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Abstract
Storage workload prediction is a critical step for fine-grained load balancing and job scheduling in realtime and adaptive

cluster systems. However, how to perform workload time series prediction based on a deep learning method has not yet

been thoroughly studied. In this paper, we propose a storage workload prediction method called CrystalLP based on deep

learning. CrystalLP includes workload collecting, data preprocessing, time series prediction, and data post-processing

phase. The time series prediction phase is based on a long short-term memory network (LSTM). Furthermore, to improve

the efficiency of LSTM, we study the sensitivity of the hyperparameters in LSTM. Extensive experimental results show

that CrystalLP can obtain performance improvement compared with three classic time series prediction algorithms.

Keywords Workload prediction � LSTM � Time series

1 Introduction

In the big data era, storage system performance becomes a

critical bottleneck of many data-intensive applications.

[27] reported that in the data-centric model, meeting the

data characteristics of different workloads is a necessity of

storage system (e.g. PFS) shared by all of the compute

resources at the same time. Different workload patterns can

significantly impact application runtime of simulations

[31], waste of energy due to inefficient resource utilization

[3] or the responsiveness of interactive analysis workloads

[22], which result in resource shortages and application

issues such as delays or over-provisioning. With the

diversity of such applications increasing, simply scaling up

a single server or scaling out the cluster can not completely

solve the storage bottleneck issue. Accurate workload

prediction provides a critical approach to address this issue

because it helps to achieve fine-grained runtime-sensitive

load balancing and job scheduling [10]. For example,

inevitable hot data phenomenon will usually cause per-

formance hungry for some servers while the others would

waste their hardware. If we can precisely predict each

server’s workload, we can migrate data from the saturate

servers to the hungry servers with the predicted workload

information. This can greatly increase system resource

utilization.

Previous researches on server workload prediction can

mainly be classified into two categories [15]. The first

category focuses on constructing the relationship between

the time and the workload by using regression models [28].

The second one pays more attention to analyze the char-

acteristics of current workload with neural network for

future workload prediction [32]. Decision trees and clus-

tering [1] are commonly used prediction methods. How-

ever, due to the increasing complexity of input workloads,

existing methods are hard to extract the underlying rela-

tionship of the workload.

Due to the merits of modeling nonlinear relationship

between input and output, deep learning method gains
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increasing attention for real world problem modeling with

the success in many fields, such as pattern recognition,

natural language processing, etc. When dealing with sim-

ilar time series prediction problems, deep learning methods

perform better than traditional regression models. How-

ever, to the best of our knowledge, how to perform a deep

learning based storage workload prediction has not been

studied yet. So in this paper, we propose a storage work-

load prediction method called CrystalLP based on LSTM

neural networks. And results show that CrystalLP can

obtain performance improvement compared with three

classic time series prediction algorithms.

Comparing with previous work, our contributions are as

following:

– We propose a practical storage workload prediction

method called CrystalLP which includes workload

collecting, data preprocessing, time series prediction

based on a long short-term memory network(LSTM),

and data postprocessing phase. To the best of our

knowledge, we are the first to introduce the deep

learning method into practical storage workload

analysis.

– We study the sensitivity of the hyperparameters in

LSTM and conduct extensive experiments to show the

superiority of CrystalLP to three classic time series

prediction algorithms.

The rest of this paper is organized as follows. Section 2

introduces the detailed framework and components of our

workload time series prediction model called CrystalLP.

Section 3 evaluates the proposed method via stimulate

experiment with real-world data source. In Sect. 4, we

analyse the current related work on workload prediction

method. Finally we conclude this paper in Sect. 5.

2 The workload time series prediction
framework based on deep learning

Our practical storage system workload time series predic-

tion method (Fig. 1) called CrystalLP includes workloads

collection, data preprocessing, time series prediction based

on long short-term memory network(LSTM) and data

postprocessing.

2.1 The storage workload time series model

How to establish the server workload time series model

from the practical traces is the first critical problem that

should to be solved. According to the time locality prin-

ciple [25], within a period of time, as programs tend to run

the same code segment to access the same data, thus the

same files in a storage system are likely to be requested

repeatedly. In other words, clients accessing a particular

data server still have a high probability of accessing the

same data server next time. We define this phenomenon as

the workload exhibits certain underline patterns which will

be helpful for precise and adaptive scheduling and load

balancing. Therefore, in this paper, we model the workload

prediction problem as a univariate time series predict

problem.

The storage workload is defined as the size (e.g., bytes)

of requested data for a data server during a fixed period.

