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Existing in-memory graph storage systems that rely on DRAM have scalability issues because of the limited

capacity and volatile nature of DRAM. The emerging persistent memory (PMEM) offers us a chance to solve

these issues through its larger capacity and non-volatile characteristics. However, simply adapting existing

DRAM-based graph storage systems to PMEM would result in inefficient PMEM stores and accesses, including

high read and write amplification to PMEM, imbalanced work division for PMEM accesses, and costly remote

PMEM access across NUMA nodes. These issues severely limit the performance of large graph processing.

In this article, we aim at achieving scalable and high-performance graph processing in PMEM. We first

propose an XPLine-friendly graph storage model that uses vertex-centric graph buffering, hierarchical vertex

buffer managing, and in-place vertex block merging to optimize PMEM graph storage. Furthermore, we

develop a scalable graph processing model that leverages multi-threaded work dividing and NUMA-friendly

graph accessing to optimize PMEM graph accesses. Based on these techniques, we implement XPGraph,

a PMEM-based graph storage system for large-scale evolving graphs, and several variants for different

system settings. Our experiments demonstrate that XPGraph surpasses the state-of-the-art in-memory

graph storage system on a PMEM-based system by 3.07× to 4.99× in update performance and up to 5.87× in

query performance, and performs much better in highly parallel multi-threaded scenarios.

CCS Concepts: • Information systems → Hierarchical storage management; Phase change memory;

Additional Key Words and Phrases: Dynamic graphs processing, persistent memory, graph storage

The work of R. Wang was supported in part by the Science and Technology Program of Zhejiang Province under

Grant 2024C01019, Hangzhou Joint Fund of the Zhejiang Provincial Natural Science Foundation of China under Grant

LHZSD24F020001, and Zhejiang University Education Foundation Qizhen Scholar Foundation. The work of S. He was

supported in part by the National Science Foundation of China under Grant 62172361, the Major Projects of Zhejiang

Province under Grant LD24F020012, and the Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant

2024SSYS0002.

Authors’ Contact Information: Rui Wang, Zhejiang University, Hangzhou, Zhejiang, China and Hangzhou High-Tech Zone

(Binjiang) Institute of Blockchain and Data Security, Hangzhou, Zhejiang, China; e-mail: rwang21@zju.edu.cn; Weixu Zong,

Zhejiang University, Hangzhou, Zhejiang, China; e-mail: zorax@zju.edu.cn; Shuibing He, (Corresponding author) Zhejiang

University, Hangzhou, Zhejiang, China and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security,

Hangzhou, Zhejiang, China; e-mail: heshuibing@zju.edu.cn; Yongkun Li, University of Science and Technology of China,

Hefei, Anhui, China; e-mail: ykli@ustc.edu.cn; Yinlong Xu, Computer Science, University of Science and Technology of

China, Heifei, Anhui, China; e-mail: ylxu@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1553-3077/2025/02-ART18

https://doi.org/10.1145/3715332

ACM Trans. Storage, Vol. 21, No. 2, Article 18. Publication date: February 2025.

HTTPS://ORCID.ORG/0000-0001-8915-4169
HTTPS://ORCID.ORG/0009-0007-3894-0427
HTTPS://ORCID.ORG/0000-0002-7075-4153
HTTPS://ORCID.ORG/0000-0002-3743-8511
HTTPS://ORCID.ORG/0000-0001-9586-0561
mailto:permissions@acm.org
https://doi.org/10.1145/3715332
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3715332&domain=pdf&date_stamp=2025-02-11


18:2 R. Wang et al.

ACM Reference Format:

Rui Wang, Weixu Zong, Shuibing He, Yongkun Li, and Yinlong Xu. 2025. Scalable and High-Performance

Large-Scale Dynamic Graph Storage and Processing System. ACM Trans. Storage 21, 2, Article 18 (Febru-

ary 2025), 34 pages. https://doi.org/10.1145/3715332

1 Introduction

Graphs are widely used in many real-world applications, as they can naturally represent the

relationships between entities and discover hidden information in these relationships. Graph

storage systems are essential for high-performance graph update and analysis, and have attracted

wide attention in recent years [18, 38, 58, 59, 71, 72]. The most commonly used in-memory storage

formats for evolving graphs include: (1) edge list [69, 70], which stores each edge as a record

and can support fast data ingestion for evolving graphs, but suffers from low query performance,

and (2) adjacency list [6, 25, 63, 97], which puts all neighbors of a vertex together thus enabling

efficient graph queries, but does not benefit fast graph updates. Some recent dynamic graph

storage works, such as GraphOne [44], combine the two complementary graph storage formats

into a hybrid storage thus supporting efficient graph updates and queries simultaneously.

As graphs grow larger, the scalability of these in-memory graph systems is limited by the

machine’s DRAM capacity. For instance, GraphOne cannot run on the Yahoo Web [92], a

medium-sized graph with 6.6 billion edges, using a server with 128 GB DRAM, due to the

out-of-memory error. To handle large graphs, many graph systems resort to distributing large

graphs across a cluster of machines [9, 11, 29, 51, 55, 96] or storing them on external disks

[26, 40, 46, 49, 66, 78, 82, 98]. However, these systems also suffer from performance issues

caused by high communication costs between cluster machines or high I/O costs for internal and

external memory interactions. Additionally, to ensure crash consistency, graph updates need to

be persisted to the durable disk, which adds extra I/O persistence and recovery costs.

Persistent memory (PMEM) is a promising technology that provides non-volatility and

enhanced storage capacity, and has gained significant attention with the release of Intel Optane

Persistent Memory [60]. Although Intel has discontinued its Optane business recently, we believe

progress can still be made for PMEM technology and PMEM-based data storage, as emerging

technologies like CXL are expected to bring new opportunities[22]. Intel Optane Persistent

Memory leverages 3D-XPoint media for internal data storage. Before accessing data in the

3D-XPoint media, memory requests are initially served by a small internal buffer, known as the

XPBuffer, and subsequently translated into 256-byte data units, referred to as XPLine. PMEM

offers an alternative approach to solve the scalability problem of in-memory graph stores, and has

the potential to achieve high-performance graph storage for large-scale evolving graphs, while

also ensuring data persistence.

However, simply adapting existing DRAM-based graph systems to PMEM would experience a

significant performance drop, due to the completely different performance characteristics between

DRAM and PMEM. For example, when we use GraphOne to import the Friendster graph [27], it

takes 6.37× longer time on PMEM than on DRAM. We also found that, apart from the small differ-

ences in hardware bandwidth between PMEM and DRAM, software designs are the main causes

of performance degradation for three reasons. First, DRAM-based graph systems often generate

a lot of intensive small random writes, e.g., 4-byte vertex IDs, to different adjacency lists of dif-

ferent vertices. These small random writes have little impact on the performance of DRAM-based

systems, because DRAM has high random write performance. However, each 4-byte random write

to PMEM may trigger a 256-byte XPLine read-modify-write operation, thus causing serious read

and write amplification problems and becoming the performance bottleneck. Second, we need to
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divide the work among multiple threads for graph updating, but existing solutions would result

in severe work imbalance for PMEM accesses, especially in highly parallel multi-threaded sce-

narios. These unevenly divided edges would cause quite different completion time for different

threads in PMEM, making the other threads wait for the slowest one and limiting the system’s

scalability. Third, because of the limited DIMM slots and cores of a single CPU, multiple CPUs

of non-uniform memory access (NUMA) architecture are necessary to provide the massive

bandwidth and capacity of PMEM [81]. However, the latency of cross-NUMA access of PMEM is

much higher than that of DRAM, especially in multi-threaded access scenarios [93], which further

worsens the PMEM access efficiency problem in existing in-memory graph systems.

Recently, various efforts have been made to carefully manage the data stored in PMEM and

improve the PMEM access efficiency, such as PMEM allocators [5, 7, 20, 52, 61, 68], PMEM indexes

[12, 14, 36, 50], PMEM based key-value stores [15, 35, 87], and PMEM based file systems [13, 16, 24,

89]. However, these efforts are not suitable for graph systems, which have different access patterns

than the above systems, i.e., highly random accesses and poor data locality. Therefore, in order to

efficiently handle large-scale evolving graphs, it is necessary to design a dedicated PMEM-based

graph storage system.

An intuitive solution to the read-write amplification problem is to use DRAM as a buffer to

cache and merge data updates to PMEM, but this is not easily applied to dynamic graphs due to

the following challenges. First, edge updates for evolving graphs have poor data locality, which

makes it hard to design an efficient buffering strategy. Second, the data stored in the DRAM

buffer would be lost after a power outage, which may cause data inconsistency issues. Third,

the large performance gains obtained by the buffering strategy often come with high DRAM

space requirements, which may limit system scalability. Moreover, when dealing with dynamic

graphs with deleted data, there are also challenges in merging the DRAM-buffered and the

PMEM-resident graph data, and recycling the DRAM and PMEM space.

To address the challenges and improve graph storage and processing efficiency, we present

XPGraph, an efficient graph storage and processing system for large-scale evolving graphs on

PMEM. XPGraph adopts an XPLine-friendly graph storage model with an elaborated vertex buffer

strategy to minimize PMEM read and write amplification. Additionally, XPGraph develops a scal-

able graph processing model to enhance data processing efficiency in highly parallel multi-threaded

scenarios and eliminate remote PMEM accesses across NUMA nodes. Our main contributions are

summarized as follows:

— We propose a vertex-centric graph buffering strategy by allocating a dedicated DRAM vertex

buffer to temporarily cache edge updates for each vertex. We further design a hierarchical

vertex buffer managing scheme to effectively reduce the DRAM space overhead of these vertex

buffers without compromising performance benefits. We also develop an in-place vertex block

merging method to optimize the graph data deletion performance by a localized block-reuse

PMEM allocation, and improve the PMEM space efficiency.

— We design a multi-threaded work division strategy to first divide the archiving edges into

fine-grained ranges by a self-adaptive strategy, and then allocate these small ranges to mul-

tiple threads by an anti-greedy strategy, thus realizing the balanced work division under

multi-threaded scenarios. We also introduce a NUMA-friendly graph accessing method to

completely avoid the remote PMEM accesses across NUMA and improve the graph data

accessing performance.

