. Second, the large

performance benefits obtained by buffering strategies are

often accompanied by high DRAM space requirements, which

may limit system scalability. Besides, a simple buffering

strategy can not reduce the high cost of remote PMEM

accesses across NUMA nodes under multi-threading.
To address the challenges above and improve the graph

data access efficiency, we develop XPGraph, an efficient

PMEM-based graph storage system for larger-scale evolving

graphs, by adopting an XPLine-friendly graph access model.
XPGraph mainly focuses on reducing the high PMEM access

costs during the graph ingestion process, which includes

relieving the heavy PMEM read and write amplification, and

avoiding the remote PMEM accesses across NUMA nodes.

In summary, our main contributions are as follows.

• We propose a vertex-centric graph buffering strategy,

that allocates a DRAM vertex buffer to temporarily

cache some edge updates for each vertex, and flushes

the entire buffer to PMEM when it is full, thus merging

multiple XPLine accesses to PMEM into single XPLine

access. We also introduce a periodical flushing strategy
for fine-grained edge-level consistency guarantees.

• We design a hierarchical vertex buffer managing scheme,

which dynamically adjusts the size of each vertex buffer

according to the changes of the vertex degree, thus

reducing the DRAM space overhead, while maintaining

the performance benefits. We also adopt a buddy-liked
memory pool managing strategy to reduce the memory

allocation/free cost of these vertex buffers.

• We introduce a NUMA-friendly graph accessing method,

which separately places the different graph data in

different NUMA nodes and binds the processing threads

to cores of the corresponding node, thus completely

avoiding the remote PMEM accesses across NUMA.

• We implement the prototype XPGraph and conduct

extensive experiments to demonstrate its efficiency.

Results show that XPGraph achieves 3.01× to 3.95×
higher ingestion rate as well as up to 4.46× higher query

rate, compared with the state-of-the-art in-memory graph

storage system implemented on a PMEM-based system.

The rest of this paper is organized as follows. In §II,

we first introduce characteristics of PMEM, the commonly

used graph storage formats in DRAM, and analyze the

limitations of directly moving DRAM-based graph stores

to real PMEM. In §III and §IV, we present the design and

implementation details of XPGraph, respectively. In §V, we

show the evaluation results. Finally, §VI reviews related work

and §VII concludes.

II. BACKGROUND AND MOTIVATION

We first introduce the characteristics of the emerging

persistent memory (PMEM) and how it differs from the

traditional DRAM. Then we illustrate the storage format and

access process of the DRAM-based graph storage strategy,

by taking the state-of-the-art dynamic graph storage system

GraphOne [36] as the study case. Finally, we analyze

the limitations of DRAM-based graph storage strategy in

supporting PMEM resident evolving graphs.

A. Persistent Memory

We take the latest PMEM product, i.e., Intel Optane

Persistent Memory 200 Series (abbreviated as Optane in the

rest of the paper), as the study case, to introduce the access

process and the performance characteristics of PMEM-based

systems. As shown in Fig.1(a), Optane sits on the memory bus

(a) Optane DIMM (b) Write data process

Figure 1. Intel Optane Persistent Memory 200 Series.

1309

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:11 UTC from IEEE Xplore.  Restrictions apply. 



(a) Example graph (b) Hybrid graph storage format (c) Graph ingestion process

Figure 2. Storage and access process in GraphOne

like normal DRAM, and communicates with the processor’s

iMC (integrated memory controller). Data updates would first

be written to the CPU caches, and then flushed to PMEM in

cache line granularity. PMEM systems support one of two

persistent modes: (1) Asynchronous DRAM Refresh (ADR)

mode, in which the programmers must explicitly flush cache

lines to ensure crash consistency. (2) Extended ADR (eADR)

mode, in which the CPU caches are also included in the

power fail protected domain, so no flushing is necessary. We

focus on eADR mode since it is already supported in the

3rd generation of Intel Xeon Scalable Processors [21].
However, Optane is very different from DRAM in its

internal access process, as shown in Fig.1(b). (1) Optane

uses the 3D-Xpoint media to store data internally, whose

actual physical access granularity is 256-byte XPLine, which

is larger than the 64-byte cache line size. (2) Before accessing

the 3D-XPoint media, Optane manages a small XPBuffer

internally to cache and merge some data updates, so a data

write to the 3D-Xpoint media is actually a read-modify-

write with XPLine granularity. (3) Optane has limited ability

in handling accesses from multiple threads simultaneously

for its limited store performance. (4) NUMA (non-uniform

memory access) effects for Optane are much larger than

they are for DRAM, especially for the multi-threaded cross-

NUMA accesses [81]. Therefore, Optane’s performance

characterization is much more complicated and can be

fluctuated by many factors, including access type (read vs.

write), access pattern (sequential vs. random), access size

and so on [81]. We need to carefully manage the data in

Optane to realize a good performance.

B. DRAM-based Graph Stores
For simplicity, we take GraphOne [36], the state-of-the-art

in-memory evolving graph storage system, as an example

to illustrate the storage format and access process of the

DRAM-based graph stores. Note that, the storage formats

(edge list and adjacency list) and the vertex-centric random

access pattern used in GraphOne, are all widely used in

many other DRAM-based in-memory graph storage systems

like [14], [22], [32], [47], [49], [62], [63].

GraphOne uses a hybrid storage format by combining

two most commonly used in-memory graph storage formats,

i.e., edge list and adjacency list. Specifically, GraphOne first

uses a circular edge log in DRAM to store the latest graph

updates in the edge list format, thus supporting efficient data

ingestion for evolving graphs. Besides, GraphOne also uses

many adjacency lists to store the older data, i.e., edges that

are archived periodically from the edge log, thus supporting

efficient graph queries. Fig.2(b) shows the hybrid graph

storage of the sample graph in Fig.2(a), where the black

edges are the older edges stored in adjacency lists, and the

red edges are the newly updated edges stored in a circular

edge log, and they would be moved to adjacency lists after

an archiving phase.

Fig.2(c) further shows the graph ingestion process in

GraphOne, which is managed in several phases. During the

logging phase, the incoming updates are expressed in edge

list format and appended to the tail of the circular edge log in

memory by a dedicated logging thread, thus contributing to

a high ingestion rate. When the number of edges reaches the

predefined threshold, GraphOne comes to a parallel archiving
phase, which converts the older edges of edge list format to

adjacency list format, by putting all incremental neighbors of

a vertex in together as a single adjacency list, thus supporting

efficient graph queries. Specifically, GraphOne adopts a

global batched edge-centric archiving strategy, which first

counts the degree increment of each vertex before each

archiving, and allocates adjacency lists for vertices according

to their incremental degrees, then it traverses each edge and

appends the neighbor to the corresponding adjacency list by

multiple archiving threads. Besides, GraphOne also manages

a persisting phase, which uses a separate persisting thread

to periodically write the edge log data to a durable edge log

file in disk to guarantee the durability to some extent.

C. Limitations for PMEM Graph Stores

DRAM-based in-memory graph storage systems perform

well for DRAM-resident graphs, but the graph scale it can

support is limited by the DRAM capacity. For example,
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(a) Time cost (b) PMEM read and write

Figure 3. Compare GraphOne-D with GraphOne-P.

GraphOne needs at least 63.89 GB memory space to run

on the small-sized graph Friendster [24] with 2.6 billion

edges, and even fails to run on the medium-sized graph

Yahoo Web [80] with 6.6 billion edges by using a server

with 128 GB DRAM, for out-of-memory error. Please refer to

§V-A for more dataset information and experiment settings.