Therefore, given a time series of the request data size, it is

denoted as x ¼ ðx1; :::; xi; :::; xwÞ. The goal is to learn

function y ¼ f ðxÞ where y ¼ ðxw; :::; xwþj; :::; xwþTÞ. And xi
is the time series point at time i, w is the history horizon

which means how many historical data points used to

predict the future data and T is the forecast horizon which

means how many future data points we want to predict. In

this paper, for the convenience of clearly introducing our

method, we use single step prediction as an example.

Therefore, the forecast horizon T is set to 1. But surely, the

prediction horizon T can be set to the suitable p according

to the user’s practical prediction requirements.

2.2 Autocorrelationn analysis of workload time
series

To demonstrate the local principle and explain the reason

for modeling the workload prediction problem in our sce-

nario as a sequential problem, we analyze the data from a

popular search engine’s file system workload called Web-

Search. Details of the workload will be introduced in

Sect. 3.1. We mainly use autocorrelation as a mathematical

tool to analyze the features of the storage time series. The

autocorrelation (Eq. 1) which describes the correlation of a

signal with a delayed copy of itself is a good tool to

demonstrate the idea proposed above.

qðt; sÞ ¼ EðXt � utÞðXs � usÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DXt � DXs

p ð1Þ

For instance, Fig 2 shows three different autocorrelations

of time series. In Fig 2a values are closed to zero except

the value at time lag 0, that means there is neither corre-

lation between adjacent time nor bigger lags. The signal is

closer to white noise, which is hard to predict. In Fig 2b

values are closed to zero except the value at time lag 0 and

1, which means there is a strong correlation between

adjacent times. And in Fig 2c, the values are bigger in

general, which means there is a correlation between adja-

cent time and bigger time lags. For the correlation dis-

played in Fig 2a, c, we can use some functions to capture

the underlying relationship between past data and future

ones. So that’s our intuition to predict the workload using
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sequential model for data servers in large scale storage

system.

2.3 The workload prediction model based
on deep learning network

After we have established an univariable single step time

series prediction model for the workload prediction prob-

lem in Sect. 2.1, how to establish a prediction model using

a proper deep learning model suitable for the server’s

workload feature is a critical step. As is analyzed above,

the workloads tend to exhibit complex patterns. Because

the long short time memory neural network as a many-to-

one unit has the merits of suitable for complex workloads

patterns, it is suitable for capturing the inner relationship

between the history horizon and future value. Therefore,

we choose the LSTM network as an example to estimate

the load function y ¼ f ðxÞ. The x is the sequence of his-

torical time workload data,i.e. x ¼ ðxt�T ; :::; xtÞ and each xt
is the workload size at time t where T is set to 1. The output

ŷ of the whole model represents the data at the next time

step xtþ1, that’s to say we use the LSTM model as a many-

to-one network. Moreover, in order to get a 1-dim vector at

the last time step, we also add a fully connected layer at the

end of the LSTM network. As is shown in Fig. 3, the basic

Fig. 1 CrystalLP: the workload time series prediction framework based on deep learning

Fig. 2 Correlation analysis

Fig. 3 The structure of LSTM unit
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structure of a LSTM unit is composed of a memory cell

ct 2 RH , and three basic gate: Input Gate it 2 RH , Forget

Gate ft 2 RH , Output Gate ot 2 RH , where H is the hidden

neural size of the LSTM unit and t means the time step.

The state of each gate and cell in a LSTM unit with the

input of xt; ht�1; ct�1 is updated according to the Eq. 2.

zt ¼ tanhðWzxt þ Uzht�1Þ

it ¼ rðWixt þ Uiht�1Þ

ft ¼ rðWf xt þ Uf ht�1Þ

ot ¼ rðWoxt þ Uoht�1Þ

ct ¼ it � zt þ ft � ct�1

ht ¼ ot � tanhðctÞ

8
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ð2Þ

The xt 2 RT is the input vector at time t, ht�1 2 RH is the

hidden state vector at time t � 1, ct�1 2 RH is the cell state

at time t � 1. Wz, Wi, Wf , Wo are the weight matrixes of

dimension (H, T) and are for the newly input at time t, Uz,

Ui, Uf , Uo are the weight matrixes for the previous hidden

state vector ht�1. The selected parameters for each layer of

the LSTM model can be found in Table 1:

where x is denoted as the history horizon, H and L

respectively represent the number of hidden units and

layers, d is the the dropout probability while training and k
is the L2 regularization multiplier to avoid overfitting.