— We implement the PMEM-based prototype system XPGraph and also extend it to three

variant systems for better generality, i.e., battery-backed system XPGraph-B, DRAM-only

system XPGraph-D, and SSD-based version XPGraph-S. We conduct extensive experiments

to demonstrate their efficiency. Results show that XPGraph achieves 3.07× to 4.99× higher
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(a) Example graph (b) Hybrid graph storage format (c) Graph ingestion process

Fig. 1. Storage and access process in GraphOne.

ingestion rate as well as up to 5.87× higher query rate, compared with the state-of-the-art

in-memory graph storage system implemented on a PMEM-based system. XPGraph also

performs much better in higher parallel multi-threaded scenarios.

2 Background and Motivation

We first introduce the storage format and access process of the DRAM-based graph storage strategy.

Then we demonstrate the characteristics of the emerging persistent memory (PMEM) and how

it differs from the traditional DRAM. Finally, we analyze the limitations of DRAM-based graph

storage strategy in supporting PMEM resident evolving graphs.

2.1 DRAM-based Graph Stores

We use the state-of-the-art in-memory evolving graph storage system GraphOne [44] to introduce

the storage format and access process of the DRAM-based graph stores. Note that the storage

formats and the vertex-centric random access pattern used in GraphOne, are commonly used in

many other DRAM-based graph systems like [18, 25, 38, 56, 59, 71, 72]. GraphOne uses a hybrid

storage format that combines edge list and adjacency list. GraphOne first uses a circular edge log in

the edge list format to store the latest graph updates, which enables efficient graph data ingestion.

It then uses many adjacency lists to store the edges that are archived periodically from the edge

log, which enables efficient graph queries.

Figure 1(b) shows the hybrid graph storage of the sample graph in Figure 1(a). Figure 1(c)

illustrates the graph ingestion process in GraphOne, which consists of several phases. In the

logging phase, a dedicated logging thread appends the incoming edge updates to the tail of the

circular edge log, thus achieving a high ingestion rate. When the number of edges reaches a

predefined threshold, GraphOne enters a parallel archiving phase, which converts the older edges

to adjacency list format, by grouping all incremental neighbors of the same vertex into a single

adjacency list, thus supporting efficient graph queries. Specifically, GraphOne adopts a global

batched edge-centric archiving strategy. It first divides these batched edges into multiple temporary

edge lists based on the source vertex IDs of these edge data, and then uses multiple archiving

threads to process these temporary edge lists in parallel. For each archiving thread, it first counts

the degree increment of each vertex to allocate an adjacency list of an appropriate size, then

traverses each edge and appends the neighbor to the corresponding adjacency list. In addition,

GraphOne also has a persisting phase, which uses a separate persisting thread to periodically

write the edge data to a durable edge log file on disk for coarse-grained data persistence.

2.2 Persistent Memory

We use the latest PMEM product, i.e., Intel Optane Persistent Memory 200 Series (hereafter called

Optane), to demonstrate the access process and the performance characteristics of PMEM-based

ACM Trans. Storage, Vol. 21, No. 2, Article 18. Publication date: February 2025.
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(a) Optane DIMM (b) Write data process

Fig. 2. Intel Optane Persistent Memory 200 Series.

systems. Figure 2(a) shows that Optane sits on the memory bus just like normal DRAM, and

communicates with the processor’s iMC (integrated memory controller). However, Optane differs

from DRAM in its internal access process, as shown in Figure 2(b). (1) Optane uses the 3D-Xpoint

media to store data internally, whose actual physical access granularity is 256-byte XPLine.

(2) Optane has an internal XPBuffer to cache and merge some data updates, so a data write to the

3D-Xpoint media is actually a read-modify-write with XPLine granularity. (3) Optane has limited

ability in handling concurrent accesses from multiple threads. (4) Optane has more severe NUMA

(non-uniform memory access) effects than DRAM, especially for cross-NUMA accesses from

multiple threads [93]. Therefore, Optane’s performance characterization is more complex and can

be affected by many factors, such as access type (read vs. write), access pattern (sequential vs.

random), access size, and so on [93], and we need to carefully manage the data in Optane.

Note that although Intel has recently discontinued the Optane business, further PMEM and its

substitutes, such as CXL-based Memory-Semantic SSD [67], are emerging. The new products may

still share some characteristics with Optane, like mismatched access granularity between PMEM

and its internal media, limited performance under multiple threads, and cost NUMA effects. There-

fore, we believe that PMEM technology and PMEM-based data storage can still make progress, and

we can still use Optane as a study case and the evaluation testbed.

2.3 Limitations for PMEM Graph Stores

DRAM-based graph storage systems perform well for DRAM-resident graphs, but the graph scale

it can support is limited by the DRAM capacity. For instance, GraphOne fails to run on the medium-

sized graph Yahoo Web [92] with 6.6 billion edges by using a server with 128 GB DRAM, due to

out-of-memory error (refer to Section 5.2). Moreover, volatile DRAM-based graph stores also need

an extra disk for data persistence, which incurs extra durability and recovery costs.

To enable large-scale graph processing in memory with fine-grained consistency guarantee and

fast recovery, PMEM with large capacity and non-volatility offers a good opportunity. However,

directly applying the storage formats designed for DRAM to real PMEM may lead to significant

performance degradation due to the different characteristics between DRAM and PMEM. We im-

plement a PMEM-based GraphOne (called GraphOne-P) by migrating the circular edge log and all

adjacency lists from DRAM to PMEM, keeping metadata and intermediate data in DRAM, and then

disabling additional persistence operations. We find that GraphOne-P takes nearly five minutes to

ingest all 2.6 billion edges in the small Friendster graph. This execution time is 6.37 times that of

the original DRAM-based GraphOne (called GraphOne-D).

High read and write amplification in PMEM. Figure 3(a) further shows the logging and

archiving performance of GraphOne-D and GraphOne-P separately. The logging process with

ACM Trans. Storage, Vol. 21, No. 2, Article 18. Publication date: February 2025.
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(a) Time cost (b) PMEM read and write

Fig. 3. Compare GraphOne-D with GraphOne-P.

Fig. 4. Imbalanced work division in GraphOne.

sequential writes in GraphOne-P is slightly slower than that in GraphOne-D, due to the hardware

bandwidth differences. The main performance bottleneck of GraphOne-P is the graph archiving

process, which involves many small data updates (4-byte vertex ID of neighbor information) to

the adjacency lists stored in PMEM. Each 4-byte random write may trigger an XPLine (256-byte)

read-modify-write to the 3D-Xpoint media according to the Optane’s access process, which leads

to the severe PMEM read-write amplification problem. We also measure the amount of data read

from and written to the PMEM during the execution of GraphOne-P, using the Intel PCM tool [62],

and show the result in Figure 3(b). We can see that GraphOne-P causes 9.96× read amplification

and 8.56× write amplification during the archiving process, which results in high PMEM access

costs.

Imbalanced work division for PMEM accesses. As we mentioned in Section 2.1, during

the time-consuming graph archiving process, we can divide the batched edges for multi-thread

processing. However, the work division strategy used in GraphOne would cause severe workload

imbalance among different threads, especially in highly parallel scenarios. We experimentally mea-

sure the ratio of the number of edges processed by each thread to the average value when using 64

threads to ingest the Yahoo Web [92] dataset, and show the results in Figure 4. We can see that the

work division is highly skewed for both out-graphs and in-graphs. For out-graphs, threads with

smaller vertex IDs process more edges than the average. For example, thread 0 processes 21.77× the

average number of out-edges, while thread 20 processes only 1% of the average number, and the

rest 43 threads are even always idle when processing the out-graphs. For in-graphs, threads with

larger vertex IDs process more edges than the average. For example, thread 63 processes 45.65×

the average number of in-edges, while the first 64 threads are always idle. In general, the default

way of dividing the edge list makes the distribution of the number of edges processed by each

ACM Trans. Storage, Vol. 21, No. 2, Article 18. Publication date: February 2025.
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(a) NUMA (b) Number of threads

Fig. 5. Impact of NUMA and number of threads.

thread very uneven. The high cost of accessing graph data stored in PMEM further exacerbates

the impact of this imbalanced work division, and greatly reduces the graph processing efficiency.

Costly remote PMEM accesses across NUMA nodes. Moreover, a large portion of these

PMEM accesses are cross-NUMA remote PMEM accesses, which further exacerbates the problem

of high graph data access cost. We also evaluate the NUMA impact of GraphOne-D and GraphOne-

P by comparing the ingestion time of Friendster for normal execution and binding only one NUMA

node, respectively, and show the results in Figure 5(a). We can see that GraphOne-P has much

larger NUMA effects than GraphOne-D. Furthermore, we conducted tests to evaluate the impact

of the number of archiving threads on the performance of GraphOne-D and GraphOne-P. The

outcomes, presented in Figure 5(b), indicate that GraphOne-P demonstrates improved performance

as the number of archiving threads increases from one to eight, benefiting from parallel processing

capabilities. However, a notable decline in performance is observed when the number of archiving

threads exceeds eight. This decline can be attributed to PMEM’s limited performance in multi-

threaded accesses, particularly when dealing with cross-NUMA accesses.

In conclusion, directly moving existing DRAM-based in-memory graph storage systems to

PMEM would suffer severe performance drop due to the high PMEM access costs, including high

read and write amplification in PMEM, imbalanced work division for PMEM accesses, and costly

remote PMEM accesses across NUMA nodes. In the next two sections, we will present our designs

to carefully solve the problems, and achieve PMEM friendly graph storing and processing.

3 XPLine-friendly Graph Storage

We target to improve the evolving graph storing performance by reducing PMEM access cost,

especially PMEM read-write amplification. A classic solution is to use DRAM buffers to cache and

merge data updates to PMEM, but its application to large-scale dynamic graph stores is non-trivial

due to the following challenges.

— Evolving graph applications have edge updates with low data locality due to the complex

vertex relationships, which makes it hard to design an efficient graph buffering strategy.

Moreover, we also need to guarantee the data consistency for the DRAM buffered graph data.

— The buffering strategies usually need high DRAM space for good performance, which may

cause the DRAM space pressure, limiting the system scalability. Also, frequent memory

allocation and freeing of DRAM buffers may add to the memory management costs.

— Moreover, when ingesting dynamic graph updates that include deletion data, effectively

merging the DRAM buffered data and PMEM resident data to conserve space and facilitate

fast graph queries poses a significant challenge.

