
WAFLASH: Taming Unaligned Writes In
Solid-State Disks

Shuibing Heq MatthewMyers t Xuehao Duan* Keegan Sanchezt Xuechen Zhangt

qCollege of Computer Science and Technology
Zhejiang University

t School of Engineering and Computer Science
Washington State University Vancouver

*School of Computer Science
Wuhan University

Abstract-NAND-flash based solid-state disks (SSDs) are re-
placing the hard-disk drives (HDDs) in various storage systems
from high-end servers in data centers to mobile computers on
the edges of cloud computing. Due to the architectural nature of
SSDs, performance-sensitive applications may generate a large
number of unaligned writes on SSDs, which can cause many
issues including chip congestion, sub-request blocking, chip load
imbalance, and write space amplification. This paper presents a
Write-Aligned FLASH drive (WAFLASH) that comprehensively
and significantly alleviates the side-effects of unaligned writes in
solid-state disks. We utilize three key techniques: (1) prioritizing
eviction of fully-filled pages over partially-filled pages in write
buffers, (2) storing multi-version data requested by unaligned
writes/overwrites in flash memory, and (3) compacting multiple
small partially-filled pages in a physical page to circumvent
write amplification and reduce the number of additional reads in
the critical I/O path. We implement WAFLASH in VSSIM and
Cosmos+ OpenSSD. The results show WAFLASH increases I/O
throughput by up to 125% with the Filebench benchmark.

Index Terms-Flash, Page Unalignment, FTL, Buffer Manage-
ment

I. INTRODUCTION

NAND flash-memory-based SSDs are adopted as an increas-
ingly important storage medium for supporting applications
that demand low I/O latency or high I/O throughput [1]. They
are increasingly used as hard disks (HDDs) replacement for
both scientific and enterprise applications. The SSD market is
continuously growing at a significant rate [2], and flash/SSD-
based storage becomes a norm in various storage systems from
high-end servers in data centers [3], [4] to mobile computers
on the edges of the cloud computing [5].

Although other interfaces exist, most of the existing systems
use the legacy block interface to access SSDs for portability
and compatibility with HDDs. The size of I/O requests issued
from OSs are generally aligned with the page size (e.g., 4 KB)
of virtual memory. It can be much smaller than the flash page
size (e.g., 8 KB or 16 KB) in SSDs. With this architectural
nature, applications may generate a large number of writes
that are not aligned with the flash page boundary of SSDs.
We call them unaligned writes in this paper. As shown in § II,
the unaligned writes are common with practical I/O workloads.

With the increase in flash density, the flash page size can
also increase to 32 KB or even larger [6]. This makes the un-

aligned problem more severe because existing systems access
SSDs without knowing the change in page sizes. Furthermore,
when direct I/Os are used, requests to SSDs bypass OS buffers
and arrive at SSDs at the unit of a sector. As a result, they may
be not aligned with the page size of virtual memory. Nor are
they aligned with the flash page size. Therefore, using direct
I/Os may further increase the ratio of unaligned writes.

Serving unaligned writesin SSDs can significantly degrade
system efficiency for several reasons. First, it may cause chip
congestion. SSDs need to write partial pages! for serving
the unaligned writes. Writing partial pages may incur read-
modify-write operations, increasing the number of requests
in chips. Second, it may lead to chip waiting because the
additional reads need to wait for previous requests on the
same chip [7]. The waiting time can be much longer than the
actual service time of the reads.Third, it may result in a load
imbalance across the chips [8]. To achieve high parallelism,
a large request in SSDs is decomposed into a number of
sub-requests over multiple chips. If one of the sub-requests
involves writing a partial page, the other sub-requests must
wait for its completion because a request is not complete until
all its sub-requests are complete. Fourth, it may cause low
page utilization because of the write space amplification.

Several existing approaches have been proposed to address
the side-effects of unaligned writes. MCA (Multi-Chip based
replacement algorithm) is the state-of-the-art scheme that
focuses on reducing chip waiting with new buffer manage-
ment [7]. Slacker can alleviate load imbalance across chips
by considering the completion time of each sub-request of a
large request in I/O scheduling [8]. Lu et al. use an object
interface to replace the block interface for SSD accesses [9].
However, neither the buffer management nor I/O-scheduling
based approaches can comprehensively resolve all the afore-
mentioned side-effects of unaligned writes. Adopting a new
object interface requires a significant amount of programming
effort, which may not be possible for legacy applications.

In this work, we design a new flash drive WAFLASH that
significantly alleviates the side-effects of unaligned writes to
flash memory with cooperative management of SSD write

1We use partial pages to refer partially-filled flash pages where some
sectors in the page are not updated and full pages to refer flash pages that all
sectors in the pages are to be updated.