2.4 Workload collection

During the workload collection stage, the workload time

series data which consists of workloads at different time steps

are collected. As our model ismainly for single stepworkload

prediction, it means that for every prediction process the input

data is the data within the history horizon, and the output of

the model is the predicted workload at next time step.

As for the continuous forecasting process, we use a

rolling procedure shown in Algorithm 1 to handle it:

where storage workload time series x is donated as the

input of Alg.1 and the predicted workload y is the wanted

output. The T loop represents the adopted continuous rolling

prediction model which consists of 3 steps: First, the input

data are preprocessed and transferred to prediction module.

Then the results of workload prediction are obtained and

sent to postprocessing module. Finally, the real load value

corresponding to this prediction is collected, the historical

observation window is moved forward, the load corre-

sponding to the front edge of the window is added to the

observation window and the original data of the back edge is

removed to start the next prediction. As the whole loop

comes to an end, which means all time steps of storage

workload time series x are processed, the wanted predicted

workload y is eventually obtained. This algorithm is also

used in our experiment for the test set.

2.5 Preprocessing and postprocessing
of workloads

The first challenge we meet during the workload time

series prediction is how to preprocess the workload data to

construct a suitable data structure for the time series

prediction.

During the data preprocessing stage, the workload data

will be sliced by a history time window of length W. With

the time window sliding along the time axis, the workload

time series data structure suitable for LSTM model is

established.

As in the practical storage system, the workload trace is

usually collected at variable time period, therefore, certain

normalization operations to the original trace to make it

well prepared for further feature analysis and prediction

needs to be performed at the prepocessing stage. We thus

design and perform several normalization operations to the

workload traces, such as normalizing the workload traces

into the trace with same time periods, observing and ana-

lyzing the stability of the trace to better find a sub-trace for

further feature mining and parameter tuning, etc. In our

empirical study, we designed a preprocessing module

which slices the sequential data with fixed sliding window

size, and then performs scaling transformation to construct

suitable data as an input. The function to train the model

based on the input to output is designed as Eq. 3.

xtþ1 ¼ f ðxt�w:::xtÞ ð3Þ

As is shown in Eq. 4, a time window with the fixed length

T þ 1 was used to slice the time series data to construct the

input and output data needed for model training.

\ðxt�w:::xtÞ; xtþ1 [ j t 2 ½wþ 1;N � 1�f g ð4Þ

However, I/O workload has such a strong volatility,i.e.,

within the time window there exists big diversity between

different input workload value which leads to model
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convergence difficulties. In order to eliminate the gaps of

workload data value in different time window and make it

easier for the model to learn, we employ a normalization

method based onwindow, as shown in Eq. 5, whichmakes all

data in the same window take the first data as a reference and

transform the forecast amplitude into the forecast growth rate,

thus reducing the fluctuation of the training data.

xi ¼
xi

xt�w
� 1; i 2 ½t � w; t� ð5Þ

The postprocessing adopts the reverse shrinkage operation

to recover the data, and the predicted value is finally

obtained.

2.6 Model training

To achieve good model training results, recently it is pro-

posed to use a combined model to train the deep learning

model. In our model, the minibatch stochastic gradient

descent(SGD) together with the Adam optimizer [17] is

employed to train the storage workload model. The size of

the minibatch is set to 64. The learning rate is set to 0.001

which is recommended according to [17]. The parameters

are learned by standard back propagation with mean

squared error as the objective function as is shown in Eq. 6.

ji ¼ mseðyi; ŷiÞ ¼ ðyi � ŷiÞ2

J hð Þ ¼ 1

N

X

N

i¼1

jiþk
X

k

h2k
ð6Þ

where h is the parameter for training, N is the batch size,

the second term in the last equation represent the L2 reg-

ularization which will help to avoid overfitting. And an

early stopping on the validation set is used to make sure the

model is trained for a proper epoch.

3 Experiments

3.1 Introduction of I/O data source

During our test, the first challenge is to choose a suit-

able storage I/O trace to validate our method. Although

there are many publicly released workload traces like

google trace, Alibaba trace, they are more on resource

utility related workload traces which are not suitable for

storage I/O performance analysis.

As most of the I/O traces are not publicly released, to

test our proposed model, we use a data set called Web-

Search1 which records a Search Engine’s I/O. The Web-

Search archive is saved in a special format called SPC

TRACE FILE FORMAT which is designed for the better

analysis of trace1.