To address these challenges, we introduce an innovative approach called the XPLine-friendly

PMEM access model based on the XPLine-centric access pattern of PMEM. This model incorporates

three key techniques: vertex-centric graph buffering, hierarchical buffer management, and in-place

ACM Trans. Storage, Vol. 21, No. 2, Article 18. Publication date: February 2025.
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Fig. 7. Consistency guaranteed circular edge log.

vertex block merging. In the following sections, we delve into these techniques in detail and outline

how graph data is managed within our proposed model.

3.1 Vertex-centric Graph Buffering

To reduce the read-write amplification problem caused by the edge-centric adjacency list writes in

existing graph systems, we introduce a vertex-centric buffering strategy, to cache some edge updates

in DRAM, and lower actual writes to PMEM. In this subsection, we first explain this vertex-centric

buffering strategy, and then present the periodical flushing scheme for data consistency. Finally,

we analyze the DRAM space cost.

Vertex-centric buffering strategy. As shown in Figure 6, we allocate a temporary adjacency

list in DRAM (called vertex buffer in the rest of the article) for each vertex with edge updates, to

cache edge updates of the same vertex together. Each vertex buffer has a 4-byte header to store the

maximum count (mcnt) and current count (cnt) of neighbors in this buffer, and the rest space

is for storing these neighbors. For example, when the vertex buffer size is 16 bytes, then the buffer

can store 3 neighbors of 4-byte vertex ID. When a DRAM vertex buffer is full, we flush all neighbors

in it to PMEM by one XPLine access, then clear it for caching subsequent edge updates. With this

vertex-centric buffering strategy, we can merge multiple XPLine accesses into one XPLine access,

and amortize the PMEM write cost for each edge update. Note that, the buffers can also serve as

caches to reduce PMEM reads.

Periodical flushing for consistency guarantees. We implemented a periodical flushing

strategy for DRAM vertex buffers to ensure fine-grained edge-level consistency in PMEM-resident

circular edge logs. As shown in Figure 7, new edge updates are sequentially added to the head

position in a clockwise order. Once the number of non-buffered edges reaches a threshold, a

buffering phase begins, buffering these edges to their respective DRAM vertex buffers. When a

buffer is full, all neighbors in it are flushed to PMEM. The edges between the marker and buffering

ACM Trans. Storage, Vol. 21, No. 2, Article 18. Publication date: February 2025.
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positions are being buffered, while those after the buffering position are already buffered. To

prevent overwriting buffered edges in the circular edge log, a flushing phase is triggered when the

number of buffered edges reaches a threshold. All DRAM vertex buffers, including out-neighbors

and in-neighbors, are flushed to PMEM for data persistence. A flushing pointer marks where

edges have already been flushed, allowing new updates to overwrite subsequent data.

To recover lost DRAM vertex buffers after a system crash, we can use the edges between the

marker and flushing positions of the circular edge log. Some edges may have been flushed to PMEM

before when their corresponding vertex buffers were full. Therefore, before adding a neighbor to

the DRAM vertex buffer, we need to check whether it is already stored in the corresponding PMEM

adjacency list to avoid duplicates.

DRAM space requirements for vertex buffers. The performance benefit of the vertex-

centric buffering strategy is traded off with the per-vertex buffer size setting. A larger buffer

size improves performance by caching more neighbors in DRAM for each vertex, reducing graph

ingestion time. However, this comes at the cost of increased DRAM space requirements, limiting

system scalability. In our experiments with Yahoo Web [92] graph in Section 5.7, we observed that

setting a larger per-vertex buffer size reduced ingestion time but required over 50 GB of DRAM

for medium-sized graphs. This setup even made it impossible to handle larger graphs like Kron30

[31] on our 128 GB DRAM server. In the next subsection, we will explore methods to reduce

DRAM space requirements while retaining performance benefits.

3.2 Hierarchical Vertex Buffer Managing

In this subsection, we address the issue of DRAM space requirements by introducing an adaptively

hierarchical buffer size adjusting scheme based on the power-law vertex degree distribution ob-

served in real-world graphs. We also implement a buddy-like memory pool to reduce the time cost

of frequent allocation and freeing of vertex buffers.

Power-law degree distribution of real-world graphs. In real-world graphs, vertex degrees,

i.e., the number of neighbors, vary greatly and follow a power-law distribution [11, 29]. For in-

stance, in our evaluated four real-world graphs (refer to Section 5.1), vertices with a degree of 1

or 2 can account for over 40%, and vertices with degrees ranging from 4 to 7 make up around 20%,

while only a small portion of vertices have degrees larger than 64. This uneven distribution poses

a challenge for allocating buffer sizes, as assigning large buffers to low-degree vertices wastes

DRAM space, and allocating small buffers to high-degree vertices hinders the benefits of vertex-

centric buffering. To address this issue, we aim at implementing differentiated buffer size settings

for vertices based on their degrees. However, predicting the final degree of each vertex in evolving

graph situations remains a challenge.

Adaptive hierarchical buffer size adjusting. To address this challenge, we propose an

adaptively hierarchical vertex buffering scheme, which adaptively adjusts the vertex buffer sizes

according to the changes in vertex degrees, as shown in Figure 8. Initially, a 16-byte buffer (L0) is

created for each vertex with edge updates, accommodating up to 3 neighbors. Once the L0 buffer

is full, a double-sized (32-byte) L1 buffer is created, and the buffered neighbors are moved there,

freeing the L0 buffer. Subsequently, new edge updates are directly written to the L1 buffer, which

can hold up to 7 neighbors. This process continues, creating larger buffers as needed until the

buffer size reaches the predefined maximum (e.g., 256 bytes). When the largest buffer is full, we

flush its neighbors to the corresponding persistent adjacency list stored in PMEM with one XPLine

access and then clear the buffer. This adaptive strategy reduces DRAM space requirements for low-

degree vertices while preserving performance benefits for high-degree vertices achieved by larger

buffers.
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Fig. 8. Adaptive hierarchical buffer size adjusting.
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Fig. 9. Memory pool based vertex buffer management.

This hierarchical buffer size adjusting strategy incurs extra data movement overhead across

layers, but it is acceptable for two reasons. First, the data copy operation does not happen

frequently, because we buffer the edge updates in batches (see Section 3.4). If a vertex’s edge

count reaches a higher level in the current batch, we skip allocating lower layer buffers. Second,

the main performance bottleneck lies in PMEM accesses, so the limited DRAM data movement

cost can be hidden. The efficiency of this strategy is studied in Section 5.7.

Buddy-liked memory pool management. With the adaptively hierarchical buffer man-

agement, we allocate and free small DRAM pieces of varying sizes frequently, resulting in high

memory management costs, especially in high-concurrency multi-threading scenarios due to

frequent system user mode/kernel mode switches, lock contention, and memory fragmentation.

To reduce these costs, we use memory pool management, which pre-allocates a large memory

space to handle buffer allocation/freeing by itself, as shown in Figure 9. To avoid access conflicts

among threads, We divide the memory pool into smaller memory bulks (default size: 16 MB), and

each thread acquires a separate memory bulk to satisfy its buffer allocations. Within each thread’s

contiguous memory bulk, we employ a buddy-like buffer allocation/free strategy, treating vertex

buffers with the same size and adjacent memory space as buddy buffers. To ensure scalability, we

set a threshold for the memory pool size to limit DRAM usage of all vertex buffers. If the memory

pool is close to exhaustion, we flush all vertex buffers to PMEM to reclaim space. We evaluate the

impact of memory pool sizes in Section 5.8 to demonstrate performance sensitivity.

3.3 In-place Vertex Block Merging

In dynamic graph scenarios involving evolving graph updates, while the majority of graph updates

consist of edge additions, there are also occasional deletions of edges and vertices. These deletions

may involve actions such as removing friend relationships or users in social networks.

Tombstone-based deletion strategy. In order to efficiently manage edge and vertex deletions

in dynamic graph scenarios, we implement a tombstone-based deletion strategy inspired by the
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(a) Naive compacting method (b) Localized block-reused compacting method

Fig. 10. Different neighbors compacting methods.

approach used in GraphOne [44]. The deletion process is structured into three distinct phases. The

first phase is the logging phase. When an edge deletion−e occurs, we record a new edge log entry in

the circular edge log. To signify the deletion, we set the most significant bit (MSB) of the source

vertex ID to 1. For vertex deletions −v , all edges connected to the vertex are logged in the circular

edge log and marked as deleted. This methodology ensures that both edge and vertex deletions are

effectively managed in evolving graph environments. During the archiving phase, where a batch

of edge logs is transferred to their corresponding adjacency lists, we first retrieve all neighbors of

the source vertex linked to the deleted edges. This aids in identifying which neighbors need to be

removed. In cases where an edge deletion is deemed invalid due to the absence of a preceding edge

addition, the deletion is disregarded. Valid edge deletions result in the storage of neighbor indexes

in the adjacency list, labeled as new neighbors. Once archiving is complete, we proceed to the final

compacting phase, where the actual deletions occur. In this step, we scan the adjacency lists of all

vertices, utilizing the stored indexes to eliminate the deleted edges. To enhance the efficiency of the

compacting process, we introduce a mechanism to monitor the number of deleted edges associated

with each vertex, known as the deleted degree. Vertices with a deleted degree of zero are skipped

during scanning to expedite the process.

Inefficient PMEM space management for neighbor compacting. In the final compacting

phase, GraphOne employs a strategy where new space in DRAM is allocated for compacted

adjacency lists based on the disparity between the total degree and deleted degree of a vertex.

Subsequently, valid edges are transferred to the new space, and the old space is freed, as depicted

in Figure 10(a). While this method functions effectively in DRAM-based systems with manageable

allocation and freeing costs, its direct adaptation to PMEM-based systems presents three signifi-

cant challenges. First, deleted edges may be dispersed across both DRAM and PMEM, necessitating

meticulous data migration management between these storage mediums for optimal efficiency.

Second, the frequent allocation of PMEM space leads to a substantial degradation in compaction

performance compared to DRAM-based systems, as PMEM allocation entails higher overhead.

Third, the absence of a system-managed memory reclamation mechanism in PMEM complicates

the efficient reclamation of freed space. This results in pronounced external fragmentation issues

and wastage of PMEM space. For instance, when applying the naive compacting method to handle

a Yahoo Web graph with 6.6 billion inserted edges and a random deletion of 4% of its edges, the

PMEM usage for adjacency lists increased by 37%.