Besides, DRAM-based in-memory graph storage systems

also need an extra disk to realize the data persistence, for

the volatility of DRAM, which also brings extra durable

cost or/and high recover cost. For example, GraphOne’s

periodical persistence to disk can only achieve coarse-grained

consistency guarantees, and it is also time-consuming for

recovery after power failure, for all archiving processes need

to be redone.

To realize large-scale graph processing in memory and

meanwhile achieving fine-grained consistency guarantee and

fast recovery, PMEM with large capacity and non-volatility

provides us a good opportunity. However, when directly

moving the storage formats that are designed for DRAM to

real PMEM, we may suffer from severe performance drop

for the different characteristics between DRAM and PMEM.

We implement a PMEM-based GraphOne (abbreviated as

GraphOne-P) by migrating the circular edge log and all adja-

cency lists from DRAM to PMEM (using pmem map file()
of PMDK [54] for allocating PMEM space), and keeping the

metadata (like vertex indexes and snapshots information) and

the intermediate data (like temporary edge lists) in DRAM,

and then turning off additional persistence operations. We

conduct experiments to compare the performance gap be-

tween GraphOne-P and the original DRAM-based GraphOne

(abbreviated as GraphOne-D), in the aspect of graph updates

ingestion, which consists of the parallel logging and archiving
processes. We find that GraphOne-P costs near five minutes

to ingest the small graph Friendster with 2.6 billion edges,

which is 6.37× higher than the cost of GraphOne-D.

High read and write amplification in PMEM. We

further separately test the logging and archiving performance

of GraphOne-D and GraphOne-P, respectively, and show

the results in Fig.3(a). It indicates that the performance

of logging process with sequential writes in GraphOne-P

drop a little compared with that in GraphOne-D, for the

hardware bandwidth differences. The performance bottleneck

of GraphOne-P mainly comes from the graph archiving

process, in which a lot of small data updates (4-byte vertex

(a) NUMA (b) Number of threads

Figure 4. Impact of NUMA and number of threads.

ID of neighbor information) are written to the adjacency lists

stored in PMEM, and each 4-byte random write may cause

an XPLine (256-byte) read-modify-write to the 3D-XPoint

media according to the Optane’s access process, which finally

causes the heavy PMEM read-write amplification problem.

We also measure the data amount read from and written

to the PMEM during the conduct of GraphOne-P, by using

Intel PCM tool [53], and show the result in Fig.3(b). We

can see that GraphOne-P brings 9.96× read amplification

and 8.56× write amplification during the archiving process,

which causes the high PMEM access costs.

Costly remote PMEM accesses across NUMA nodes.
Besides, among these PMEM accesses, a large portion

of them are cross-NUMA remote PMEM accesses, which

further exacerbate the problem of high cost for graph data

access. We also evaluate the NUMA impact of GraphOne-D

and GraphOne-P by comparing the time cost of ingesting

Friendster for normal execution and binding only one NUMA

node, respectively, and show the results in Fig.4(a). We can

see that NUMA effects are much larger for GraphOne-P

than they are for GraphOne-D. In addition, we also test the

impact of the number of archiving threads for GraphOne-D

and GraphOne-P, and show the results in Fig.4(b). We find

that GraphOne-P will suffer from the severe performance

drops after setting the number of archiving threads as larger

than eight, because of PMEM’s limited performance in multi-

threaded accesses, especially for cross-NUMA accesses.

In conclusion, directly moving existing DRAM-based in-

memory graph storage systems to PMEM would suffer severe

performance drop for high PMEM access costs, including

high read and write amplification in PMEM and costly remote

PMEM accesses across NUMA nodes. In the next section,

we will present our designs to carefully solve the problems

mentioned above.

III. DESIGN OF XPGRAPH

In this section, we first introduce the main idea and the

overview of XPGraph, which is a PMEM-based graph

storage system that supports large-scale evolving graphs.

Then, we present the details of its key design techniques,

including vertex-centric graph buffering, hierarchical vertex

buffer managing, and NUMA-friendly graph accessing.
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Figure 5. Overview of XPGraph.

A. Overview

We target for improving the evolving graph storing

performance by reducing the PMEM access cost, which

includes PMEM read-write amplification and cross-NUMA

remote PMEM accesses. A classic solution to address the

problem is to deploy DRAM buffers to cache and coalesce

some data updates to PMEM. However, its application to

large-scale dynamic graph stores is non-trivial due to the

following challenges.

• Edge updates in evolving graph applications are gener-

ally with poor data locality for the complex relationships

between vertices, thus making it difficult to design an

efficient buffering strategy for these updated graph data.

Besides, since the graph data stored in DRAM buffers

may be lost on power failure, it is necessary to guarantee

the edge-level data consistency.

• In general, the impressive performance benefits obtained

from the buffering strategies are often accompanied by

high DRAM space requirements, and the poor locality

of graph data further increases the DRAM demands

for achieving good buffering performance, which may

lead to the DRAM space pressure, limiting the system

scalability. Besides, frequent memory allocation and

freeing of vertex buffers may further increase the

memory management costs.

• Additionally, the buffering strategy can not reduce the

high cost of remote PMEM accesses across NUMA

nodes, and how to reduce or avoid the cross-NUMA

remote PMEM access to further improve the PMEM

accessing performance?

In order to achieve our goal and handle the challenges

mentioned above, we propose an XPLine-friendly PMEM
access model with three techniques, according to the XPLine-

centric access pattern of PMEM mentioned in §II-A. The

designed system overview is shown in Fig.5. First, we

propose a vertex-centric graph buffering strategy to amortize

the PMEM access cost for each edge update, and also

introduce a periodical flush technique for fine-grained edge-

level consistency guarantee. Then, we design a hierarchical

buffer managing scheme to limit the DRAM space demands,

Figure 6. Vertex-centric graph buffering.

and also adopt a buddy-liked memory pool management to

reduce the memory managing cost. Last, we introduce a

NUMA-friendly graph accessing method to totally avoid the

cross-NUMA PMEM access. In the following subsections,

we present these three techniques in detail.

B. Vertex-Centric Graph Buffering

To address the severe read-write amplification problem

brought by the edge-centric adjacency list writes in current

DRAM-based graph storage systems, we introduce a vertex-

centric graph buffering strategy, to cache some edge updates

in DRAM, thereby reducing actual writes to PMEM. In

this subsection, we first introduce the process of the vertex-

centric buffering strategy, and then present the periodical

flush strategy for realizing the fine-grained edge-level con-

sistency guarantees. Finally, we analyze the DRAM space

requirements of this vertex-centric buffering strategy.

Vertex-centric buffering strategy. As shown in Fig.6, we

allocate a temporary adjacency list stored in DRAM (stated

as vertex buffer in the rest of the paper) for each vertex with

edge updates, to temporarily cache some edge updates of

the same vertex together. Each vertex buffer has a 4-byte

header to store the maximum count (mcnt) and current count

(cnt) of neighbors stored in this vertex buffer, and the rest

space is used to store the vertex ID of these neighbors. For

example, when we set the vertex buffer size as 16 bytes, then

the maximum count of neighbors this buffer can store equals

(16− 4)/4 = 3. When a DRAM vertex buffer is full, we

flush all neighbors in this vertex buffer to the corresponding

PMEM adjacency list by only one XPLine access, then clear

this vertex buffer for caching subsequent edge updates. With

this vertex-centric graph buffering strategy, we can merge

multiple XPLine accesses to one XPLine access, and amortize

the PMEM write cost for each edge update. Note that, the

buffers can also serve as caches to reduce the reads from

PMEM, improving graph query performance (§V-C).