According to the Umass trace repository docu-

ment(2007)1 each record in the trace file represents an I/O

command and consists of four fields. The first field is called

Application specific unit(ASU), ASU is a positive integer

that represents an application-specific unit. The second

field is called Logical block address(LBA), The LBA field

is a positive integer that describes the ASU block offset for

the data transfer for this record. The third field is the size

field, which is a positive integer that describes the number

of bytes transferred for this record. The fourth field is

called Opcode which records the operation corresponding

read or write command. The fifth field is the timestamp,

which is a positive number that represents the offset of this

I/O operation from the start of the trace. All of the fields’

types are described in Table 2.

3.2 Data preprocessing and model training

We use the size field which describes the number of bytes

transferred for a record as the target series. Note that the

size field is both for read and write operation request, and is

traced by the timestamp.

Firstly, because the workload trace is not naturally

organized as a storage I/O time series, we choose the

archives from the trace data to establish a time series. In

our experiment, we use the first archived file in the trace as

an example and organize the traces by field of timestamp.

To normalize the time traces, we sum up the requested

data’s size for ASU0 per 1.0 second to generate a univariate

time series of requests.

After the workload traces have been formatted well as a

storage workload time series, the distribution of fields (e.g.

size and timestamp) are analyzed. The analysis results of

the original ASU0’s data are shown in Fig. 4. Figure 4a

shows there are four kinds of request size in the original

data, and the largest one is 8192 byte. The smallest one is

24576 byte. The medium ones are 32768 bytes and 16384

bytes.

During our analysis, the arrival time is critical info too.

Thus, to get the requests’ arrival time, we divide the entire

data set into 1000 bins uniformly according to the requests’

Table 1 Parameters for each layer

Parameter Explanation

x The history horizon

H The number of hidden units

L The number of layers

d The dropout probability

k The L2 regularization multiplier

1 http://traces.cs.umass.edu/index.php/Storage/Storage.
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time stamp, and calculate out the counts of request per bins.

Fig. 4b shows the distribution of the timestamp. We can see

that the most request counts per bins lies in the range of

[320,400], and the variance of the data could be huge,

which is hard for prediction. The above analysis verified

the necessity of the preprocessing of the storage workload

traces. Moreover, we can see our above analysis is the basis

for the storage workload time series prediction.

Finally, the training set which consists of the first 2488

data points, the validation set which consists of the fol-

lowing 312 data points and test set which consists of the

last 351 data points are established. The data set is shown

in Fig 5. Its mean value is 1711868.02, the standard

deviation is 415512.83, the max value is 2932736.00, the

min value is 262144.00.

As is described above, the network is to learn the

function xtþ1 ¼ f ðxt�w:::xtÞ. Therefore, we first cut the time

series by the fixed window size T þ 1, and use Eq. 4 as our

input and out pairs. In order to scale the values to be much

smaller to make it easier for the network to learn and also

bound the magnitude of the data, we then use a window

based data normalization method in Eq. 5.

3.3 Metrics

To validate the effectiveness of our method, three different

evaluation metrics in Eq. 7 are considered, i.e. the root

mean squared error (RMSE), mean absolute error (MAE)

and mean absolute percentage error (MAPE), where the

output of the model is denoted as ŷ and the ground truth is

denoted as y.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

i

ðyi � ŷiÞ
2

 !

v

u

u

t

MAE ¼ 1

N

X

i

jyi � ŷij
 !

MAPE ¼ 1

N

X

i

jyi � ŷij
yi

 !

ð7Þ

3.4 Results: time series prediction

To validate our method, three classic time series prediction

models (Sect. 4) are implemented by us for the comparison

baseline.

For the ARIMA based workload prediction model, we

implement it with python package statsmodels of version

0.8.0. We first analyze the workload stationary using Aug-

mented Dickey-Fuller test. Then we plot the auto-correlation

and partial auto-correlation of the workloads to determine

the approximate range of parameter p, i, q. Next, the Akaike

information criterion(AIC) is used to find the proper values

of the three parameters. When we get the proper values of p,

i, q according to the training set, we fit an ARIMA model

then predict a future value in the test set, then the ground

truth of the predicted data is collected into the known data

set to expand the training data, then a new ARIMA model is

fitted according to the expanded training data. The loop will

stop until there is no data to be predicted in the test set. So

we get the predicted value of the entire test set.

For the SVR model, we use the Radial Basis Function as

the kernel method which is a mainstream kernel method

and implemented it with python package scikit-learn of

version 0.19.1. The same procedures to the workload pre-

diction method discussed above are used except for the

prediction model for fair comparison.