978-1-6654-5408-7/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
ki

ng
, A

rc
hi

te
ct

ur
e

an
d

St
or

ag
e

(N
AS

) |
 9

78
-1

-6
65

4-
54

08
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

N
AS

55
55

3.
20

22
.9

92
53

75

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:41:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The impact of serving unaligned writes on SSD performance. Both
read and write latency become longer.

-0%
··50%
-100%

30 60 90 120150
Latency (ms)

(b) write

-0%
··50%
-100%

~100

~
o
'§ 95a:
Q)
>
:§ 90
:>
E
:>

() 85 +----.---,----,,.--,------,
30 60 90 120150 0

Latency (ms)

(a) read

o
'§ 95a:
Q)
>
:§ 90
:>
E

8 85 -f"----.---,----,,.--,------,
o

4 KB). Request sizes are mostly aligned with page size
of virtual memory of OSs. The commonly used page size
of OSs is 4 KB. Therefore, the request size can be much
smaller than a flash page size (e.g., 8 KB and 16 KB). The
FTL performs address mapping, garbage collection, and wear
leveling. Furthermore, SSD controller often uses RAM as a
buffer on top of the FTL to speed up write performance
because flash writes are relatively slow compared to reads. In
this paper, we aim to significantly reduce the negative impact
of unaligned writes to flash by more efficiently utilizing the
buffer and the FTL.

B. Motivation
By analyzing I/O traces from various computing environ-

ments we have confirmed that unaligned writes are common
for data-intensive applications when accessing SSDs. Specifi-
cally, we study the ratio of unaligned writes in the set of block-
level traces from system software (e.g., MSNFS, CFS) [12]
and mobile applications (e.g., Nexus5) [12], [13] when the
flash page size is 8 KB and 16 KB. For traces collected
before 2010, we assume its sector size is 512 B. Otherwise,
we assume that its sector size is 4 KB.

The average ratio of unaligned writes is 83.1 % with an 8
KB flash page size. Even worse, the trend of increasing flash
page size can further increase the ratio of unaligned writes.
For example, when the flash page size is increased from 8 KB
to 16 KB, the ratio of unaligned writes in the MSNFS trace
will increase from 33.5% to 99.1 % and the average ratio for
all workloads reaches 97.2%.

To experimentally investigate the effects of unaligned writes
on flash read/write performance, we conduct experiments on
a simulated SSD [14] by feeding it with 120K requests from
the MSNFS workload. The flash page size is 8 KB and an
optimum page-level FTL is deployed. 30% of the requests are
reads and the rest are writes. All the read requests are 8 KB
and aligned with page boundaries. But for writes, we make a
portion of them unaligned to flash page boundaries. We vary
the ratio of the number of unaligned writes to the number of
total writes from 0% to 100%.

Figure la and Ib plot the latency CDF of all reads and
all writes, respectively. One can observe that more unaligned
write noises lead to longer tail latencies for both reads and
writes. For example, with 50% noise write latencies are 8x,
24x longer compared to no write noise cases, at 90th and 95th

II. BACKGROUND AND MOTIVATION

A. SSD and Flash Translation Layer

SSDs use flash memory as a storage medium. Flash memory
consists of blocks, each further consisting of 64 to 256 pages.
Each page has a data area (1 to 16 KB) and a meta-data area
(called out-of-band (OOB) data) [11]. Unlike traditional disks,
flash memory reads and writes data in the unit of a page and
erases in the unit of a block. Compared to read latency, flash
has a much longer write and erase latency. In addition, blocks
must be erased before they can be reused, thus SSDs usually
perform out-of-place updates.

SSDs use the FTL to support hosts to access flash memory
via the block interface as conventional HDDs. Hosts send
requests to SSDs in the unit of a sector (e.g., 512 B or

buffer and its flash translation layer (FTL). Specifically, we
propose a Partial page and Congestion-aware LRU (PC-LRU)
buffer management algorithm, which differentiates writes to
partial pages from those to full pages. Without compromising
data locality, PC-LRU prioritizes the eviction of full pages
over partial pages in the buffer when chip congestion happens
to reduce the number of unaligned writes sent to FTL. Further-
more, to circumvent read-modify-write operations for serving
unaligned writes, we design a new multi-version FTL, called
MV-FTL. It serves a partial-page write just as a write to a full
page by directly writing the data to a new flash page without
performing the read and modification operation. Instead of
invalidating the old version of the data, MV-FTL keeps both
of the copies valid until they are merged. We use MV-FTL
as an index structure to access both versions of data in flash.
Due to the out-of-place update nature of flash, MV-FTL does
not need additional space for keeping the two versions of the
data. Finally, when unaligned writes in MV-FTL cause low
flash page utilization, we propose a novel data compaction
technique to merge multiple partial pages, therefore, increasing
page space utilization and reducing the number of unaligned
writes to flash memory.