Localized block-reused compacting. In response to the challenges outlined earlier, we intro-

duce a localized block-reused compacting technique that provides an efficient solution for storing

compacted neighbors in PMEM. As illustrated in Figure 10(b), this method involves allocating a

temporary adjacency list block in DRAM to accommodate the compacted neighbors when compact-

ing the neighbors for a vertexv . There are two primary reasons for utilizing DRAM for temporary

storage. Firstly, the deletion process involves numerous vertex-level operations, which could result
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in substantial write amplification in PMEM. Secondly, certain vertices may have all their edges

stored in hierarchical buffers that have not yet been flushed to PMEM. For these vertices, retaining

the compacted results in DRAM enhances query performance. Subsequent to compaction, the

compacted neighbors are transferred to the existing adjacency lists in PMEM, obviating the need

for additional PMEM space allocation. Should any of the old adjacency lists become empty, they

are repurposed into a list for future use, further reducing PMEM space wastage. It is essential to

acknowledge that while there may be some unused space in the old adjacency lists, it is reserved

for future edge ingestions and will not go to waste. Although this approach introduces some addi-

tional data movement overhead, it is minimal in comparison to the advantages of decreased PMEM

write amplification and allocation overhead. Notably, this method does not introduce extra DRAM

space overhead, as the temporary space is promptly freed post-compaction. In our evaluation, as

outlined in Section 5.3, this approach shows substantial improvements in deletion performance by

up to 5.42×, while also reducing PMEM space usage by up to 88% across various graph datasets.

3.4 Data Management Phases

For a better understanding, we describe how graph data is managed in DRAM and PMEM, which

may go through three phases in XPGraph: logging, buffering and flushing.

Logging phase. A dedicated logging thread is activated when edge updates are received from

the client. This thread sequentially writes these updates to the PMEM resident circular edge log. To

prevent overwriting non-flushed edge updates, the logging process will temporarily pause if there

is insufficient space in the circular edge log. Once the number of non-buffered edge updates in the

log surpasses a predetermined threshold, the system is notified, and the buffering phase begins.

Buffering phase. Multiple buffering threads are utilized to transfer a batch of non-buffered

edges from the edge log to the DRAM vertex buffers. To achieve load balancing and maintain

data ordering integrity, we employ the edge sharding based approach used in GraphOne [44]. This

approach involves dividing the batched edges into multiple temporary ranged edge lists based on

the ranges of their source vertex IDs. Each of these ranged edge lists can then be buffered in parallel

without the need for atomic instructions. To address load imbalance issues, a larger number of

ranged edge lists is created compared to the available threads. Different numbers of ranged edge

lists are assigned to each buffering thread, ensuring that each thread handles a roughly equal

number of edges. We store these temporary ranged edge lists in DRAM for better performance.

Flushing phase. During the buffering phase, when a vertex’s highest layer buffer reaches its

capacity, the buffering thread enters a brief flushing phase for that vertex, transferring the neigh-

bors stored in the DRAM buffer to the PMEM adjacency list. At the end of each buffering phase, if

the number of non-flushed edges in the edge log surpasses a predetermined threshold, indicating

that these edges may soon be overwritten, the system is notified to initiate a flushing phase for

all vertices. Additionally, if the vertex buffer pool is close to reaching its maximum capacity, the

system is also notified to start a flushing phase for all vertices. This action empties the vertex buffer

pool, preparing it for the next buffering phases.

4 Scalable Graph Processing

Expanding on the XPLine-friendly graph storage model, we have developed a scalable graph

processing framework that integrates two essential techniques: a multi-thread friendly work

division strategy and a NUMA-friendly graph accessing approach. Additionally, we have de-

signed user-friendly graph data access APIs and built several prototype systems for efficiently

processing large-scale evolving graphs across different memory systems. Our goal is to provide a

comprehensive solution that maximizes performance and usability for graph processing tasks.
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4.1 Multi-thread Friendly Work Dividing

We employ multi-threading to expedite edge conversion during the archiving phase. A well-

designed workload division strategy is crucial for the efficiency of multi-threading. In this sub-

section, we present a multi-thread friendly work dividing strategy that adapts to varying graph

scales and helps improve workload balance across threads.

Unbalanced workload in existing static work division strategy. During the archiving

phase, logged edges are distributed among multiple threads for conversion into an adjacency

list format. A common approach is to assign edges to threads based on their source vertex ID.

By grouping edges with the same source vertex ID together, the efficiency of adjacency list

conversion is improved, and thread contention is reduced. For example, GraphOne divides the

total edge data into 256 fixed ranges. However, this static strategy has limitations when applied to

larger-scale real-world graphs. Firstly, the static work division strategy often results in an uneven

distribution of workload, particularly in scenarios with high concurrency involving a large

number of threads (e.g., 96 threads) archiving simultaneously. The imbalance is exacerbated by

the power-law distribution of vertex degrees in real-world graphs, leading to uneven distribution

of edges across the 256 fixed ranges. Secondly, this strategy tends to allocate more edges to

the main execution thread than the average, causing most ranges to be assigned to previously

allocated threads. This creates an unbalanced workload distribution among the threads. As shown

in Figure 4 and discussed in Section 2.3, when applying the existing static work division strategy

to a large real-world graph dataset such as Yahoo Web [92], Thread 0 processes approximately

21.77× more edges than the average, while many threads remain underutilized.

Adaptive work division strategy. In order to overcome the challenges outlined earlier, we

propose an adaptive multi-thread-friendly work division strategy. Firstly, we dynamically deter-

mine the number of divided ranges based on the batch’s edge count. We set the number of ranges

to 2f (E)−b , where E represents the number of edges in the batch, f (E) is a function of the edge

count E, and b is a tunable bias parameter. This adaptive approach enables us to adjust the range

count according to the size of the processing edges, facilitating more precise workload balancing

across multiple archiving threads. Secondly, during the archiving phase, we monitor the utilization

of each thread. Tasks are assigned first to idle threads with below-average utilization, promoting

improved workload balance. Additionally, for each thread, if the sum of the current range’s edges

and the edges it is already processing exceeds 95% of the average edge count, we reassign the

current range to another thread. This strategy ensures efficient utilization of threads with lower

workloads and achieves a more balanced distribution of tasks.

Our strategy hinges on two essential settings: function f (E) and parameter b. The function f (E)
is adaptive and correlates with the edge count E. It’s imperative to devise a well-balanced growth

trend for f (E) to avoid uneven division with too few ranges or excessive thread management

overhead with too many ranges. Through testing, we have determined that a logarithmic relation-

ship is a suitable choice. Consequently, we set f (E) to the logarithm of the edge count, denoted

as f (E) = log2(E). Additionally, the parameter b works in conjunction with f (E) to enhance the

robustness across diverse workloads and hardware configurations. For instance, when processing

a graph with a uniform edge distribution and a limited number of threads, increasing b can reduce

the number of ranges, thereby minimizing the need for frequent thread switching. We conducted

extensive experiments on a dual-socket system with 96 threads, varying the value of b to observe

performance differences. Our results indicate that a default setting of b = 4 consistently delivers

optimal performance under these conditions. For example, when processing 216 edges with b = 4,

our strategy divides the edges into 212 ranges. It is important to note that both f (E) and b are

adjustable, and users can fine-tune them according to their specific requirements.
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Fig. 11. NUMA-friendly graph accessing.

4.2 NUMA-friendly Graph Accessing

As discussed in Section 2.3, NUMA effects have a significant impact on PMEM compared to DRAM,

resulting in a degradation of remote data access performance for graph updates and queries [93].

To mitigate this issue, we propose a novel NUMA-friendly graph accessing strategy, as illustrated

in Figure 11. This strategy involves dividing the graph data and storing different parts on different

NUMA nodes. Subsequently, the graph updating and querying threads are bound to the CPU cores

of the corresponding NUMA nodes.

NUMA-aware segregated graph storing. We introduce a NUMA-aware segregated graph

storing approach, where the graph data is partitioned into P parts for a P-socket system. Each part

of the graph data is stored in the PMEM(s) of a separate NUMA node. For instance, in a two-socket

system, the out-graph data is stored in PMEM 0 of NUMA node 0, while the in-graph data is stored

in PMEM 1 of NUMA node 1. This technique can be extended to more general situations, such as

undirected graph formats or systems with multiple NUMA nodes, by employing sub-graph based

implementations. In the sub-graph-based method, the entire graph is segmented into P sub-graphs

using established graph partitioning techniques. Each sub-graph contains the neighbor informa-

tion for a subset of all vertices. We adopt a widely-used hash-based graph partitioning strategy,

where each vertexv is assigned to sub-graphv%P to ensure a balanced distribution of vertices and

edges in each sub-graph. Subsequently, each sub-graph is allocated to the PMEM(s) of a distinct

NUMA node. By default, we employ the sub-graph-based implementations, unless otherwise speci-

fied. A detailed comparison between the two implementation approaches is provided in Section 5.7.

CPU-binding based graph updating. During the graph buffering and flushing phases, we

implement CPU-binding to optimize graph updates for the graph data stored in the PMEM(s) of

NUMA nodep. This optimization is achieved by assigning the buffering threads to the CPU cores of

NUMA node p using the Linux pthread function pthread_setaffinity_np() [64]. For example, in the

scenario of segregated storing of out/in-graph data, when flushing the adjacency lists of vertices’

out-neighbors, the threads are bound to the cores of NUMA node 0. Likewise, when flushing the

adjacency lists of vertices’ in-neighbors, the threads are bound to the cores of NUMA node 1. In

the case of sub-graph segregated storing, when flushing the adjacency lists of sub-graph p, the

threads are bound to the cores of NUMA node p. This approach guarantees that remote PMEM

writes between NUMA nodes are completely eliminated, as the flushing threads are confined to

the local cores, ensuring efficient data processing and minimizing latency.

CPU-binding based graph querying. To prevent remote PMEM reads across NUMA nodes

during graph queries, we can bind the querying thread to the CPU cores of the corresponding

NUMA node when accessing the adjacency lists of a vertex. However, adopting a per-vertex

CPU-binding strategy can result in frequent thread migrations, which incur a high cost. In our

experiments, we observed that the cost of thread migrations can be more than ten times that of

ACM Trans. Storage, Vol. 21, No. 2, Article 18. Publication date: February 2025.