Periodical flushing for consistency guarantees. Since

data stored in DRAM vertex buffers may be lost on power

failure, we also design a periodical flushing strategy by

redesigning the circular edge log structure, which are stored

in PMEM, for fine-grained edge-level consistency guarantees.
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Figure 7. Consistency guaranteed circular edge log.

As shown in Fig.7, new edge updates are always appended

to the head position of the circular edge log, sequentially in

clockwise order. When the number of non-buffered edges

in the edge log reaches a predefined threshold, we start a

buffering phase to buffer these edges to their corresponding

DRAM vertex buffers. During the buffering phase, when a

vertex buffer is full, we flush all neighbors in this DRAM

vertex buffer to PMEM. The edges between the marker
position and the buffering position are currently being

buffered, and the edges after the buffering position are already

buffered. Considering the volatile of DRAM vertex buffers,

we can not overwrite these buffered edges in the circular edge

log. Hence, when the number of buffered edges in the edge

log reaches a predefined threshold, we start a flushing phase
to flush all DRAM vertex buffers, including out-neighbors

and in-neighbors of all vertices, to PMEM for data persistence.

We introduce a flushing pointer to indicate that the edges

after the flushing position are already flushed to PMEM, so

they can be overwritten by new coming edge updates.

Once system crashes, we can recover the lost DRAM

vertex buffers by traversing the edges between the marker
and flushing positions of this circular edge log. Note that,

some of these edges have already been flushed to PMEM

when their corresponding vertex buffers were full. To avoid

data redundancy after recovery, before writing a neighbor

to its DRAM vertex buffer, we need to check whether it is

already stored in the corresponding PMEM adjacency list.

DRAM space requirements for vertex buffers. Note that,

the performance benefit gained with this vertex-centric graph

buffering strategy is traded off with the per-vertex buffer size

setting, i.e., a larger per-vertex buffer size setting brings a

better performance, but at the cost of more DRAM space

requirements. We also conduct experiments to evaluate the

impact of per-vertex buffer size setting for Yahoo Web [80]

graph in §V-E, and we find that the larger the per-vertex

buffer size is, the more neighbors can be cached in DRAM

for each vertex, then generally brings the less time cost for

completing the graph ingestion process. However, we need

to pay for this increased benefit with a larger demand of

DRAM space, which heavily limits the system’s scalability.

For example, we need over 50 GB DRAM for supporting this

medium-sized graph Yahoo Web when we set the per-vertex

Figure 8. Adaptive hierarchical buffer size adjusting.

buffer size as 256-bytes, and we even can not afford the

larger graph Kron30 [27] under this setting, in our server

with 128 GB DRAM. Therefore, in the next subsection, we

will struggle to reduce the DRAM space requirements while

maintaining the performance benefit.

C. Hierarchical Vertex Buffer Managing

In this subsection, we first introduce the power-law

vertex degree distribution of real-world graphs, then propose

an adaptively hierarchical buffer size adjusting scheme,

according to this characterization of real-world graphs, to

reduce the DRAM space requirements for storing these

vertex buffers. Finally, we also adopt a buddy-liked memory

pool management to reduce the time cost for managing

the frequent allocating/freeing of these vertex buffers with

different sizes under multi-threading.

Power-law degree distribution of real-world graphs. In

real-world graphs, vertex degrees, i.e., numbers of neighbors,

of different vertices may vary greatly, and they generally

have a power-law distribution [8], [25]. For example, in our

evaluated four real-world graphs (refer to §V-A), vertices

with a degree of 1 or 2 can account for more than 40%

and even a half for many other real-world graphs [82], and

vertices with a degree ranging from 4 to 7 account for around

another 20%, while only a small part of vertices have degrees

larger than 64. Therefore, if we allocate large buffers for

these low-degree vertices, it will cause a serious waste of

DRAM space, and if we allocate small buffers for these

high-degree vertices, it will seriously affect the benefits of

the vertex-centric buffering. Namely, the fixed-size setting

for all vertex buffers is hard to realize a balanced trade-off

for all vertices. Based on this founding, we target to realize

differentiated vertex buffer size settings for different vertices

with different degrees. However, it is also challenging as

we can not predict the final degree for each vertex in the

evolving graph situations.

Adaptive hierarchical buffer size adjusting. To solve the

above challenge, we propose an adaptively hierarchical vertex

buffering scheme, which adaptively adjusts the vertex buffer

sizes according to the changes of vertex degrees, as shown

in Fig.8. Specifically, we create an initial buffer sized as 16

bytes for the vertex with edge updates, and state it as layer 0
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Figure 9. Memory pool based vertex buffer management.

(L0) buffer. The new coming edge update is first written to its

corresponding L0 buffer, which can hold at most 3 neighbors.

When a vertex’s L0 buffer is full, we create a double-sized

(32-byte) layer 1 (L1) buffer, and move all buffered neighbors

to its L1 buffer, and then free the L0 buffer. After that, the

new coming edge updates of this vertex would be directly

written to its L1 buffer, which can hold at most 7 neighbors.

When a L1 buffer is full, we create a double-sized (64-byte)

layer 2 (L2) buffer, and repeat the process above, until the

buffer size reaches the predefined maximum buffer size. For

example, if we specify the maximum buffer size as 256

bytes, we will totally manage five DRAM layer-buffers at

most. When a L4 buffer is full, we flush all neighbors in

it to the corresponding persistent adjacency list stored in

PMEM by only one XPLine access and then clear the L4

buffer. With this adaptive hierarchical buffer size adjusting

strategy, we can reduce the DRAM space requirements with

low-layer buffers for low-degree vertices, while maintaining

the performance benefit gained from the high-layer buffers

for the high-degree vertices.

Note that, this hierarchical buffer size adjusting strategy

incurs extra data movement overhead across different layers,

but this overhead is acceptable for two reasons. First, the

data copy operation does not happen frequently on each

vertex, because we buffer the edge updates in batches (see

§IV-A). If a vertex’s edge count reaches a higher level in

current batch, we skip the allocation of lower layer buffers.

Second, the performance bottleneck mainly lies in the PMEM

accesses, thus the limited DRAM data movement cost can

be hidden. We study the efficiency of this strategy in §V-E

and the comparison of Fig.16(a) (fixed buffers) and 16(b)

(hierarchical buffers) also validates that the data movement

cost is acceptable.

Buddy-liked memory pool management. To achieve

the adaptively hierarchical buffer managing, we need to

frequently allocate and free plenty of small DRAM pieces

of different sizes, e.g., range from 16-byte to 256-byte,

which brings high memory managing cost, especially for

the high concurrency multi-threads buffering scenarios, since

it may bring frequent system user mode/kernel mode switch,

lock contention, and memory fragmentation. To reduce the

memory allocation/free cost of these vertex buffers, we adopt

memory pool management, which directly allocates a large of

Figure 10. NUMA-friendly graph accessing.

memory space in advance to manage the buffer allocation/free

by itself, as shown in Fig.9. First, to avoid the access conflict

of multiple threads, we cut the memory pool into many

smaller memory bulks, each with the size of 16 MB by

default. Each thread acquires a separate memory bulk to

satisfy the current thread’s buffer allocation, and applies for

a new memory bulk if it’s runs out. For each thread with

a contiguous memory bulk, we adopt a buddy-liked buffer

allocation/free strategy, which considers the vertex buffers

with the same size and adjacent memory space as buddy
buffers, and manages a free buffer list to recycle the freed

space for each buffer size. When a new buffer allocation

comes, we first find useable memory space in the free buffer

lists, and if not found, then we fetch from the memory

bulk. We also use an aligned memory allocation strategy

for efficient freed vertex buffer space recycling. To further

reduce the DRAM space cost, we also recycle the freed

buffer space for meeting the subsequent buffer allocations.