Our contributions are summarized as follows:
• We propose a novel buffer replacement algorithm, PC-

LRU, that prioritizes the destaging of full pages over
partial pages when chip congestion happens and trans-
forming partial pages to full pages to reduce the number
of unaligned writes to flash.

• We design a new flash translation layer, MV-FTL, that
supports multi-version data management upon serving
unaligned writes/overwrites when the write buffer is full
without incurring extra reads.

• We propose a partial page compaction method to optimize
data storage in MV-FTL for reducing the space overhead
and the number of unaligned writes.

• We implement WAFLASH using the VSSIM [10] plat-
form based on QEMU/KVM to run real file systems and
applications. The results show that with our method the
average latency and I/O throughput are improved by up
to 62% and 125%, respectively.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:41:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: PC-LRU write buffer management. LPN: logical page number. We
assume I flash page consists of 4 sectors. LPN(2), LPN(12), LPN(9),
LPN(23), and LPN(5) are full-page writes (marked as F) and LPN(17)
and LPN(20) are partial-page writes (marked as Pl. When chips are idle,
upon serving the write to the full page LPN(2), the partial pages LPN(17)
and LPN(20) at the bottom of the LRU stack are replaced; when chips are
not idle, the full page LPN(5) is replaced.

Write Buffer

Bottom
~

LPN LPN
(17) (20)

~Jl
I !W
I I I I"_p_" L_p_"

F

LPN
(5)

LPNLPN
(9) 23)D :1:

~ D2
Request:

Write to LPN (2)
F

Fig. 2: System architecture. The proposed write buffer management scheme
(PC-LRU) and multi-version-aware FrL (MV-FTL) are applied to the write
buffer and FrL layer inside SSDs respectively.

Channell

...
112 126 I25 1 2 1 27 1 38 1 I I··· 1

-
~

12
13

LPN(3) 14
15

~ ~
16
17
18

x...8t '\l

~LPm'(O')
.C 22

23

Channel 0
3;;;,;1;;...,..__~2r3,-- -,O

I_PT_/F......&....-1__PPN__I

Fonnat of MV·FTL mapping entry

Fig. 4: Illustration of MV-FTL. LPN: logical page number; PPN:
physical page number; PT: version pointer; F: entry flags. LPN(3) has
two versions stored in PPN(2) and PPN(8) respectively. LPN(O) has
two versions stored in PPN(12) and PPN(9).

PPN8
9
1
1

LPN012345

PPNO
1
2
3

PPN4
5
6
7

B. Multi-Version Partial-Page Management

Because SSDs have limited RAM buffer capacity, flash
memory has to serve unaligned writes when write buffers
with PC-LRU cannot fully convert partial pages to full pages.
To further eliminate read-modify-write operations from the
critical I/O paths, WAFLASH writes a partial page directly
to flash memory as a new version of the page data without
triggering the read-modify-write. Consequently, there could

LPN(5)) and partial pages (e.g., LPN(17) and LPN(20))
using different replacement policies considering chip idleness.
The full pages are interleaved with partial pages in the write
buffer. When the chip is idle, the page at the bottom of L
will be replaced. However, when the chip is not idle (or chip
congestion occurs), PC-LRU needs to replace the full page
closest to the bottom of L. With this approach, we can reduce
the number of read-after-write operations and promote the
conversion of partial page to a full page by keeping the partial
pages in the buffer for a longer period.

A. Partial Page and Congestion-Aware Buffer Replacement

To reduce unaligned writes to flash memory, we de-
vise a new buffer replacement algorithm, Partial page and
Congestion-aware LRU (PC-LRU). We design the algorithm
based on the observations that (1) when chip congestion
happens the cost of writing partial pages is much higher than
that of writing full pages and (2) partial pages are likely to be
overwritten and converted to full pages.

We manage the write buffer as an LRU stack L. The layout
of the buffer is shown in Figure 3. va requests enter the
top of L. They are then pushed to the bottom of L, further
dropped out of the write buffer. Overwrites are merged with
the existing requests in the buffer and moved to the top of L.
The write buffer manages both full pages (e.g., LPN(2) and

percentiles, respectively. Therefore, it is necessary to eliminate
their side-effects to improve SSD performance.