Scalable and High-Performance Large-Scale Dynamic Graph Storage 18:15

Table 1. Graph View APIs

Graph Updating Interfaces

status add_edge(src, dst)

count add_edges(buf, size)

count buffer_edges(buf, size)

status del_edge(src, dst)

status add_vertex(vid)

status del_vertex(vid)

Graph Querying Interfaces

count get_nebrs_{out/in}(vid)

count get_nebrs_log_{out/in}(vid)

count get_nebrs_buf_{out/in}(vid)

count get_nebrs_flush_{out/in}(vid)

count get_logged_edges()

Graph Arranging Interfaces

status buffer_all_edges()

status flush_all_vbufs()

status compact_adjs(vid)

status compact_all_adjs(vid)

remote PMEM access. To mitigate the high cost of frequent thread migrations and avoid remote

PMEM reads across NUMA nodes during graph queries, we propose a strategy where vertex

queries are classified based on their associated NUMA parts at the beginning of each computing

iteration. Subsequently, the querying threads are bound to the corresponding CPU cores before

executing the computations. By doing so, we can minimize thread migrations and eliminate

remote PMEM reads across NUMA nodes during graph queries.

4.3 Graph View Interfaces and Prototypes

Graph view interfaces. We also provide user-friendly data access APIs. Table 1 outlines the

commonly used graph view interfaces. The primary graph updating interface is adding a new edge

add_edge(src, dst). We offer several variants to handle batches of edges or delete an existing edge.

We also offer interfaces for adding or deleting a vertex. For graph querying interfaces, we offer the

basic get_nebrs_{out/in}(vid) function to query all out/in neighbors of a vertex. Additionally, we

implement various variants of these functions to query out/in neighbors from each data structure.

Furthermore, we provide graph arranging interfaces to facilitate the transformation of the graph

data status between the three data management phases described earlier. We also implement the

compact_adjs(vid) function to merge a vertex’s adjacency lists stored in both DRAM and PMEM

into a single large adjacency list for more efficient graph queries.

Prototype systems. We have implemented all the designs and optimizations described above

in approximately 10,500 lines of C++ code encapsulated into a libxpgraph library. Using this library,

we have developed a basic prototype system called XPGraph, which is a graph storage framework

designed for DRAM-PMEM hybrid memory systems. XPGraph enables efficient large-scale

evolving graph processing while ensuring fine-grained data consistency for each edge update.

Considering the increasing availability and affordability of battery-backed DRAM [23, 41], we

have also implemented a variant of XPGraph called XPGraph-B to cater to these battery-backed

systems. In XPGraph-B, we modify the design of the circular edge log to allow the logging process
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to overwrite the buffered edges. This modification is possible because the DRAM vertex buffers

are also included in the power-failure protection domain in battery-backed systems.

Additionally, we have developed another variant system called XPGraph-D to accommodate

DRAM-only systems, where all data structures are stored in DRAM, thus supporting situations

with enough DRAM space and no crash consistent requirement. In XPGraph-D, the per-vertex

buffer size is fixed at 64 bytes to minimize data movement overhead.

To broaden the applicability and scalability of our techniques, we have extended them to Solid

State Drives (SSDs) and developed a variant system named XPGraph-S. XPGraph-S utilizes

memory-mapped file I/O to store the circular edge log and persistent adjacency list on SSDs, while

retaining vertex buffers in memory. To address the performance challenges typically associated

with SSDs, XPGraph-S dynamically adjusts the maximum buffer size for high-degree vertices.

This adjustment allows multiple data updates to be consolidated into a single write operation

to NAND flash chips, minimizing write amplification on the SSDs. Additionally, XPGraph-S can

adapt to various hardware access granularities by dynamically adjusting the hierarchical buffer

structure. Moreover, XPGraph-S incorporates a workload-aware vertex merging strategy that

considers the specific characteristics of modern SSDs. The performance gap between random and

sequential access on modern NVMe SSDs has been significantly reduced. However, the impact

of I/O concurrency differs between the two access patterns. As I/O concurrency decreases, the

performance of random access deteriorates more rapidly than sequential access. We conducted

tests with varying I/O concurrency. When the I/O concurrency dropped to four threads, the per-

formance of sequential reads decreased to 90% of the full-load rate, while random access dropped

to only 14%. Therefore, XPGraph-S can intelligently adjust its strategy based on I/O concurrency.

During periods of low I/O concurrency, it consolidates all adjacency lists of the queried vertex into

a single large list to enhance query performance by reducing the number of I/O operations. As I/O

concurrency increases, XPGraph-S proactively avoids merging adjacency lists, instead leveraging

high-performance random reads to minimize additional memory copy overhead during ingestion.

By extending our techniques to SSDs, XPGraph-S offers improved generality and scalability,

enabling efficient processing of large-scale evolving graphs across a broader spectrum of storage

systems.

The implementation of XPGraph, along with its variant systems XPGraph-B, XPGraph-D, and

XPGraph-S, provides a flexible and efficient solution for processing large-scale evolving graphs

across diverse system settings. Furthermore, XPGraph has the potential for future expansion

to support emerging storage technologies, such as CXL-based Memory-Semantic SSDs. It is

important to highlight that transitioning between the three XPGraph variants can be seamlessly

achieved by adjusting specific parameters, making it adaptable to varying workloads and

hardware environments.

5 Evaluation

5.1 Experiment Settings

Test bed. We conducted experiments on a server equipped with two 2.10GHz Intel(R) Xeon(R)

Gold 5318Y processors, each featuring 24 physical cores with hyper-threading enabled, resulting

in a total of 96 logical cores. In terms of memory, the server is equipped with 8 × 16 GB (128 GB)

DRAM and 8 × 128 GB (1 TB) Intel Optane Persistent Memory 200 Series. Additionally, the server

features a 3.84 TB Intel NVMe SSD for storage purposes. The operating system utilized is Ubuntu

20.04.6 LTS, running on the Linux kernel version 5.4.0.

Comparison systems. As a benchmark for overall performance evaluation, we conducted a

comparative analysis using two single-machine graph storage systems, DGAP [37] and GraphOne
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Table 2. Statistics of Datasets

Dataset |V | |E | Bin Size CSR Size

Twitter (TT) 61.6 M 1.5 B 12 GB 12.4 GB

Friendster (FS) 68.3 M 2.6 B 20.8 GB 21.4 GB

UKdomain (UK) 101.7 M 3.1 B 24.8 GB 26.4 GB

YahooWeb (YW) 1.4 B 6.6 B 52.8 GB 75.2 GB

Kron28 (K28) 256 M 4 B 32 GB 36 GB

Kron29 (K29) 512 M 8 B 64 GB 72 GB

Kron30 (K30) 1 B 16 B 128 GB 144 GB

Kron31 (K31) 2 B 64 B 512 GB 576 GB

[44]. DGAP is a state-of-the-art dynamic graph framework for persistent memory, which utilizes a

mutable CSR graph structure to deliver high performance. GraphOne is a leading single-machine

in-memory graph storage system, and we evaluated on four variants: (1) GraphOne-D: The

original GraphOne that stores all data on DRAM. (2) GraphOne-P: GraphOne on PMEM that

the edge log and adjacency lists are stored on PMEM using the default Ext4-DAX file system

and the mmap-based approach. The meta-data (such as vertex indexes and snapshot information)

and intermediate data (such as temporary edge lists) are stored on DRAM. (3) GraphOne-N:

GraphOne that keeps the meta-data and intermediate data on DRAM, and stores the adjacency

lists on PMEM using the NOVA [89] PMEM file system and the file-I/O-based approach. To

achieve the best performance of NOVA, we mounted NOVA in the relaxed mode, which relaxes

atomicity constraints on file data and metadata. It is worth mentioning that we also performed

the file-I/O-based GraphOne on the default Ext4-DAX file system and observed a time cost

approximately four times higher than NOVA, which aligns with the results reported in [90].

(4) GraphOne-S: GraphOne on SSD that the edge log and adjacency lists are stored on SSD using

mmap on Ext4 file system. The meta-data and intermediate data remain stored on DRAM.

Graph datasets. We utilized a combination of real-world and synthetic graph datasets for

evaluation. The real-world graphs include Twitter [75], Friendster [27], UKdomain [76], and

Yahoo Web [92]. Additionally, we incorporated four synthetic Kronecker graphs generated using

the graph500 generator [31]. They are all direct graphs, and are widely used in evaluations of

graph systems. Table 2 presents detailed information about the graphs. Bin Size indicates the size

of the dataset stored in binary edge list format. CSR Size represents the size of storing graphs in

the CSR format for both in-graphs and out-graphs. It is important to note that CSR is the most

space-efficient storage format for static graphs. However, for dynamic graphs, more memory space

is typically required to store evolving adjacency lists for all vertices. For instance, after ingesting

the Friendster dataset (which occupies only 21.4 GB in CSR format), GraphOne consumes more

than 40 GB of memory solely for storing the adjacency lists. Additionally, it requires an additional

23 GB of memory for storing metadata and intermediate data. As a result, larger graphs like Yahoo

Web, Kron29, and Kron30 are not feasible to process using DRAM-based systems (GraphOne-D

and XPGraph-D) as their memory demands surpass the 128 GB DRAM capacity of our testing

environment.

Evaluation metrics. We assess XPGraph and its comparison systems based on the following four

criteria: (1) Graph ingestion performance that measures the time required and the amount of

PMEM read/write operations involved in ingesting graphs. (2) Graph deletion performance

that evaluates the time required for deletion operations and the space cost for the adjacency

list storage. (3) Graph query performance that evaluates the performance of simple one-hop
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(a) non-volatile systems (shown in log scale) (b) volatile systems

Fig. 12. Graph ingestion time cost for different systems. Optane is set in application-direct mode for non-

volatile systems, and for volatile systems, DO indicates running on a DRAM-only system, and MM indicates

running on a PMEM-based system with Optane set in memory mode.

neighbor query (which accesses the neighbors of 224 randomly selected vertices with non-zero

degrees), as well as three common graph computing algorithms BFS (which traverses the

connected sub-graphs of three random roots), PageRank (which runs for ten iterations), and CC

(which identifies the connected components in the graphs). (4) Graph recovery performance

that assesses the efficiency of graph recovery operations. Each experiment was conducted ten

times, and the average completion time was calculated to provide a more reliable representation

of the time cost. To ensure a fair comparison among different graph systems, all systems were

configured according to the G-Bench benchmark [45]. First, we utilized the combined run-time

to evaluate overall performance. For system initialization, we adopted the two-parameter method

provided by G-Bench to standardize initialization overhead across all systems. Furthermore, we

used the binary files to simulate a fast streaming data flow, and use micro-batch to ingest graph

data. Additional metrics from the benchmark, such as dedicated analytics and data-access APIs,

data generation and shuffling, and graph deletion, were also supported by our system.