Specifically, when a vertex buffer is freed, we add it into the

corresponding free buffer list according to its size.

With this memory pool based DRAM space managing

strategy, we can efficiently reduce the management cost of

numerous small DRAM segments. Furthermore, considering

scalability issues, we can also limit the DRAM usage of

these vertex buffers by setting a threshold for the memory

pool size. If the memory pool is going to be exhausted soon,

we flush all vertex buffers to PMEM to recycle all memory

pool space. We also evaluate the impact of the memory pool

sizes in §V-F to show the performance sensitivity.

D. NUMA-Friendly Graph Accessing

As we discussed in §II-C, NUMA effects for PMEM are

much larger than they are for DRAM [81], which largely

degrade the data access performance of graph updates and

queries. To completely avoid remote PMEM accesses across

NUMA nodes, we propose a novel NUMA-friendly graph

accessing strategy, as shown in Fig.10. It first stores different

parts of the graph data in different NUMA nodes, then binds

the graph updating/querying threads to the CPU cores of the

corresponding NUMA nodes.

NUMA-aware segregated graph storing. We partition

the graph data into P parts for a P-socket system, and store
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each part of the graph data in the PMEM(s) of a separate

NUMA node. For example, a simple implementation based

on a two-socket system is to store the out-graph data in

PMEM 0 of NUMA node 0, and store the in-graph data in

PMEM 1 of NUMA node 1. We can also easily extend this

technique with sub-graph based implementations, to make it

suitable for more general situations, e.g., undirected graph

formats or systems equipped with more NUMA nodes. That

is, we can divide the whole graph into P sub-graphs, by

existing graph partition strategies [2], [15], [58], [64], [67],

and each sub-graph contains the neighbor information for

a subset of all vertices. For example, we default to use the

commonly-used hash-based graph partitioning strategy [16],

[35], [37], which simply distributes vertex v to sub-graph

v%P, to make the numbers of vertices and edges be balanced

in each sub-graph. Then, we place each sub-graph in the

PMEM(s) of a separate NUMA node. We default to use the

sub-graph based implementations if not specified, and we

also compare the two kinds of implementations in §V-E.

CPU-binding based graph updating. During the graph

buffering and flushing phases, when we update the graph

data stored in PMEM(s) of NUMA node p, we can bind

the buffering threads to CPU cores of NUMA node p, by a

thread-class CPU binding function pthread setaffinity np()
of Linux pthread [56]. For example, based on the out/in-

graph segregated storing, when we flush the adjacency lists

of vertices’ out-neighbors, we bind the threads to cores

of NUMA node 0 and when we flush the adjacency lists

of vertices’ in-neighbors, we bind the threads to cores of

NUMA node 1. On the basis of sub-graph segregated storing,

when we flush the adjacency lists of sub-graph p, we will

bind the threads to cores of NUMA node p. Thus, we can

completely avoid remote PMEM writes across NUMA nodes

to all PMEM resident adjacency lists, since all corresponding

flushing threads are bound to the local cores.

CPU-binding based graph querying. To further avoid

remote PMEM reads across NUMA during graph queries,

we can also bind the querying thread to the CPU cores

of the corresponding NUMA node, when querying the

corresponding adjacency lists of a vertex. However, the per-

vertex CPU-binding strategy incurs a high cost of frequent

thread migrations, which can be more than ten times the cost

of remote PMEM access, in our experiments. Therefore, to

avoid the high cost of frequent thread migrations, as well as

the remote PMEM reads across NUMA during graph queries,

we classify the vertex queries according to their belonged

NUMA parts at the beginning of each computing iteration,

and bind the querying threads to the corresponding CPU

cores, respectively, before computing.

IV. IMPLEMENTATION

In this section, we first introduce three key data managing

phases of XPGraph, then integrate some graph view inter-

faces according to these data managing phases. Finally, we

implement three prototype systems to accommodate different

system settings based on the above graph view interfaces.

A. Data Management Phases

For a better understanding, we describe how graph data

is managed in DRAM and PMEM, which may go through

three phases in XPGraph: logging, buffering and flushing.

Logging phase. A logging thread is called when edge

updates are received from the client. The logging process

sequentially writes the edge updates to the PMEM resident

circular edge log (see §III-B), and will sleep waiting for

available space in the circular edge log to avoid overwriting

the non-flushed edge updates for data persistence. If the

number of non-buffered edge updates in the circular edge

log reaches a threshold, it will inform the system to start a

buffering phase.

Buffering phase. A buffering phase is executed by multi-

ple buffering threads to move a batch of non-buffered edges

from the edge log to the DRAM vertex buffers. We adopt

the edge sharding based approach used in GraphOne [36]

to achieve load-balanced multi-threaded buffering, while

maintaining the integrity of data ordering. Specifically, it

shards the batched edges to multiple temporary ranged edge

lists based on the ranges of their source vertex IDs, each of

which can then be buffered in parallel without any atomic

instructions. To handle the load imbalance issues, it creates a

larger number of ranged edge lists than the available threads,

and assigns different numbers of ranged edge lists to each

thread, so that each buffering thread gets an approximately

equal number of edges. For better performance, we store the

temporary ranged edge lists in DRAM.

Flushing phase. During the buffering phase, when a

vertex’s highest layer buffer is full, the current buffering

thread switches to a brief flushing phase for that vertex,

moving its neighbors stored in DRAM vertex buffer to PMEM

adjacency list. At the end of a buffering phase, if the number

of non-flushed edges in the edge log reaches a threshold,

which means we may overwrite the non-flushed edges soon,

so it will notify the system to start a flushing phase for all

vertices, i.e., all DRAM vertex buffers would be moved

to PMEM adjacency list to ensure the data consistency.

Additionally, if the vertex buffer pool’s usage reaches a

threshold, i.e., the pool is about to fill up, we also inform

the system to start a flushing phase for all vertices, thereby

emptying the vertex buffer pool for the next buffering phases.

In the eADR platform, no explicit cache line flush

instruction is necessary for crash consistency (see §II-A), and

data cached in CPU caches would be flushed to PMEM in an

unexpected order of cache line granularity by system’s cache

replacement strategy, which may affect the PMEM access

performance [9]. Hence, we also implement a proactively
flush strategy to flush the adjacency lists with sizes equal or

larger than XPLine (256 bytes) to PMEM by clwb instruction.
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Table I
GRAPH VIEW APIS.

Graph Updating Interfaces
status add edge(src, dst)
count add edges(buf, size)
count buffer edges(buf ,size)
status del edge(src, dst)
Graph Querying Interfaces
count get nebrs {out/in}(vid)
count get nebrs log {out/in}(vid)
count get nebrs buf {out/in}(vid)
count get nebrs flush {out/in}(vid)
count get logged edges()
Graph Arranging Interfaces
status buffer all edges()
status flush all vbufs()
status compact adjs(vid)
status compact all adjs(vid)

It ensures that the graph data within the same XPLine would

be flushed to PMEM in only one XPLine access.

B. Graph View Interfaces

We also provide simple data access APIs for user applica-

tions, by hiding the complex data management mentioned

above. Table I shows the common-used graph view interfaces.

The most critical interface for graph updating is the basic

add edge(src, dst) to receive a new edge, and we also

implement several variants for receiving a batch of edges.

We also realize the del edge(src, dst) to delete an existing

edge. As for graph querying interfaces, we provide the basic

get nebrs {out/in}(vid) for querying all out/in neighbors

of a vertex, and we also implement several variants to

querying out/in neighbors in each data structure, respectively.