III. THE DESIGN OF WAFLASH

We present the design of WAFLASH, a new SSD archi-
tecture that can comprehensively alleviate the side-effects of
unaligned writes. Figure 2 shows the general system architec-
ture considered in this paper. In the paper, we assume the host
system issues va requests to SSDs at the unit of a sector. The
RAM buffer in SSDs is used only for write requests because
flash reads are much faster than writes and repeated reads can
be effectively absorbed by the host cache [15]. The buffer is
allocated to write requests at the unit of a sector to save RAM
space. The read requests missed in the buffer are directed to the
flash translation layer (FTL). The buffer sends write requests
to FTL when it is full or a flush request is received. FTL
writes the data to flash memory after determining the physical
location of the write requests. When FTL receives unaligned
overwrite requests, it incurs read-modify-write operations.

WAFLASH achieves the elimination of the side-effect of un-
aligned writes with three key techniques: (1) page replacement
considering partial pages vs. full pages and chip congestion,
(2) multi-version data storage in flash memory, and (3) partial
page compaction in flash memory. We will elaborate on each
of them in the following sections.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:41:16 UTC from IEEE Xplore. Restrictions apply.

be more than one valid physical pages that are mapped to
the same logical page. Each of the physical pages stores a
version of the data which corresponds to an unaligned write to
the logical page. For accessing the multi-version partial-page
aware flash memory, we design a new FlL scheme, called
MV-FTL, which explores the flash pages that are not in use
or the spare pages that are provided by SSD manufactures
(e.g., Micron [16]).

A critical challenge of multi-version data management is
that the size of FTL can be significantly increased for storing
additional mapping entries for the newer version of data. To
prevent increasing the size of FlL, we partition the existing
mapping entries of FlL into two address areas: PP Nand
PT/ F. PPN stores the physical page number. It uses the
n least significant bits, where page_size * 2n is equal to
the SSD capacity. The remaining bits are used as the flags
(F) or pointers (PT). If the entry stores a mapping of a
full page, PT/ F is set to aliOs. If data in a logical page
has multiple versions, the mapping entry of the partial page
uses PT/ F to store the indexed location where to find its
next version. PTs in multiple mapping entries may point to
the same physical page for storing compacted small partial
pages (see § III-C). The format of MV-FTL mapping entry
is illustrated in Figure 4. For example, if we assume that the
SSD capacity is 512 GB and page size is 16 KB, then PPN
needs 25 bits. PT/ F has 7 bits as shown in the figure. If the
desired size of address space is smaller than the space that can
be indexed using PT/ F (e.g., < 27), we use direct indexing.
Otherwise, we should use indirect indexing to increase the
space of addressing using PT/ F and increase the possibility
of finding an idle physical page to store multi-version data.

Partial page writes: When an unaligned request is to
write a significant portion (e.g., >50%) of a page LPN(x),
MV-FTL writes the partial page back to a new spare page
(Pagenew) in flash memory directly without reading the
original page (Pageold). The distance between Pagenew and
Pageold is recorded in the mapping entry of LPN(x). For
both Pageold and Pagenew , we need to record which portion
of the page is written. For fast comparison, we define partial-
page write patterns as shown in Figure5 with the assumption
that page size is 16 KB and sector size is 4 KB. In Pattern
0, the first 3 sectors in the page are written. In Pattern 1,
only sectors in the position of [1-3] are written. MV-FTL uses
these defined patterns to determine how to serve a read request
or merge two versions of the partial pages. For example, if a
request is to read sectors [1-3] and Pagenew has Pattern
1, then only Pagenew needs to be read. If a request is to
read sectors [0-3] and Pagenew has Pattern 1, then both
Pagenew and Pageold should be read to RAM for serving the
request by merging sector [0] from Pageold and sectors [1-3]
from Pagenew . To save space overhead, we store the pattern
information in the OOB area of the corresponding physical
pages. Typically, a flash page has 128 BOOB data [11], which
is large enough to store the pattern information.

We use the example in Figure4 for further illustration.
LPN(3) was mapped to PPN(2) (LPN(3)----'tPPN(2).

patterno~
patternl~

Fig. 5: The unaligned write patterns. "1" indicates the sector is written; "0"
indicates the sector is not written. We assume that page size is 16 KB and
sector size is 4 KB. The partial page writes only access contiguous sectors
and their sizes are larger than 50% of flash page size.

After receiving an unaligned write request to LPN(3), MV-
FTL writes the data back to PPN (8). No additional read to
PPN (2) is needed. It is delayed until when the merging oper-
ation is executed. A new mapping entry (LPN(3)----'tPP N(8)
is added to MV-FTL. After serving the unaligned write, there
are two valid physical pages (PPN (2) and PPN (8) that
are mapped to LPN(3). The two physical pages are merged
when GC is executed. Similarly, version 0 and version 1 of
LPN(O) are mapped to PPN(12) and PPN(9) respectively
for reducing additional reads. The write pattern corresponding
to the mapping entry of (LPN(3)----'tPPN(8» is Pattern
o while the pattern corresponding to the mapping entry of
(LPN(0)----'tPPN(9» is Pattern 1 according to which sec-
tors that are written.