5.2 Graph Ingestion Performance

The graph ingestion process imports graph by batching edges from an edge list format. For DGAP,

this involves using multiple threads to insert edges into a dynamic edge log while simultaneously

updating the PMA tree. For XPGraph and GraphOne, they employ parallel single-thread logging

and multi-thread archiving. For simplicity, we refer to XPGraph’s buffering and flushing processes

as the archiving process throughout the article. In all systems, we use 96 threads (all logical cores

on two processors) for ingestion (with archiving threads for XPGraph and GraphOne-P), and we

further analyze the impact of the number of archiving threads in Section 5.8. We set the archiving

threshold (the number of non-flushed edges stored in the circular edge log required to trigger an

archive process) to 216, similar to the configuration used by GraphOne.

Ingestion time cost for non-volatile systems. We evaluated the time required to ingest the

first seven graphs using DGAP, GraphOne-P, XPGraph, and XPGraph-B. All of these systems offer

fine-grained edge-level consistency guarantees (with XPGraph-B providing consistency using

system-level battery support). Figure 12(a) illustrates the results of this comparison. Compared

to DGAP, XPGraph consistently delivers a speedup of 1.37× to 1.80× across all graphs. This im-

provement can be attributed to two main factors. First, DGAP directly writes the incoming edges

(4 bytes) to the edge log on PMEM, which suffers from write performance amplification caused by

XPLine. In contrast, XPGraph optimizes batched ingestion by employing hierarchical vertex buffer

strategy. Second, DGAP stores edges based on the PMA data structure, which requires frequent

updates to the metadata to maintain its balance, along with continuous space allocation and data
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(a) PMEM read amount. (b) PMEM write amount.

Fig. 13. PMEM read and write data amount for non-volatile systems (shown in log scale).

migration on PMEM. These operations become especially costly in high-concurrency environ-

ments due to increased data contention on PMEM. Although XPGraph involves data conversions

from edge log to adjacency list, it leverages the multi-thread friendly work division strategy to

evenly distribute the conversion workload across multiple threads and avoid data contention. Con-

sequently, the conversion process is significantly faster, delivering superior overall performance.

Compared to GraphOne-P, XPGraph consistently achieves faster results, with a speedup ranging

from 3.07× to 4.99× for various graphs. This improvement is attributed to the reduction of PMEM

access costs. Additionally, XPGraph-B, with system-level battery support, further enhances per-

formance by up to 1.4× compared to XPGraph, indicating that the optimizations of XPGraph are

applicable to battery-backed systems.

We also evaluated the ingestion performance on GraphOne-N, and GraphOne-N consistently

exhibits significantly slower performance compared to the other systems. This can be attributed

to the file-I/O-based implementation in GraphOne. While NOVA optimizes file I/O operations

through high-concurrency log management and bypassing the page cache, it still incurs substan-

tial overhead compared to memory-based operations. It includes costs associated with the virtual

file system (VFS), frequent context-switching, metadata management in the physical file system,

data synchronization, and log management in NOVA [90]. In our opinion, the mmap based imple-

mentation, where the user application is responsible for managing its own address space of PMEM,

is more suitable for graph processing scenarios due to its lightweight management overhead.

Ingestion time cost for volatile systems. We evaluated the performance on different hardware

settings to demonstrate the versatility of our approach. Specifically, we compared the performance

of XPGraph and GraphOne on a DRAM-only system and a PMEM-based system with Optane in

memory mode. These systems do not require crash consistency. DGAP was excluded from the

comparison as it does not support DRAM-only setups. Figure 12(b) presents the results. When

running on the DRAM-only setting, both GraphOne-D and XPGraph-D were unable to handle the

three larger graphs due to the limited capacity of DRAM, as they store all data in DRAM. In other

test scenarios, XPGraph-D consistently outperformed GraphOne-D. The speedup achieved was

up to 1.85× for DRAM-only systems and 1.95× for PMEM-based systems with Optane in memory

mode.

PMEM read and write data amount. We measured the data amount read from and written

to PMEM during the ingestion process using the Intel PCM tool. This allowed us to verify the

significant reduction in PMEM access cost achieved by XPGraph. Figure 13 shows the results. In

comparison to GraphOne-P, XPGraph significantly reduced the amount of PMEM read data by

61% to 79%, and PMEM write data by 58% to 78% across different graphs. This improvement was

primarily attributed to the vertex-centric local batched graph archiving technique and directly

contributed to the overall performance improvement. In comparison to DGAP, XPGraph reduced

the PMEM read data amount by up to 56% and PMEM write data amount by up to 54%. This
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Fig. 14. Preprocess time cost for DGAP, GraphOne-P and XPGraph (shown in log scale).

is because DGAP suffers from write performance amplification caused by XPLine and frequent

data migration during rebalance, while XPGraph utilizes hierarchical buffer to minimize the write

amplification. Furthermore, XPGraph-B further reduced the PMEM read data amount by up to 47%

and PMEM write data amount by up to 25% compared to XPGraph.

Preprocessing cost. Finally, we discuss the preprocessing cost for different systems. For Gra-

phOne, XPGraph, and all their variants, preprocessing involves loading the binary edge list file into

memory or PMEM. For DGAP, it involves loading the binary file, inserting the edges into its data

structure using an STL vector, and then sorting the edges based on the source vertex ID. Figure 14

illustrates the preprocessing time for the seven graphs. We observed that XPGraph consistently

outperformed DGAP, achieving speedups ranging from 19.27× to 40.33× for different graphs. For

instance, when ingesting the Kron30 dataset, DGAP required 5824 seconds to insert edges into the

vector and sort them, while XPGraph completed the process in just 144 seconds. DGAP’s slower

performance stems from the high overhead associated with STL vector insertion and sorting op-

erations, which worsens with larger graphs. GraphOne-P exhibits similar preprocessing times to

XPGraph, as both systems follow comparable preprocessing steps.

5.3 Graph Deletion Performance

Deletion time comparison. To demonstrate the efficiency of our in-place vertex block merging

design on PMEM-based systems, we evaluated the graph deletion performance of XPGraph

compared to GraphOne-P. DGAP was excluded from the comparison because the latest version of

the DGAP code repository1 does not support deletion operations. We used the naive compacting

method used in GraphOne as a baseline and compared it with our proposed localized block-reused

compacting method. For each graph, we ingested all edges, with 4% of them randomly marked for

deletion. Once the insertion and deletion data were ingested, we executed the compaction process.

We measured the time and space overhead during these two processes across seven graphs.

Figure 15(a) presents the time cost of ingestion and compaction. We observed that XPGraph

consistently outperforms GraphOne-P, achieving a speedup ranging from 4.02× to 5.42× for

different graphs.

PMEM space cost for ingestion and compaction. Additionally, to further analyze the

performance gains, we measured the PMEM space consumption during both the ingestion and

compaction stages. As shown in Figure 15(b), compared with GraphOne-P, XPGraph significantly

reduces the PMEM space usage by 38% to 88% across the two stages. The most substantial space

savings are observed during the compaction phase, where XPGraph reduces PMEM space alloca-

tion by 22% to 92%. The improved performance and reduced space overhead can be attributed to

XPGraph’s block-reuse strategy, which minimizes the need for additional PMEM space allocation.

1https://github.com/DIR-LAB/DGAP.git

ACM Trans. Storage, Vol. 21, No. 2, Article 18. Publication date: February 2025.

https://github.com/DIR-LAB/DGAP.git


Scalable and High-Performance Large-Scale Dynamic Graph Storage 18:21

(a) Time cost (b) PMEM space usage

Fig. 15. Graph deletion time cost and PMEM space usage (deletion time is shown in log scale).

(a) One hop query (b) BFS

(c) PageRank (d) CC

Fig. 16. Graph query performance (BFS, PageRank, and CC are shown in log scale).

In most cases, the adjacency list storage requires less space after deletions, allowing compacted

neighbors to fit within the originally allocated space, thereby reducing allocation overhead.

Moreover, XPGraph reclaimed and reused the deleted vertex space, further improving the space

efficiency.

5.4 Graph Query Performance

To compare the graph query performance, we executed common graph algorithms and aligned

the algorithm implementations of XPGraph, GraphOne, and DGAP with a graph processing

benchmark suite that standardizes graph processing evaluations [2, 3]. The graph algorithms

were executed using all 96 available threads, and the query time costs of GraphOne-P, DGAP,

and XPGraph are presented in Figure 16. The sub-figures in the graph depict the time taken to

complete four different graph algorithms: one-hop neighbor query, BFS, PageRank, and CC. When

considering the one-hop neighbor query, the performance of GraphOne-P, DGAP, and XPGraph

varies across different graphs, with comparable time costs in most scenarios and a performance

gap limited to 50%. In terms of graph analytic algorithms like BFS, XPGraph consistently outper-

forms GraphOne-P, achieving speedups of up to 3.96×. Compared to DGAP, XPGraph achieves
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Fig. 17. Graph recovery performance.

speedups ranging from 1.20× to 1.42×. For PageRank and CC algorithms, XPGraph consistently

outperforms GraphOne-P with speedups of up to 5.87× and 4.62×, respectively. In these scenarios,

XPGraph also outperforms DGAP with speedups of up to 2.92× and 2.68×, respectively. The

improved performance of XPGraph can be attributed to two key factors. Firstly, XPGraph caches

recent neighbor information in DRAM vertex buffers, reducing the amount of data that needs

to be fetched from adjacency lists stored in PMEM. In contrast, GraphOne-P stores all neighbor

information in PMEM. Secondly, XPGraph utilizes a NUMA-friendly graph access strategy by

evenly distributing PMEM queries to different sockets through sub-graph-based NUMA-aware

segregated graph storage. This approach avoids remote PMEM reads across NUMA by using

CPU-binding-based graph querying, which enhances the efficiency of PMEM graph data reads.