We also provide get logged edges() for querying all non-

buffered edges stored in the circular edge log. Besides,

we provide graph arranging interfaces for transforming the

graph data status between the three data management phases

described above, which includes buffering all non-buffered

edges to DRAM vertex buffers, and flushing all vertex

buffers to PMEM’s adjacency lists. We also implement the

compact adjs(vid) to merge a vertex’s all adjacency lists

stored in DRAM and PMEM to one large adjacency list,

which is then stored in PMEM, thus supporting more efficient

graph queries.

C. Prototype System

We implement all designs and optimizations mentioned

above in around 8300 lines of C++ code, and encapsulate

all the above interfaces into a library called libxpgraph. We

then implement a prototype system XPGraph by calling

these encapsulated interfaces. XPGraph is a graph storage

framework running on a DRAM-PMEM hybrid memory

system, that supports efficient large-scale evolving graph

processing, while maintaining fine-grained data consistency

for each edge update.

Besides, considering the fact that battery-backed DRAM

is fairly cheap and is being mass-produced recently [19],

[34], we also implement a variant system XPGraph-B to

accommodate these battery-backed systems. Specifically, we

modify the design of circular edge log to allow the logging

process to overwrite the buffered edges, since DRAM vertex

buffers are also included in the power-failure protection

domain in battery-backed systems.

In addition, considering the situations that the system

DRAM capacity is large enough and there is no crash

consistent requirement, we also implement another variant

system XPGraph-D to accommodate DRAM-only systems,

which stores all data structures in DRAM, and sets the per-

vertex buffer size as fixed 64 bytes to avoid frequent data

movement. Note that we can simply switch between these

three variant systems of XPGraph by just setting different

parameters for different system configurations.

V. EVALUATION

A. Experiment Settings

Test bed. All experiments are performed on a server with

two 2.10GHz Intel(R) Xeon(R) Gold 5318Y processors, each

with 24 physical cores with hyper-threading enabled (48

logical cores). Each physical core has a private 32 KB L1

and 1 MB L2 caches, while all cores within a socket share

a 36 MB L3 cache (LLC). For memory, it equips with 8 ×
16 GB (128 GB) DRAM and 8 × 128 GB (1 TB) Intel Optane

Persistent Memory 200 Series, which are interleaved inserted

to the memory slot. It also equips with 3.84 TB Intel NVMe

SSD for storage. The server runs Ubuntu 18.04.6 LTS with

Linux kernel of 5.10.0.

Comparison systems. We take GraphOne, the state-of-the-

art single-machine in-memory graph storage system, as a

baseline for overall performance comparison. We compared

three versions of GraphOne, i.e., (1) the original GraphOne

on DRAM (GraphOne-D) that stores all data on DRAM.

(2) GraphOne on PMEM (GraphOne-P), which stores the

edge log and adjacency lists on PMEM by the mmap-based

implementation, on the default Ext4-DAX file system, and

keeps the meta-data (like vertex indexes and snapshots

information) and the intermediate data (like temporary edge

lists) on DRAM. (3) GraphOne on PMEM using the state-

of-the-art PMEM file system NOVA [78] (GraphOne-N),

which only stores the adjacency lists on PMEM and keeps

other data on DRAM. To utilize the NOVA’s optimizations,

we implement a file-I/O based GraphOne, that only changes

the adjacency list related memory interfaces based operations

to file-I/O based operations. For a fair comparison, we mount

NOVA in the relaxed mode that relaxes atomicity constraints

on file data and metadata to achieve the best performance of

NOVA [79]. We also performed the file-I/O-based GraphOne

on the default Ext4-DAX file system, and observed about 4×
the time cost on NOVA, which roughly matches the results
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Table II
STATISTICS OF DATASETS.

Dataset |V | |E| Bin Size CSR Size
Twitter (TT) 61.6M 1.5B 12GB 12.4GB

Friendster (FS) 68.3M 2.6B 20.8GB 21.4GB
UKdomain (UK) 101.7M 3.1B 24.8GB 26.4GB
YahooWeb (YW) 1.4B 6.6B 52.8GB 75.2GB

Kron28 (K28) 256M 4B 32GB 36GB
Kron29 (K29) 512M 8B 64GB 72GB
Kron30 (K30) 1B 16B 128GB 144GB

reported in [79]. We provide implementations and detailed

configurations of these three comparison systems, in our

artifact (refer to §A). Note that, we exclude GraphOne on

PMEM using NOVA by the mmap-based implementation to

remove redundant comparison, as this system has almost the

same performance as GraphOne-P, since NOVA does not

optimize the mmap process in its latest code version [39].

Graph datasets. We use four real-world graphs Twitter [68],

Friendster [24], UKdomain [69] and Yahoo Web [80], as well

as three synthetic Kronecker graphs, i.e., Kron-28, Kron-29

and Kron-30, which are generated by graph500 generator [27],

for our evaluation. These graphs are all widely used in graph

system evaluations. Table II lists the graph information. They

are all direct graphs, and Bin Size indicates the size of the

dataset stored in binary edge list format, and CSR Size
indicates the size of storing graphs in CSR format for both

in-graphs and out-graphs.

Note that, CSR is the most compact storage format for

static graphs. In the case of dynamic graphs, more memory

space is usually required to store the evolving adjacency

lists for all vertices. For example, GraphOne costs more than

40 GB for just storing the adjacency lists after ingesting the

Friendster dataset (only 21.4GB in CSR format), and it also

costs the other 23 GB memory space to store the metadata

and intermediate data. Hence, for the larger graphs like Yahoo

Web, Kron29 and Kron30, DRAM-based systems (GraphOne-

D and XPGraph-D) fails to complete the ingestion process,

as they require more memory space than the 128 GB DRAM

capacity of our test bed.

Evaluation metrics. We evaluate XPGraph and its com-

parison systems in the following three aspects: (1) Graph

ingesting performance, which includes the time cost and the

PMEM read/write amount for ingesting above seven graphs.

(2) Graph query performance, which includes the simple one-
hop neighbor query, i.e., accesses the neighbors of random

224 non-zero degree vertices, as well as three common graph

computing algorithms BFS (traverses the connected sub-

graphs of random three roots), PageRank (runs for ten

iterations), and CC (finds the connected components in the

graphs). (3) Graph recovery performance. Each experiment

was performed ten times and the average completion time

was calculated for a more accurate display of time cost.

B. Graph Ingestion Performance

Graph ingestion process imports the graph data by batching

edges one by one from an edge buffer stored in the binary

edge list format, which contains parallel single-thread
logging process and multi-thread archiving process. For

convenience, we also state XPGraph’s buffering process

and the flushing process as the archiving process in the rest

of the paper. For a fair comparison, we use a unified 16

archiving threads for all tested systems to test their overall

ingestion performance, as 16-thread setting shows relatively

good performance for all of them. Note that, more archiving

threads settings may bring performance improvements for

XPGraph, which cause performance drop for GraphOne-P,

and we also study the impact of the number of archiving

threads in §V-F. We set the archiving threshold, i.e., the

number of non-flushed edges stored in the circular edge log

to trigger an archive process, as 216 by default as well as

GraphOne does.