Full page writes: When a full page is written to LPN(x), a
new physical page is used to serve the request directly. All the
previous versions of data in physical pages that were mapped
to page LPN(x) should be marked as invalid in MV-FTL and
cleaned when GC is executed. Page reads: MV-FTL always
uses the latest version of the physical pages to serve incoming
read requests. If the requested data is not availableaccording
to the write pattern, it will issue another read for its earlier
version of the data and then merge the two versions in RAM
for serving the read requests. Page merging and garbage
collection: Multiple versions of the data mapped to the same
logical page number should be merged effectively to improve
the space utilization and reduce the execution time of Gc.
Specifically, MV-FTL merges multiple version of the data
with GC in two scenarios: (1) SSDs are idle or in a light
load and (2) GC is triggered.

C. Compacted Partial Pages

If a request only writes to a small portion (e.g., ::;50%) of a
logical page, serving it using one whole physical page wastes
the space of flash memory when the physical page is mapped
to a new version of the logical page. WAFLASH identifies and
compacts multiple small partial pages and then stores them in a
single physical page to both improve the page space utilization
and further reduce the number of unaligned writes.

Destaging a batch of partial pages from write buffers:
For creating compacted partial pages, PC-LRU destages a
batch of unaligned writes to several small partial pages. It
selects the partial pages that are adjacent in the logical page
address space to explore space locality. For this purpose, we
partition the space of logical page address into a sequence of
regions. The region size should be significantly larger than the
page size. WAFLASH only compacts the small partial pages

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:41:16 UTC from IEEE Xplore. Restrictions apply.

LPN 0 ~ 2 3 4 5 6 78

PPNO

~
~2 0 I I

~ ~3 I I
2 ~4 6 , I
3 ~5 7 I,

PPN4 8 ~6

~
/

5 ~7

6 ~

7 ~

PPN8
9
U
~

Layout of Compacted Partial Pages

Fig. 6: Illustration of MV-FTL with compacted partial pages and its data
layout. LPN(6) has two versions stored in PPN(14) and PPN(20)
respectively. Similarly, the two versions of LPN(7) are stored in PP N(15)
and PPN(20). And the two versions of LPN(8) are stored in PPN(17)
and PPN(20). The newer versions of LPN(6), LPN(7), LPN(8) are
stored in PP N(20) as a compacted partial page.

that reside in the same region. As a result, it is possible that
after one partial page is accessed the rest of them are to be
accessed in a small time window.

Accessing the compacted partial pages: To create com-
pacted partial pages, MV-FTL needs to find a spare flash page.
The layout of the page is shown in Figure 6. If a physical page
is used to store multiple compacted partial pages, its first two
bytes should contain a unique identifier (e.g., OxFFF F). The
rest of each physical page has a meta-data section and multiple
data sections. The meta-data section is used by MV-FTL to
index the partial pages in the physical page. The data section
stores the data of a partial page. The meta-data section stores
a list of triples < LPN, of f set, len >, where LPN is the
logical page number of the partial page, offset is the offset
of the partial page in the physical page, and len is the length
of the partial pages in sectors.

Writing compacted partial pages: To update compacted
partial pages, MV-FTL needs to prepare the data layout (meta-
data) and then stores it together with the data in partial pages
to the selected physical page. After writing the partial pages,
MV-FTL updates the mapping entries with the new version
pointer by setting PT. We use the example in Figure 6 for
illustration. LPN(6),LPN(7), and LPN(8) were mapped
to PPN(14) , PPN(15), and PPN(17) respectively. Once
PC-LRU destages the partial pages LPN(6),LPN(7), and
LPN(8) from the write buffer, MV-FTL stores the new
version of LPN(6), LPN(7), and LPN(8) to PPN(20)
with the specific data layout. Therefore, serving the 3 writes
using the proposed compacted approach reduces the number
of I/O requests from 3 pages writes plus 3 page reads to only
1 page write. For serving unaligned writes that overwrite the
compacted data in LPN(x), MV-FTL needs to read the data
from PPN(y) which can be found using the index stored in PT
in the mapping entry of LPN(x). Then the data is merged

TABLE I: SSD characteristics (Micron [20]).

Parameter Parameter
SSD Capacity 48GB #Pagesfblock 256
#Channels 4 Page size 16KB
#Chips/channel 4 Page read 20us
#Dies/chjp 2 Page write 200us
#Planes/die 2 Page data transfer 51.2us
#Blocks/plane 4096Block erase l.5rns

with those from the incoming write requests. Finally, MV-FTL
writes the latest merged version to another empty physical
page PPN(z) and updates PT to point to PPN(z).