Both GraphOne-P and DGAP do not support NUMA-friendly graph access strategies, resulting in

higher PMEM access costs and slower query performance.

5.5 Graph Recovery Performance

PMEM enables data persistence, allowing for quick graph recovery after a power failure. We have

implemented a simple recovery scheme in XPGraph that reloads graph data from the persistent

adjacency lists stored in PMEM. This scheme also updates the pointer links between multiple

adjacency lists of the same vertex, allowing XPGraph to handle new edge updates and graph

queries as usual. To evaluate the recovery performance, we compared XPGraph with DGAP and

GraphOne. DGAP’s recovery process involves loading the data from PMEM using PMDK and

rebuilding the data structure. and GraphOne involves rebuilding the data structure by running

the archiving process on a bulk of data [44]. We tested GraphOne’s recovery performance by mea-

suring the graph archiving time with the archiving threshold set to 227 edges, as recommended in

its article for optimal performance. Figure 17 presents the graph recovery time costs for different

datasets, including the time to load data from PMEM and recover the adjacency list structure for

all vertices. XPGraph consistently outperformed GraphOne in terms of recovery performance, as

it does not require rebuilding the data structure for all edges. XPGraph achieved 7.10× to 12.26×

higher recovery performance compared to GraphOne for the four relatively small graphs. Even for

the larger graphs that GraphOne-D could not handle, XPGraph still achieved reasonable recovery

times. For instance, XPGraph only took 75.59 seconds to recover the largest dataset Kron30,

whereas GraphOne required 184.08 seconds to recover the much smaller graph Kron28, which

had only 1/16th of the edges in Kron30. In contrast, DGAP consistently outperforms XPGraph in

recovery performance, achieving speedups ranging from 1.46× to 1.91×. This improvement can

be attributed to DGAP’s PMA-based data structure, which eliminates the need to update pointer

links between multiple adjacency lists for the same vertex during recovery. Additionally, DGAP

leverages the PMDK library to accelerate data loading, further enhancing recovery performance.

It is important to note that DGAP does suffer from high preprocessing overheads when ingesting

new edges, as discussed in Section 5.2.
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Fig. 18. Graph ingestion performance compared with graph database Neo4j (shown in log scale).

5.6 Comparison with Graph Database

We also compare with the famous graph database Neo4j [58] to assess the improvements in

ingestion and query performance. We utilized the community code version 4.4.6 [57] of Neo4j

and configured it to use PMEM for graph storage in order to ensure durability and support

for large-scale graph datasets. The deployment was on a single server with strong consistency

guarantees. Note that both Neo4j and our XPGraph offer fine-grained edge-level consistency

guarantees. In terms of ingestion performance, as depicted in Figure 18, XPGraph achieved a re-

markable speedup of 8.78× to 11.40× on five smaller graph datasets. However, Neo4j encountered

out-of-memory errors and failed to ingest the larger datasets, YahooWeb and Kron30. Regarding

query performance, Neo4j struggled to complete a one-hop query benchmark on Friendster even

after 1 hour, while XPGraph was able to finish the query in just 2.04 seconds. These improvements

primarily stem from XPGraph’s efficient PMEM access strategy and NUMA-friendly graph storage

design. In contrast, Neo4j suffers from high memory consumption, inefficient PMEM access, and a

tradeoff between read/write performance and consistency guarantees for transactional operations.

Overall, our system exhibits significant improvements in both ingestion and query performance,

making it a more efficient choice for handling graph datasets.

5.7 Discussion of Design Choices

Efficiency of vertex-centric graph buffering. To evaluate the efficiency of the vertex-centric

graph buffering strategy described in Section 3.1, we implemented this strategy with a predefined

per-vertex buffer size. We conducted experiments using different buffer size settings on the Yahoo

Web dataset. Figure 19(a) shows the time cost of ingesting the dynamic graph with different buffer

size settings. By buffering some edge updates in DRAM, we observed a significant reduction in the

time required for ingestion. Moreover, increasing the buffer size allowed for more neighbors to be

cached in DRAM, resulting in fewer total writes to PMEM and further reducing the overall time

cost. Figure 19(b) illustrates the DRAM space requirements for the vertex buffers under different

buffer size settings. It is important to note that larger buffer sizes require more DRAM space. For

instance, when the buffer size is set to 256 bytes, the overall DRAM space demand exceeds 52 GB

for the Yahoo Web dataset. Setting the buffer size to 512 bytes even led to an out-of-memory error,

limiting scalability for large-scale graph processing. Additionally, the high memory allocation cost

for these vertex buffers may slightly degrade performance, resulting in a minor performance drop

when increasing the per-vertex buffer size from 128 bytes to 256 bytes.

Efficiency of adaptive hierarchical buffering. We also propose an adaptive hierarchical ver-

tex buffer managing strategy to reduce the DRAM requirement (see Section 3.2). To evaluate its

efficiency, we conducted experiments using the same settings as before and present the results in

Figure 20. By adopting the hierarchical vertex buffer managing strategy, we achieved the same
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(a) Time cost (b) DRAM demand

Fig. 19. Impact of vertex-centric graph buffering with different per-vertex buffer sizes, where OMM indicates

the out-of-memory error.

(a) Time cost (b) DRAM demand

Fig. 20. Efficiency of hierarchical vertex buffer managing with different per-vertex maximum buffer sizes.

performance gains as allocating the maximum buffers for all vertices, while significantly reducing

DRAM space requirement. For instance, when a fixed buffer size of 128 bytes was set for all vertices,

importing the Yahoo Web dataset took approximately 645.42 seconds and required around 26.54

GB of DRAM space to store all vertex buffers. This was the best performance achieved with a fixed

buffer size, as shown in Figure 19. In contrast, using a hierarchical buffer size ranging from 16 to 256

bytes based on vertex degree reduced the ingestion time to 544.72 seconds, due to the lower time

overhead of DRAM allocation. Furthermore, the DRAM space requirement decreased to around

10.49 GB, which was less than half of the previous requirement. Additionally, in limited DRAM

capacity situations, maximum buffer size can be adjusted to control the DRAM space requirement.

Efficiency of multi-thread friendly work dividing. We conducted two experiments to

demonstrate the efficiency of our thread-friendly work division strategy. In both experiments, we

used a unified 64 archiving threads to showcase the benefits of our strategy in a multi-threading

scenario. First, we compared the ingestion performance of our division strategy with a naive

strategy under different numbers of edges of the archiving threshold. We measured the time cost

of classifying edges and archiving edges, respectively. The results are shown in Figure 21. The

x-axis represents the number of edges of the archiving threshold, and the bars depict the time cost

composition for classifying and archiving. Our XPGraph achieved a speedup of 2.23× to 3.49×

compared to the naive strategy during the entire ingestion process. The time breakdown reveals

that our friendly division strategy outperforms the naive strategy by significantly reducing the

time cost of archiving edges. This improvement is due to better workload balance for each thread.

Although our strategy incurs slightly higher costs for classifying edges, the tradeoff is acceptable

when considering the overall improvement in archiving performance.

In addition, we conducted experiments to evaluate the workload balance achieved by our strat-

egy. We measured the workload of each thread during the archival process for both graph edges
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Fig. 21. Graph ingestion time cost using different thread division strategy (shown in log scale).

Fig. 22. Per-thread workload distribution using multi-thread friendly work dividing strategy.

(a) Graph ingestion time (b) BFS time

Fig. 23. Efficiency of NUMA-friendly graph accessing (BFS time is shown in log scale), where NUMA-bind-

OIG indicates the out/in-graph-based NUMA-binding implementation, and NUMA-bind-SG indicates the

subgraph-based NUMA-binding implementation.

and in graph edges. The results are depicted in Figure 22. The x-axis represents the thread ID rang-

ing from 1 to 64, and the y-axis indicates the ratio of the number of edges processed by each thread

to the average value. Compared to the naive strategy workload shown in Figure 4, we can observe

that our strategy achieves better workload balance for each thread. This balanced distribution of

workload among threads contributes to the overall efficiency and performance of our system.

Efficiency of NUMA-friendly graph accessing. We evaluate the performance improvements

obtained by the NUMA-friendly graph accessing method. - Figure 23 illustrates the graph inges-

tion and BFS computing times under three settings: no NUMA-binding, out/in-graph based NUMA

binding, and subgraph based NUMA binding. Enabling the NUMA-friendly graph accessing tech-

nique allows us to further enhance graph ingestion performance with speedups ranging from 1.05×

to 1.23×. This improvement is particularly significant for larger graphs as it reduces cross-NUMA
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(a) BFS on Friendster (b) BFS on YahooWeb

(c) PageRank on Friendster (d) PageRank on YahooWeb

Fig. 24. Efficiency of workload-aware vertex merging strategy.

PMEM accesses. Both versions of implementations perform similarly for graph ingestion. However,

in terms of graph query performance, the out/in-graph based NUMA binding implementation may

result in a performance drop of 3% to 29% due to load imbalance issues. On the other hand, the

subgraph based NUMA binding implementation improves BFS performance with speedups of up

to 1.54×. This improvement is attributed to the avoidance of remote PMEM accesses across NUMA

nodes and the load-balanced sub-graph partitioning across different NUMA nodes.

Efficiency of workload-aware vertex merging strategy. Furthermore, we evaluate the

efficiency of the workload-aware vertex merging strategy discussed in Section 4.2 by comparing it

with two baseline methods: no merging and proactive merging. Performance of BFS and PageRank

algorithms on Friendster and YahooWeb datasets is analyzed (Figure 24), with x-axis denoting

the maximum number of available I/O threads and y-axis showing the algorithm’s execution

time. The results demonstrate that the vertex merging strategies yield substantial performance

improvements at concurrency levels below 8, with BFS achieving up to 1.42× on Friendster and

1.25× on YahooWeb, and PageRank up to 1.23× and 1.15×. As concurrency levels increase, the

proactive merging strategy’s performance aligns with that of the non-merging strategy due to

the improved random read performance of SSDs at higher concurrency levels. However, merging

vertices introduces extra memory copy overhead, impacting performance at higher concurrency.