Ingestion time cost for non-volatile systems. We first

compare the time cost for ingesting the above seven graphs,

by GraphOne-P, GraphOne-N and our XPGraph, XPGraph-

B, respectively, as all of them can achieve the fine-grained

edge-level consistency guarantee (XPGraph-B guarantees the

consistency with a system-level battery supported). As Fig.11

shows, GraphOne-N is always an order of magnitude slower

than other three systems. Because in the file-I/O based imple-

mentation of GraphOne, the virtual file system (VFS) cost,

metadata management cost, and log data management cost

may account for a large portion of the total time cost (refer to

Figure.10 in [79]), thus leading to the poor performance. As

far as we think, the mmap based implementation, in which

the user application takes the responsibility to manage its

own address space of PMEM, is more suitable for graph

processing situations for the light-weighted management cost.

For the other graph systems, compared with GraphOne-P,

XPGraph is consistently faster and achieves 3.01× to 3.95×
speedup for different graphs, as XPGraph greatly reduces

the PMEM access cost by our proposed three techniques.

Besides, with a system-level battery supported, XPGraph-B

can further improve the performance by up to 23% on top

of XPGraph, meaning that the optimizations of XPGraph
also apply to battery-backed systems.

Figure 11. Graph ingestion time cost for non-volatile systems, where
Optane is set in application-direct mode.
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Figure 12. Graph ingestion time cost for volatile systems, where DO
indicates running on a DRAM-only system, and MM indicates running on
a PMEM-based system with Optane set in memory mode.

Ingestion time cost for volatile systems. We also study

the performance on different hardware settings to show

the generality of our work. Specifically, we compare the

performance of GraphOne-D and XPGraph-D (see §IV-C),

running on a DRAM-only system, and a PMEM-based system

with Optane in memory mode, respectively. Note that, these

systems assume no crash consistent requirements. We show

the results in Fig.12. Both of GraphOne-D and XPGraph-

D fail to handle the three larger graphs when they run on

the DRAM-only setting, because of the limited capacity of

DRAM as they store all data in DRAM. For the other tested

results, XPGraph-D always performs faster than GraphOne-

D: the speedup is up to 73% for DRAM-only systems and

76% for PMEM-based systems with Optane in memory mode.

PMEM read and write data amount. We further measure

the data amount read from and written to the PMEM during

the ingestion process of GraphOne-P, GraphOne-N and our

XPGraph, XPGraph-B, respectively, by using the Intel PCM

tool [53], to validate the greatly reduced PMEM access cost

of XPGraph. We show the result in Fig.13. We can see that

GraphOne-N is still always an order of magnitude worse

compared with other three systems, as explained before.

Compared with GraphOne-P, XPGraph greatly reduced the

amount of PMEM read data by 2.29× to 4.17× and PMEM

(a) PMEM read amount.

(b) PMEM write amount.

Figure 13. PMEM read and write data amount.

write data by 2.02× to 3.44× for different graphs, which

mainly benefits from the vertex-centric local batched graph

archiving (refer to §III-B), and this benefit finally achieves

a great contribution to the overall performance introduced

in Fig.11. XPGraph-B further reduces the PMEM read data

amount by up to 31% and PMEM write data amount by up

to 47% on top of XPGraph.

C. Graph Query Performance

Fig.14 shows the graph query performance of GraphOne-

P and XPGraph with all available threads of our server,

i.e., 96 threads. The four sub-figures show the time cost of

completing the four graph algorithms introduced in §V-A.

We can see that for the simple one-hop neighbor query,

performance behaviors of GraphOne-P and XPGraph vary

from graph to graph. For some cases XPGraph runs faster,

and for other cases GraphOne-P runs faster, but in most

cases, they need comparable time cost to finish the queries

with the performance gap limited in 30%. As for the graph

analytic algorithms BFS, PageRank, and CC, XPGraph often

provides better support, and achieves up to 4.46×, 3.57×,

and 4.23× speedup for BFS, PageRank, and CC respectively.

This performance improvement comes from two aspects:

First, GraphOne-P stores all neighbor information in PMEM,

while XPGraph buffers some recent neighbor information in

DRAM vertex buffers, thus reducing the data amount needed

to fetch from the persistent adjacency lists stored in PMEM.

Second, XPGraph adopts the NUMA-friendly graph access

strategy (see §III-D), which not only evenly distributes the

PMEM queries to different sockets by the sub-graph based

NUMA-aware segregated graph storing, but also avoids the

remote PMEM reads across NUMA by the CPU-binding

based graph querying, thus improving the PMEM data read

efficiency and graph query performance.

(a) One hop query (b) BFS

(c) PageRank (d) CC

Figure 14. Graph query performance (BFS, PageRank and CC are shown
in log scale).
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Figure 15. Graph recovery performance.

D. Graph Recovery Performance

PMEM is also capable of data persistence, which provides

us an opportunity to realize the fast graph recovery after

a power failure. Therefore, we also implement a simple

recovery scheme to reload the graph data from persistent

adjacency lists stored in PMEM, and update the pointer

links between multiple adjacency lists of the same vertex,

thus making it capable of ingesting new edge updates and

querying graph data as usual. We also compare the recovery

performance with GraphOne. Note that, GraphOne’s recovery

process is to re-building the data structure, by just running

the archiving process worked on bulk of data [36]. Therefore,

we test GraphOne’s recovery performance by testing the

graph archiving performance with the archiving threshold set

as 227 edges, as recommended in its paper to achieve the

best performance.

Fig.15 shows the graph recovery time costs, which include

the time cost of loading data from PMEM and recovering

the adjacency list structure for all vertices, of XPGraph
and GraphOne for different datasets. XPGraph always

provides better support for recovery performance, as it

does not need to re-build the data structure for all edges.

In summary, XPGraph achieves 5.20× to 9.47× higher

recovery performance, compared with GraphOne for the four

relatively small graphs. For the larger three graphs that can

not run out on GraphOne-D, XPGraph can also realize the

recovery in a reasonable time. For example, XPGraph costs

only 163.66 seconds to recover the largest dataset Kron30,

while GraphOne takes 204.45 seconds to recover the much

smaller graph Kron28 with only 1/16 edges of Kron30.

E. Discussion of Design Choices

Efficiency of vertex-centric graph buffering. First, we

measure the benefit of the vertex-centric graph buffering

strategy (see §III-B). We implement this strategy with a

predefined per-vertex buffer size. When each vertex buffer

size is set as 8 bytes, we can cache 1 neighbor per vertex.

When the per vertex buffer size is set as 256 bytes, up to 63

neighbors can be cached for each vertex. We record the time

cost and DRAM space requirements of these vertex buffers,

for importing the Yahoo Web dataset under different buffer

size settings, and show the results in Fig.16(a) and Fig.16(b),

respectively. They show that by buffering some edge updates

in DRAM, we can greatly reduce the time cost of ingesting

the dynamic graph. And we found that the larger, the buffer

(a) Time cost (b) DRAM demand

Figure 16. Impact of vertex-centric graph buffering with different per-vertex
buffer sizes, where OMM indicates the out-of-memory error.

size is set, the more neighbors each vertex can cache in

DRAM, then the less total number of writes to PMEM, and

thus contributing to the lower the overall time cost. However,

at the same time, it also requires more DRAM space for

larger buffers. When the buffer size of each vertex is set to

256 bytes, the overall DRAM space demand is even more

than 52 GB for Yahoo Web, and when the buffer size is

set to 512 bytes, it even fails to run out for out-of-memory

error. This severely limits the scalability for large-scale graph

processing. And the high memory allocation cost for these

vertex buffers may degrade the performance on the contrary,

thus causing the slight performance drop when increasing the

per-vertex buffer size setting from 128 bytes to 256 bytes.