Reading compacted partial pages: To read compacted
partial pages, MV-FTL needs to read the latest version of
the data stored in the physical pages that are mapped to the
requested logical page. It can use the data layout to locate
the requested page from the compacted partial pages. If the
requested sectors is not available in the page, MV-FTL needs
to read its earlier version of the data and merges the two
versions of the data in RAM for serving the reads. Page
merging and GC are triggered as explained in § III-B and
executed using the data layout for indexing.

IV. WAFLASH IMPLEMENTATION

To run applications and real file systems, we implement
WAFLASH on VSSIM, a QEMU/KVM-based SSD emulator
that runs in real-time [10]. VSSIM emulates flash latencies on
memory (RAMDisk) or fast SSDs. Its accuracy is validated
against a commodity SSD [17]. VSSIM can efficiently model
the SSD system with various design choices, such as hardware
configurations (e.g., the number of channels, the block size,
and the page size) and firmware schemes. The original write
buffer in VSSIM isorganized via a first-in-first-out (FIFO)
circular queue. Instead of replacing a single page when the
buffer is full, VSSIM evicts the data of one request, until
all requests in the buffer are destaged to flash memory. The
partial page-unconscious policy involves a lot of additional
read operations. We make changes in the write buffer module
to port the PC-LRU algorithm. We also integrate the multi-
version storage and the page compaction technique in the FTL
scheme. In all, we modify VSSIM with a total of 947 LOC.

We currently only implemented WAFLASH in page-level
buffer schemes and page-level FTLs. We choose the page-level
buffer schemes for their simplicity and efficiency; we focus
on page-level FTLs for their best performance with decent
mapping overheads if optimized mapping methods are used
[18]. However, we believe our idea can also benefit other
schemes. For example, we can port PC-LRU to block-level or
hybrid-level buffer schemes by prioritizing destaging the buffer
blocks with more full pages. If hybrid FTLs are deployed, we
can apply MV-FTL to the log-block management which uses
page-level address mapping [19]. We leave these as our future
work.

V. EVALUATION

A. Experimental Methodology
Platforms and configurations: For a comprehensive study

of the performance of WAFLASH, we emulated SSDs in

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:41:16 UTC from IEEE Xplore. Restrictions apply.

400 lSI Baseline • WAFLASH

1KB 3KB 5KB 7KB 9KB
Request Size

g--320

~240
2S
(/) 160
0-

Q 80

1KB 3KB 5KB 7KB 9KB
Req. Size (Byte)

300 lSI Baseline • WAFLASH

8 250
8200

6150

ff 100
Q 50

o..L...C.:._...l.:.IIL......J.:.a---J..::_...l.:.IIL..

1KB 3KB 5KB 7KB 9KB
Request Size

50 IS] Baseline • WAFLASH

840

;' 30
2S
(/) 20
0-

Q10

1KB 3KB 5KB 7KB 9KB

Request Size

8 IS] Baseline • WAF LASH
7

86
°5EA
~3
02
-1o.LL__....I::.JL-J.:;.IIL.....J:.a~ __

- Baseline
-_. WAFLASH

0.2 0.4 0.6 0.8 1.0
Latency (ms)

(b) Fileserver (C) Webserver
Fig. 7: Filebench on the emulation-based platform.

- Baseline
---WAFLASH

- Baseline
---WAFLASH

(d) Webproxy

rrr~
8 97 +--C:.....,---.-----,---.-----,

0.0 0.2 0.4 0.6 0.8 1.0
Latency (ms)

- Baseline
-_. WAFLASH

0.2 0.4 0.6 0.8 1.0
Latency (ms)

~100 rr
a !& !

.~ !
'v !

~
8 97 +-'--._--.-----,_--.-----,

0.00.2 0.4 0.6 0.8 1.0
Latency (ms)

~100 ,..--.,.-------

a

&
.~
~
8 97 f....!.--.---.-----,---.-----,

0.0

(a) Random Write

~100

a

&
.~
~
8 97 +---._--.-----,_--.-----,

0.0

(a) Random Write (b) Fileserver (c) Webserver (d) Webproxy
Fig. 8: Tail latencies. The figures show the CDF of request latencies in various workloads.

VSSIM. Its parameters are listed in Table I. Its sector size is 4
KB. We use a machine with 3.2 GHz 6-core Intel(R) Core(TM)
0-8700 and 64 GB DRAM. We use page-level FlL provided
by VSSIM as the baseline on this platform.

Workloads characteristics: For the whole-system eval-
uation, we use Filebench with four personalities [21]: one
micro workload (Random Write) and three macro workloads
(Fileserver, Webserver, and Webproxy). The characteristics
of these workloads are publicly reported in [22], [23] and
described in § V-B.