The proactive merging approach leads to ingestion performance drop of 5.2% on Friendster and

3.7% on YahooWeb, respectively. Therefore, our adaptive merging strategy dynamically selects

the optimal approach based on the I/O concurrency level. XPGraph-S is trained to assess the

SSD’s random read performance at different concurrency levels, enabling it to determine a

suitable threshold for proactive merging. In our experimental configuration, this threshold is

set to 8. Overall, the adaptive workload-aware vertex merging strategy achieves nearly optimal

performance across various I/O concurrency levels.

5.8 Impact of System Configurations

In this subsection, we evaluate the impact of some system configurations, which include ver-

tex buffer pool size, DRAM usage breakdown, different storage devices, the number of archiving

threads, and archiving threshold.
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(a) Friendster (b) YahooWeb

(c) Kron29 (d) Kron30

Fig. 25. Impact of vertex buffer memory pool size.

Table 3. Memory Usage of XPGraph (GB)

Dataset
DRAM PMEM

Meta Vbuf Input Elog Pblk

TT 6.62 5.11 10.94 8.00 13.61

FS 12.11 6.86 19.27 8.00 30.31

UK 16.60 7.08 24.60 8.00 37.19

YW 55.93 10.59 49.57 8.00 116.70

K28 15.72 8.91 32.00 8.00 41.97

K29 27.65 16.89 64.00 8.00 82.67

K30 49.54 28.22 128.00 8.00 165.95

Impact of vertex buffer memory pool size. We conducted experiments to assess the impact

of vertex buffer memory pool sizes on the performance of XPGraph. The graph ingestion cost

was measured across various memory pool size settings for Friendster, YahooWeb, Kron29, and

Kron30, respectively. The results, depicted in Figure 25, indicate that increasing the memory pool

size from 1 GB to 16 GB significantly reduces the overall time cost. This improvement is due to

the availability of more memory pool space, which allows for caching and merging more PMEM

accesses. However, when the memory pool size increases from 32 GB to 96 GB, the time cost

remains relatively constant, even for the three largest graphs. This is because 32 GB is typically

sufficient to accommodate most vertex buffers for these graphs. Furthermore, the copy-on-write

technique used in the Linux system does not actually allocate extra space, so it does not impact

performance. Based on these findings, we recommend using a larger memory pool size setting for

better performance.

Memory usage breakdown. To analyze the scalability of our design, we provide a breakdown of

memory usage during the ingestion process in Table 3. Meta indicates the DRAM usage for storing

meta-data and intermediate data, such as vertex indexes, snapshot information, and temporary
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Fig. 26. Graph ingestion performance for different storage devices (shown in log scale), where OOM indicates

the out-of-memory error.

edge lists. This portion of DRAM usage is inherited from GraphOne and is similar in XPGraph.

It may consume a significant amount of DRAM space and limit the scalability of XPGraph. To

further improve scalability, we plan to explore moving this data to PMEM. Vbuf represents the

DRAM usage for storing vertex buffers, managed by the vertex buffer memory pool. The memory

pool size setting, as shown in Figure 25, can limit this portion of DRAM usage. Input indicates the

PMEM usage for storing the input graph data in binary edge list format. Elog represents the PMEM

usage for storing the circular edge log, which is set as 8 GB by default. Pblk represents the PMEM

usage for storing the persistent adjacency lists, which contain essential graph information in

XPGraph. From the table, we observe that XPGraph can efficiently handle large graphs within the

capacity of PMEM, while maintaining a limited and tunable DRAM usage. For example, Kron30

with billions of vertices and tens of billions of edges, consumes approximately 80 GB of DRAM

space and 300 GB of PMEM space in total. This level of resource consumption can be supported by

most medium-sized servers. In servers with larger memory capacity, such as those with terabytes

of PMEM per socket, XPGraph can support a significant portion of large-scale graph processing

applications.

Impact of different storage devices. In order to accommodate larger graphs that cannot fit in

PMEM, we have developed XPGraph-S, a version of our system that utilizes SSD-based storage. To

demonstrate the hardware scalability of our work, we conducted a study on the graph ingestion

performance using different persistent storage devices. Specifically, we compared the performance

of XPGraph and XPGraph-S on a PMEM system and an NVMe-SSD based system, respectively. The

results, shown in Figure 26, indicate that XPGraph achieves a speedup of 1.19× to 2.43× compared

to XPGraph-S, with the speedup increasing as the graph size grows larger. The superior perfor-

mance of XPGraph can be attributed to the higher IO bandwidth of PMEM compared to SSD, as

well as the lower write amplification achieved through our XPLine granularity buffering strategy.

To further showcase the scalability of SSDs when dealing with large-scale graph data, we evaluated

XPGraph-S on Kron31, the largest dataset we used. Storing Kron31 in CSR format requires 576 GB

of space, and storing all the adjacency lists amounts to over 1.2 TB, surpassing the capacity of our

PMEM systems. To overcome this limitation, we divided the graph data into two SSDs and stored

all intermediate data in DRAM. As a result, XPGraph-S successfully ingested all the graph data in

12.6 hours. Although the NVMe SSD-based system did cause some performance drops compared

to the PMEM-based graph system, it demonstrated enhanced scalability and the ability to handle

extremely large-scale graphs.

Impact of the number of archiving threads. We also examined the impact of the number of

archiving threads on the ingestion performance of GraphOne-P and XPGraph. The number of

archiving threads refers to the number of threads used for converting the graph data from edge
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Fig. 27. Impact of number of archiving threads.

Fig. 28. Impact of archiving threshold.

list format to adjacency list format. Figure 27 presents the ingestion time costs for Yahoo under

different settings of the number of archiving threads. Comparing the results with GraphOne-P, we

observed that XPGraph consistently outperforms at all thread settings and demonstrates superior

scalability for multi-threading. GraphOne-P achieves its best performance under 16 threads,

primarily due to the poor PMEM access cost under high concurrent situations. On the other

hand, XPGraph exhibits improved ingestion performance as the number of archiving threads

increases. This improvement can be attributed to the benefits derived from the multi-thread

friendly work dividing and NUMA-friendly graph accessing strategies. These strategies help

optimize the utilization of CPU resources and reduce PMEM access latency, resulting in better

overall performance. It achieves peak performance when the number of archiving threads is set to

95, which is the maximum number of threads available in our server (with one additional thread

used for edge update logging).

Impact of archiving threshold. We further measure the impact of the archiving threshold, i.e.,

the number of non-flushed edges stored in the circular edge log to trigger an archive process. We

show the results in Figure 28, in which the x-axis indicates the number of edges of the archiving

threshold, ranging from 214 to 231, and the y-axis indicates the time cost for completing the graph

ingestion for Friendster. We can see that a higher archiving threshold always leads to better

performance, which shows the same trend with GraphOne [44]. Specifically, when we set the

archiving threshold as 231 edges, XPGraph is able to ingest 49.31 million edges per second, which

is 56% faster than the default setting, i.e., 216 edges.

6 Related Work

Large-scale graph processing. Traditional in-memory graph processing systems usually use

adjacency list formats, which put edges of the same vertex together, for efficient graph queries

[33, 59, 72]. However, their scalability is limited by DRAM capacity. To process large-scale

graphs that cannot fit into a single machine’s memory, distributed graph systems have been
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proposed to compute on a cluster of machines [9, 11, 29, 30, 42, 47, 51, 55, 74, 96, 97]. Al-

ternatively, disk-resident single machine graph processing stores graphs on external storage

devices [1, 19, 26, 39, 40, 43, 46, 49, 53, 66, 78, 79, 83, 91, 94, 98]. However, these systems are

typically designed for static graphs and require efficient graph partitioning, often suffering from

performance drops due to communication or disk I/O. Therefore, our XPGraph introduces a

PMEM-based graph store that offers both scalability and high-performance graph processing.

Dynamic graph stores. Dynamic graph processing allows for concurrent graph analysis and

updates, and various frameworks have been developed in recent years, including STINGER [25],

GraphIn [70], EvoGraph [69], Hornet [6], GraphOne [44], and more [18, 32, 38, 56, 65, 71, 84, 85].

These frameworks typically combine the adjacency list and the edge list to balance access locality

and update time [6, 25, 44, 69, 70]. Some frameworks employ batching of updates to increase par-

allelism and throughput [6, 8, 25, 54]. However, these frameworks are designed for DRAM-based

dynamic graph stores, leading to efficiency issues when transitioning to a PMEM-based system

due to small random accesses during adjacency list updates. Therefore, XPGraph proposes a

PMEM-friendly accessing model to support efficient dynamic graph stores for large-scale graphs.

PMEM-based storage optimizations. PMEM has been extensively studied in the past decade [24,

73, 77], even before the release of industrial products, i.e., Intel’s Optane DIMM. Due to the differ-

ent characteristics of PMEM compared to DRAM, such as performance fluctuations influenced by

factors like access type, pattern, and size [93], recent works focus on effectively managing data in

PMEM for optimal performance. These include PMEM allocators [5, 7, 20, 21, 52, 61, 68, 88], PMEM

indexes [10, 12, 14, 17, 34, 36, 50], PMEM-based key-value stores [4, 15, 28, 35, 48, 80, 87], PMEM-

based file systems [13, 16, 24, 86, 89, 95], and more. While graph structure data and processing

applications differ from these scenarios, it motivates us to design a dedicated PMEM-based graph

storage management system XPGraph for efficient large-scale graph processing. Furthermore, re-

cent research [22] highlights the ongoing relevance of PMEM, particularly in light of emerging

technologies such as CXL, further motivating us to explore its potential in graph processing.

7 Conclusion

This article proposes XPGraph, an XPLine-friendly PMEM-based graph storage system for

high-performance storage of large-scale evolving graphs. XPGraph introduces an XPLine-friendly

graph storage model that optimizes the flushing of graph data to PMEM through vertex-centric

graph buffering, hierarchical vertex buffer management, and in-place vertex block merging.

Additionally, XPGraph develops a scalable graph processing model that enhances PMEM graph

accesses through multi-threaded work division and NUMA-friendly graph accessing. We provide

data access APIs in the form of a library called libxpgraph to facilitate easy use by user applications.

XPGraph is implemented along with three variants for different system settings, and experimental

results demonstrate significant reductions in PMEM access costs for graph data, as well as

improved performance in graph update, query, and recovery tasks.
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