For our method (Section model 2), we implement it with

python in Keras of version 2.2.2, and for the Simple-RNN

model baseline we just replace our LTSM cell with RNN cell.

All the model are implemented using python 3.6.6.

Finally, the experimental results among the three models

are shown in Table 3.

The predicted workload value from CrystalLP can be

used as an input during the adaptive I/O resources

scheduling [22] [27].

We compare our CrystalLP’s performance with three

classic models, e.g. Arima, SVR, SimpleRNN, in three

metrices, e.g. RMSE, MAE and MAPE. From the experi-

mental results in Fig. 3, we can find that Arima achieves

RMSE of 307629.58 which is of lower performance than

CrystalLP by 0.89, MAE of 250214.06 which is of lower

performance than CrystalLP by 0.28, MAPE of 0.1846

which is of lower performance than CrystalLP by 2.46.

SVR achieves RMSE of 304278.19 which is of lower

performance than CrystalLP by 0.20, MAE of 248345.99

which is of lower performance than CrystalLP by 1.03,

MAPE of 0.1840 which is of lower performance than

CrystalLP by 2.20. SimpleRNN achieves RMSE of

314267.07 which is of lower performance than CrystalLP

by 2.98, MAE of 258297.24 which is of lower performance

than CrystalLP by 2.86, MAPE of 0.1837 which is of lower

performance than CrystalLP by 1.10. CrystalLP achieves

Table 2 Data type description
Field Type

ASU Positive integer

LBA Ppositive integer

Size Real number

Opcode 0 or 1

TimeStamp Real number

Options None
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RMSE of 304894.7, MAE of 250915.78, MAPE of 0.1800.

As CystalLP is the baseline, there is no value with () for it.

To sum up, the prediction results (Fig. 3) show that

CrystalLP is superior to all the baselines with at least

1:10% improvement in MAPE, and also better performance

in MAE and MAPE.

As is shown in Fig. 6, we plot the predicted workload(

request size per 1s) trends to compare the model prediction

vivid effects of original real storage workload with

ARIMA/SVR/Simple-RNN/LSTM(CrystalLP). the line

which shows the predicted value, it can be seen that

CrystalLP can well capture the trend of the real time data.

Considering that our time series data is the size of a ser-

ver’s requested data within 0.2s which has high-frequency

and complex correlation, we think it’s impressive to

achieve this improvement.

3.5 Results: parameter sensitivity analysis

We study the sensitivity of the important hyper-parameters

in LSTM i.e., hidden size. We plot the relationship between

hidden size and the metrics RMSE,MAE and MAPE, and

the results are presented in Fig. 7.

From Fig. 7a, we can see that with the ascent of hid-

densize from 210 to 290, RMSE increases from around

305000 to 307000. With the ascent of hiddensize from 210

to 290, MAE increases from around 250500 to 253500.

With the ascent of hiddensize from 210 to 290, MAPE

increases from around 0.181 to 0.184. To sum up, it can be

seen that with the increase of the hidden size, the metrics

have a tendency to decrease and increase. Moreover,

RMSE achieves best performance when the hidden size is

between 250 and 260 when we compare the three experi-

ments in Fig. 7. Therefore, the parameter sensitivity anal-

ysis results prove that the idea of simply increasing the size

of the network to improve model performance is not rea-

sonable. The layered parameter combining coarse-grained

search and fine-grained search just as what we have pro-

posed in CrystalLP is critical to be suitable for the estab-

lishment of deep learning model for high-variance of

storage workload during the storage workload analysis.

4 Related work

Many scholars have attempted to overcome the problem in

workload prediction. In the past decade, there have been

many studies using deep learning algorithms or statistics-

Fig. 4 Original data

Fig. 5 Dataset analysis

Table 3 Model performance in

three metrics
Model RMSE MAE MAPE

Arima 307629.58 (0.89) 250214.06 (- 0.28) 0.1846 (2.46)

SVR 304278.19 (- 0.20) 248345.99 (- 1.03) 0.1840 (2.20)

SimpleRNN 314267.07 (2.98) 258297.24 (2.86) 0.1837 (1.10)

CrystalLP 304894.71 250915.78 0.1800

a Data in () means deteriorative percentage compared with CrystalLP

Cluster Computing (2023) 26:25–35 31

123



based algorithms to predict workload. As is explained in

the above section, the workload prediction problem can be

regarded as a time series prediction problem using work-

load trace. In this section,we first review some classic

methods for cloud time series analysis. Then, we present

AI methods for the time series prediction.