B. Benchmark-Driven Evaluations on VSSIM
In this subsection, we evaluate WAFLASH on the emulation

platform with Filebench [21]. We increase I/O request sizes of
the benchmarks from 1 KB to 9 KB in the experiments. We run
four workloads from Filebench. The random write workload
was set to use a large file of 5 GB and threethreads to perform
random writes to the file. For the file server workload, the
number of files is 10000, the number of threads is 50, and
the mean file size is 128 KB. For the Webserver workload,
the number of files is 1000, the number of threads is 100, and
the mean file size is 16 KB. For the Webproxy workload, the
number of files is 10000, the mean file size is 128 KB, and
there are 100 threads. Figure7 shows the I/O throughput across
the four workloads. The results include kernel, file-system, and
QEMU overhead in addition to device-level latencies.

We have the following observations. (1) With WAFLASH,
the I/O throughput of WAFLASH is increased by up to 125%,
86%, 37%, and 68% respectively. Among the four workloads,
the random write workload achieves the most improvement
because it has the highest unaligned write ratio and worst
spatial locality. (2) We count the percentage of partial pages
in the buffer when WAFLASH is enabled. PC-LRU has 21 %
more partial pages in the buffer compared to Baseline for
all the workloads. This is because PC-LRU prioritizes the
destaging of full pages and keeps the partial pages in the
buffer for a longer time. As a result, less partial pages can
be written to the flash memory and these pages have more
chance to become full pages, which are the desired flash

access patterns. (3) Compared to Baseline, PC-LRU decreases
4.5-10.6% partial pages written to flash for all the workloads.
The reason is that there are some partial pages merged to
full pages due to their residence in the buffer and the full
page replacement leads to a fewer number of buffer eviction
for serving incoming requests. As serving partial-page writes
is much more expensive than serving full-page writes, the
reduced number of partial-page writes to flash helps system
performance. (4) Partial page compaction decreases 7-12%
write operations to flash memory. This approach not only
improves the page space utilization but also reduces request
latency due to the reduced number of write requests.

CDF latencies: Figure8 shows the CDF of request latencies
from the same experiments. From this figure, one can find
that for all workloads, the Baseline approach has longest tail
latencies and WAFLASH exhibits the shortest latencies. In
addition, for some evaluated workloads, the 99th percentile
performance gains achieved by WAFLASH is higher than
average values.

C. Impact on Read Performance
So far we have shown that WAFLASH improves the overall

I/O performance. One concern is that WAFLASH may hurt
read latency, which is generally more critical in storage perfor-
mance. WAFLASH can reduce read latency while improving
write performance. To verify this, we measures the average
read and write latency of the fileserver workload in Figure 8b
(other workloads show similar results). As Figure9 shows,
the read and write latency are reduced by up to 60% and 62%
respectively. This is because WAFLASH reduces the number
of read and write operations in flash channels in the critical
I/O path, which benefits both read and write operations. The
overhead of multi-version FTL is well amortized over the
running of the workload.

D. Overhead Analysis
Multi-version management overhead: Instead of invali-

dating the old version of the data, MV-FTL keeps both of
the copies valid until they are merged. However, due to the

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:41:16 UTC from IEEE Xplore. Restrictions apply.

X Baseline 0 WAFLASH100
~ ~g
';:: 70
g 60
~ ~g
-J 30
:? 20
« 10

O-'-----.-----.-----r----.----,,--

Fig. 11: Filebench on the Cosmos+ OpenSSD platform.

1KB 3KB 5KB 7KB 9KB
Request Size

X Baseline 0 WAFLASH

1KB 3KB 5KB 7KB 9KB
Request Size

1KB 3KB 5KB 7KB 9KB
Request Size

Baseline 0 WAFLASH 30

I24
g18
ID

.§ 12

: ~6
.L....,,.----.--.------r--.--- -'----.-----.--.-------.-.---

(a) Read (b) Write
Fig. 9: The read and write latency of fileserver.

Fig. 10: WAFLASH YS. MCA.

F Benchmark-Driven Evaluations on OpenSSD

Finally, we evaluate WAFLASH on the Cosmos+ OpenSSD
board [24]. The development PC runs Ubuntu 14.04 and
Xilinx software. Xilinx Vivado suite allows us to change the
configuration of the board. We use the HDF files provided by
the vendor. Using Xilinx SDK, we change the firmware and
program the FPGA board. The flash capacity is 1 TB. The
flash page size is set to 16 KB and the sector size is 4 KB.
We use the GreedyFTL algorithm, which is a page-mapping
FTL with greedy GC, as the baseline.