Efficiency of adaptive hierarchical buffering. We further

propose a hierarchical vertex buffer managing strategy (see

§III-C). We also measure its benefit by the same settings

above and show the results in Fig.17. We can see that after

adopting the hierarchical vertex buffer managing strategy,

we can maintain the same performance gains as we allocate

the maximum buffers for all vertices, but make the DRAM

space requirement be largely reduced. For example, when

we set a fixed buffer sized 128-bytes for all vertices, we cost

around 645.42 seconds for importing the Yahoo Web dataset,

and require around 26.54 GB DRAM space for storing all

vertex buffers. Note that, it is the best performance for

fixed buffer size setting as shown in Fig.16. While when we

set a hierarchical buffer sized from 16-bytes to 256-bytes

according to the vertex degree changes, we cost only 544.72

seconds, which is even faster than before because of the

lower time overhead of DRAM allocation, and the DRAM

space requirement is reduced to around 10.49 GB, which

is less than a half of before. Besides, we can also adjust

the DRAM space requirement by limiting the size of the

maximum buffer in the limited DRAM capacity situations.

(a) Time cost (b) DRAM demand

Figure 17. Efficiency of hierarchical vertex buffer managing with different
per-vertex maximum buffer sizes.
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(a) Graph ingestion time (b) BFS time

Figure 18. Efficiency of NUMA-friendly graph accessing (BFS time is
shown in log scale), where NUMA-bind-OIG indicates the out/in-graph-
based NUMA-binding implementation, and NUMA-bind-SG indicates the
subgraph-based NUMA-binding implementation.

Efficiency of NUMA-friendly graph accessing. Fig.18

shows the graph ingesting and BFS computing times under

three settings: no NUMA-binding, out/in-graph based NUMA

binding, and subgraph based NUMA binding. With the

NUMA-friendly graph accessing technique enabled, we can

further improve the graph ingestion performance by 5% to

23% on top of the performance gains of the above two

techniques, and this improvement is also getting larger for

the larger graphs for it can avoid more cross-NUMA PMEM

accesses. The two versions of implementations performs

similar for graph ingestion. As for graph query performance,

the out/in-graph based NUMA binding implementation may

cause the performance drop by 3% to 29% on top of the

baseline, because of the load-imbalance issues. While the

subgraph based NUMA binding implementation can improve

the BFS performance by up to 54%, because of the avoided

remote PMEM accesses across NUMA and the load-balanced

sub-graph partitioning between different NUMA nodes.

F. Impact of system configurations

Impact of vertex buffer memory pool size. We also

conduct experiments to evaluate the impact of vertex buffer

memory pool sizes, to show the performance sensitivity

of our XPGraph. We evaluate the graph ingestion cost

under different memory pool size settings, for Friendster,

YahooWeb, Kron29 and Kron30, respectively, and show the

results in Fig.19. We can see that, as the memory pool size

(a) Friendster (b) YahooWeb

(c) Kron29 (d) Kron30

Figure 19. Impact of vertex buffer memory pool size.

Figure 20. Impact of number of archiving threads.

set larger from 1 GB to 16 GB, the overall time cost decreases

significantly, because more memory pool space provides more

chance to cache and merge more PMEM accesses. When the

memory pool size goes from 32 GB to 96 GB, the time cost

changes slightly, even for the three largest graphs. Because

32 GB is generally enough to hold most vertex buffers for

these graphs. Besides, extra space is not actually allocated

for the copy-on-write technique used in Linux system, thus

does not impact the performance. Therefore, we recommend

a larger memory pool size setting for better performance.

Impact of the number of archiving threads. Next, we

observe the impact of the number of archiving threads, i.e.,

number of threads used for converting the graph data from

edge list format to the adjacency list format, for XPGraph.

Fig.20 shows the ingestion time costs of Friendster for

different number of archiving threads settings. We can see

that in general, XPGraph’s ingesting performance increases

with the thread number increases, and achieves the peak

performance by setting the number of archiving threads as

95, which is the maximum available number of threads in

our server (the other one thread is used for edge update

logging). Compared with the result for GraphOne-P shown

in Fig.4(b), XPGraph achieves a much better scalability for

multi-threading.

Scalability. To analyze the scalability of our design, we also

show the memory usage breakdown during the ingest process

of the tested seven graphs in Table III. Meta indicates the

DRAM usage for storing the meta-data and intermediate data,

i.e., vertex indexes, snapshots information and temporary

edge lists. Note that this part of DRAM usage is inherited

from GraphOne [36], and it is similar to that of GraphOne.

These meta-data and intermediate data may consume a lot

of DRAM space and limit the scalability of XPGraph, and

we will consider moving them to PMEM to further improve

the scalability. Vbuf indicates the DRAM usage for storing

the vertex buffers, which are managed by the vertex buffer

memory pool. This part of DRAM usage can be further

limited by the memory pool size setting, refer to Fig.19.

Input indicates the PMEM usage for storing the input graph

data, which is stored in the binary edge list format. Elog
indicates the PMEM usage for storing the circular edge log,

which is set as 8 GB by default. Pblk indicates the PMEM

usage for storing the persistent adjacency lists, which contain

the key graph information of XPGraph.
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Table III
MEMORY USAGE OF XPGRAPH (GB).

Dataset
DRAM PMEM

Meta Vbuf Input Elog Pblk
TT 6.62 5.11 10.94 8.00 13.61
FS 12.11 6.86 19.27 8.00 30.31
UK 16.60 7.08 24.60 8.00 37.19
YW 55.93 10.59 49.57 8.00 116.70
K28 15.72 8.91 32.00 8.00 41.97
K29 27.65 16.89 64.00 8.00 82.67
K30 49.54 28.22 128.00 8.00 165.95

We can see that, XPGraph can efficiently handle large

graphs that fit in PMEM capacity with a limited and tunable

DRAM usage. For example, the largest test graph Kron30,

with billions of vertices and tens billions of edges, consumes

about 80 GB DRAM space and 300 GB PMEM space in

total, which can be supported in most medium-sized servers.

In most enterprise-scale servers with larger memory space,

such as terabytes of PMEM per socket [51], XPGraph
can support a large portion of large-scale graph processing

applications. For larger graphs that can not fit in PMEM, we

will consider extending the SSD-supported XPGraph and

distributed XPGraph in future work.

VI. RELATED WORK

Large-scale graph processing. Traditional in-memory graph

processing systems usually use the adjacency list liked

formats, for efficient graph queries [29], [49], [63]. However,

their scalabilities are limited by the DRAM capacity. To

support efficient graph processing for large-scale graphs

that can not reside on a single machine’s memory, many

distributed graph systems have been proposed to process

graph computation on a cluster of machines [7], [8], [25],

[26], [35], [42], [46], [66], [83], [84]. On the other hand,

disk-resident single machine graph processing also receives

a lot of attention by storing graphs on external storage

devices [1], [17], [23], [33], [38], [40], [44], [57], [71],

[72], [85]. However, these systems are usually designed for

static graphs and require efficient graph partitioning. Besides,

they often suffer from performance drops due to the high

cost of communication between machines or I/O from disk.

Therefore, our XPGraph first introduces a PMEM-based

graph store, which can realize both good scalability and high

performance graph processing.

Dynamic graph stores. Dynamic graph processing is an

important research field, which can execute graph analysis

concurrently with graph updates, and many dynamic graph

frameworks have been developed in recent years, such as

STINGER [22], GraphIn [61], EvoGraph [60], Hornet [4],

GraphOne [36], and so on [14], [28], [32], [47], [62], [75],

[76]. The majority of these frameworks usually combine

the adjacency list or the edge list that consists of chunks,

thus enabling a trade-off between the locality of accesses

and time to perform updates [4], [22], [36], [60], [61]. And

some frameworks use some form of batching the updates

to increase the parallelism and ultimately the throughput of

graph accesses [4], [6], [22], [45]. However, these frameworks

are usually designed for DRAM-based dynamic graph stores,

which often brings many small random accesses during

the process of updating the adjacency lists for different

vertices, thus causing access efficiency issues when moving

these frameworks to a PMEM-based system. Therefore, our

XPGraph proposes a PMEM-friendly graph accessing model,

to support high performance dynamic graph stores for large-

scale graphs.