4.1 Classic methods in time series analysis
and prediction

Workload time series analysis is a critical branch of

workload based platform performance analysis approaches,

such as resource utility analysis [19, 23], task failure

analysis [16, 29], etc. However, there are seldom methods

focusing on deep learning based storage workload analysis.

This paper proposed a deep learning based on storage

analysis.

4.2 Classic methods in AI based workload
analysis

The existing classic methods for workload time series

prediction can be classified into the following three cate-

gories of statistical, machine learning based, and deep

learning based methods. [2]

4.2.1 The statistical method

Among this category, the autoregressive moving average

model (ARMA) [14] is the most famous one. This model

can capture the linear relationship in the stationary

sequence and establish the relationship between the

historical data and the future data through the form of

difference equation. And to model the non-stationary time

series, the autoregressive integrated moving average

(ARIMA) [5] model has been proposed as an extension of

ARMA, which can tackle nonstationary time series fore-

casting by differencing techniques. We have developed an

online variant of the ARIMA model to predict I/O work-

load in our previous work [8]. Di et al. [7] proposed a

Bayesian model based on statistical features within the

observation window to predict server’s CPU usage in

Google Cloud service cluster. And CrystalLP is our new try

using a deep learning model.

4.2.2 The machine learning method

With the development of machine learning, time series

prediction has been formulated as a regression problem and

usually can be solved by support vector regression (SVR).

SVR can capture the relationship between input and output

by mapping input space to feature space through nonlinear

transformation. Besides, with kernel methods (e.g. RBF),

SVR can easily deal with the curse of dimension problem

[4] and make better use of the high dimension feature

space. Furthermore, Neelima et al. [21] proposed a novel

adaptive dragonfly algorithm(ADA) to accomplish the NP-

hard optimization problem in cloud load balancing.

4.2.3 The deep learning method

Long short-term memory(LSTM) network [26] has over-

come the problem of vanishing gradients and thus can

capturing long-term dependencies. Recently, LSTM has

Fig. 6 Prediction result in test set
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been applied in predicting the CPU usage in cloud envi-

ronment. In 2018, Zhang et al. [35] used time series clus-

tering algorithm combined with the bidirectional long-term

and short-term memory network to predict CPU utility of

the server and In 2019, Duggan et al. [9] proposed a

recurrent neural network based server CPU and network

bandwidth occupancy prediction to aid virtual machine

migration in a cloud environment. Gupta et al. [13] firstly

use an online sparse Bi-LSTM to tackle the same cloud

workload prediction problem and Gao et al. [11] adopted

the similar model to identify task and job failures in the

cloud. Recently, some more complex model structure

combined with deep learning have been proposed. Peng

et al. [24] developed a novel prediction framework called

encoder � decoder to make multi-step-head prediction for

cloud workload. Zhang et al. [34] proposed an efficient

deep learning model based on the canonical polyadic

decomposition to predict the cloud workload for industry

informatics. [18] proposed a workload prediction model

using neural networks and self adaptive differential evo-

lution algorithm. [6] proposed a deep learning based pre-

diction algorithm for cloud workloads, which integrates

top-sparse auto-encoder and gated recurrent unit block with

RNN to improve forecast accuracy. Xia [30] in 2018 pro-

posed a turning point prediction model called WSVM and

it performed well in predicting sudden changes in virtual

machine request number. Zhang et al. [33] developed an

Interference-Aware Workload Parallelization (IAWP)

method to better perform scheduling actions. Geng et al.

[12] proposed a two-stage workload parallelization

approach based on Deep Neural Network(DNN). By now

the workload prediction researches using trace analysis

methods are mainly focus on platform [20, 29] A cloud

cluster trace called Google cluster trace is often studied for

CPU, memory workload prediction, while the traces in

storage area are rarely been studied. To the best of our

knowledge, we are the first to incorporate LSTM in our

prediction process.

5 Conclusion

In this paper, we proposed a practical deep learning based

approach called CrystalLP to predict the workload in the

storage system. Extensive experimental results verified that

CrystalLP achieved performance improvement than three

classic time series prediction algorithms in RMSE, MAE

and MAPE. To the best of our knowledge, we are the first

to introduce the deep learning method into server load

analysis. According to our practice, we predict how to

apply AI methods, e.g. deep learning methods, to big

system’s performance mining will be a promising research

direction. The design of other deep learning based storage

workloads analysis is in our on-going and future work.
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