PMEM-based storage optimizations. Persistent memory

has been well studied in the past decade [20], [65], [70],

even before the release of real industrial products. Be-

cause of the different characteristics between DRAM and

PMEM, e.g., Intel Optane Persistent Memory’s performance

characterization is complicated and fluctuated by many

factors, including access type (read vs. write), access pattern

(sequential vs. random), access size, and so on [81], many

recent persistent memory works are proposed to carefully

manage the data in PMEM to realize good performance,

including PMEM allocators [3], [5], [18], [43], [52], [59],

PMEM indexes [9], [11], [31], [41], PMEM based key-value

stores [12], [30], [77], PMEM based file systems [10], [13],

[20], [78], and so on. While graph structure data and graph

processing applications are totally different from the above

situations, which pushes us to design a dedicated PMEM

based graph storage management for efficient large-scale

graph processing.

VII. CONCLUSION

In this paper, we proposed XPGraph, which is an XPLine-

friendly PMEM-based graph storage system, targeting to

realize the high-performance stores for large-scale evolving

graphs. XPGraph carefully manages the processes of flushing

graph data to PMEM, by vertex-centric graph buffering, hier-

archical vertex buffer managing, and NUMA-friendly graph

accessing. Our experimental results show that XPGraph
can largely reduce the PMEM access cost for graph data,

and improves the graph update performance, graph query

performance, as well as graph recover performance. We also

provide data access APIs encapsulated into a library, for easy

use of XPGraph by user applications.
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APPENDIX

A. Abstract

The artifact contains the prototype implementations of

XPGraph, as well as its two variants, i.e., XPGraph-B

and XPGraph-D. We open-source XPGraph and provide

some graph view interfaces to allow other researchers and

developers to use and improve it in their own work. We also

provide the implementations of the comparison baselines, i.e.,

GraphOne-D, GraphOne-P, and GraphOne-N. This artifact

should enable others to reproduce a subset of our results and

conduct their own studies on PMEM-based graph processing.

B. Artifact check-list (meta-information)

• Program: Linux kernel of 5.10.0., ndctl tool, PMDK libpmem
library, XPGraph, GraphOne.

• Compilation: GCC 10.2.0.
• Data set: Four real-world graphs Twitter, Friendster, UKdo-

main and Yahoo Web, as well as three synthetic Kronecker
graphs, i.e., Kron-28, Kron-29 and Kron-30, which are
generated by graph500 generator.

• Run-time environment: Ubuntu 18.04.
• Hardware: A server with two processors configured in a

non-uniform memory access (NUMA) architecture, and with
Intel Optane Persistent Memory 200 Series equipped.

• Execution: Automated by shell scripts.
• Metrics: Graph ingesting, query and recovery performance.
• Output: The key results would be recorded to the directory

results/, and detailed run-time state would be printed to the
command window.

• Experiments: Graph ingest time cost for GraponOne-P,
XPGraph and XPGraph-B (Fig.11). Graph ingest time cost for
GraphOne-D, XPGraph-D (Fig.12). Graph query performance
for GraphOne-P and XPGraph (Fig.14). Graph recovery
performance for GraphOne-D and XPGraph (Fig.15).

• How much disk space required (approximately)?: 1 TB.
• How much time is needed to prepare workflow (approxi-

mately)?: 48 hours for downloading and preprocessing all
graph datasets.

• How much time is needed to complete experiments
(approximately)?: 48 hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Version v1.0.4
• Workflow framework used?: No, but scripts are provided

to automate the measurements.
• Archived (provide DOI)?: 10.5281/zenodo.6997642

C. Description

1) How to access: The source code and scripts are host on

Zenodo https://zenodo.org/record/6997642#.Yvtnky-KFpQ.

2) Hardware dependencies: This artifact runs on a server

with two processors configured in a non-uniform memory

access (NUMA) architecture. Each processor has 24 physical

cores with hyper-threading enabled (48 logical cores). For

memory, it equips with 8 × 16 GB (128 GB) DRAM and 8

× 128 GB (1 TB) Intel Optane Persistent Memory 200 Series,

which are interleaved inserted to the memory slot.

3) Software dependencies: This artifact runs on Ubuntu

18.04.6 LTS with Linux kernel of 5.10.0, and we use GCC

10.2.0 with -O3 optimization for evaluation. Users also need

to install ndctl tool for managing the PMEM mode in the

Linux kernel, and PMDK libpmem library for allocating

PMEM space.

4) Data sets: We use four real-world graphs Twitter,

Friendster, UKdomain and Yahoo Web, as well as three

synthetic Kronecker graphs, i.e., Kron-28, Kron-29 and Kron-

30, which are generated by graph500 generator, for our

evaluation. Data sets download links:

• Twitter: http://an.kaist.ac.kr/traces/WWW2010.html

• Friendster: http://konect.uni-koblenz.de/networks/

friendster

• UKdomain: http://konect.cc/networks/dimacs10-uk-

2007-05

• Yahoo Web: http://webscope.sandbox.yahoo.com

Graph500 generator link and Kronecker graph generation

commands:

• Generator link: https://github.com/rwang067/graph500-

3.0

• Make genetator: cd graph500-3.0/src && make

graph500 reference bfs

• Generate Kron28: ./graph500 reference bfs 28 16

kron28 16.txt

• Generate Kron29: ./graph500 reference bfs 29 16

kron29 16.txt

• Generate Kron30: ./graph500 reference bfs 30 16

kron30 16.txt

D. Installation

Users need to download the source code and scripts from

Zenodo to the server. The following is the directory structure

of the source code, scripts, and instructions:

• README.md: This file contains a detailed step-by-step

“Try out XPGraph” guide.

• src/: This directory contains the core source code of

XPGraph implementations.

• apps/: This directory contains the graph query algo-

rithms implemented on top of XPGraph.

• baselines/: This directory contains the zipped source

codes of the comparison baselines, i.e., GraphOne-D,

GraphOne-P, and GraphOne-N.

• scripts/: This directory has scripts to run experiments.

• preprocess/: This directory has scripts to preprocess

the graph datasets.

After downloading the source code and scripts, users need

to compile XPGraph and prepare graph datasets. Please

see ‘README.md’ for detailed guide. To evaluate the

comparison baselines, users also need to unzip and compile

them, please see their corresponding README.md for

detailed guide.
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E. Experiment workflow

The suggested workflow is organized in scripts/, which

contains the guide for configuring Optane PMEM (see

nvdimm.md) and the shell scripts. Users can use the com-

mand ‘cd XPGraph && bash scripts/run.sh’ for running all

default experiments. The running progress and the expected

completing time of each experiment would be printed to the

file scripts/progress.txt automatically. Note that we run each

experiment 10 times and calculate the average values for a

more accurate display of time cost. Users can modify it in

the shell scripts.

F. Evaluation and expected results

The evaluation results would be generated to the directory

results/, which would classified by figures in our paper. Users

can reproduce the results in Fig.11, Fig.12, Fig.14 and Fig.15,

which should roughly match the respective figures from

the paper. Note that, the results may be not the exact ones

presented in the paper. Because in our subsequent experiments

we found that different states of the PMEMs may also impact

the performance.

G. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-

review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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