We use the Random Write workload in Filebench. Figure 11
shows the average I/O latency. Compared to the baseline
system, WAFLASH reduces the average latency by up to 43%
for random write. For I/O throughput, WAFLASH delivers
similar behaviors to those observed on the VSSIM platform.

VI. RELATED WORK
Buffer management schemes: Many approaches were pro-

posed to utilize RAM buffers to improve the performance of
slow storage devices. Earlier schemes are designed for HDDs
by exploiting spatial and temporal locality [25],[26]. These
approaches can be applied to SSDs but with sub-optimal per-
formance. Later, flash-aware schemes are developed for SSDs
considering flash characteristics. These efforts include page-
level schemes (e.g., MCA [7], CFLRU [27], and FOR [28]),
block-level schemes [15],[29], and hybrid schemes [30], [31].

Among these designs, MCA [7] is the only partial page-
aware scheme that is mostly related to WAFLASH. We have
discussed the limitation of MCA in § V-E. MCA only delays
the eviction of partial pages that cause chip waiting due
to additional reads while PC-LRU delays the eviction of
all partial pages. WAFLASH can further reduce the number
of requests on channels by replacing more full pages. In
addition, compared to MCA, WAFLASH keeps partial pages
in the buffer for a longer time, so that more full pages can
be generated. Finally, WAFLASH uses MV-FTL to further
reduce unaligned writes when the efficiency of write buffer is
limited. Researchers have also studied the buffer management
across multiple SSDs [32] and addressed unaligned accesses
on multiple HDDs [33].

Flash translating layer techniques: A number of FTL-
level approaches have been proposed to improve SSD perfor-
mance by reducing GC overhead or increasing I/O parallelism.
According to the granularity of address mapping, existing
FTLs schemes can be classified into page-level schemes [18],
[34], block-level schemes, and hybrid schemes [19],[35].

• PC-LRU[ZJ MCA~30
~25
~20
>
~15
ElO
>-g 5"* 0 ...L..I' --"-__-"-'__-"'---L.-L:...-----"'---

-J MSNFS DTR RA Web Ex CFS

out-of-place update nature of flash, MV-FTL does not require
additional space for keeping the two versions of data of the
same logical page. It only changes the state transition of
pages and meta-data management. As discussed in § III-B, we
control the additional meta-data overhead to be acceptable by
partitioning existing mapping entries in FTL with new fields
and using direct and indirect indexing techniques to reduce
the overhead.

Page compaction overhead: Page compaction increases
flash page utilization with little space overhead. The
source of overhead is mainly from storing the triple <
LPN, offset, len > for indexing the partial pages in the
physical page. If we assume that the page size is 8 KB and
the SSD size is 512 GB, the index triple requires 6B for each
partial page. We can store the index in the physical page or in
the out-of-band area of the page. Then the space overhead for
meta-data management is about 0.15% in the worst scenario.
The space overhead can be significantly decreased as the page
size is increased for larger capacity SSDs and as the fraction
of full-page writes increases in real workloads.

E. WAFLASH vs. the State-of-the-Art: MeA

As mentioned previously, MCA representsthe best algo-
rithm in write buffer management considering side-effects of
unaligned writes [7]. It delays evicting the partial pages that
cause chip waiting. We implement MCA and PC-LRUin SS-
DSim based on existing literature [7]. In the experiments, we
use 6 real block-level traces because MCA was evaluated using
I/O traces. Specifically, they include Microsoft Production
Servers (MSNFS, DTR, RA, and CFS), Microsoft Windows
Servers (Ex), and Florida International University (Web) [12].
Figure 10 compares PC-LRU and MCA in terms of their
latency improvements against the Baseline. As shown, PC-
LRU significantly outperforms MCA for all the workloads:
PC-LRU has 25.6% performance improvements while MCA
only reduces request latencies by 2.7%.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:41:16 UTC from IEEE Xplore. Restrictions apply.

While the above schemes aim to reduce copy, write, and
erase operations, none of them focus on unaligned writes. MV-
FTL aims to reduce additional reads and the number of partial-
page writes caused by unaligned writes by utilizing multi-
version data storage and partial-page compaction. Importantly,
WAFLASH is orthogonal to and can further improve the above
FTL techniques. Besides the FTL optimization, WAFLASH
exploits the novel buffer scheme to alleviate the side-effects
of unaligned writes from the upper layer.

VII. CONCLUSION

SSDs become a norm in storage systems, but applications
and system software may ignore the hardware complexity
inside SSDs. Unaligned writes, which are common in practical
I/O workloads, can significantly decrease SSD performance.
We have proposed and implemented a cooperative mechanism,
named WAFLASH, to comprehensively reduce almost all the
side-effects of the unaligned writes in SSDs. WAFLASH de-
lays the eviction of partial pages in write buffers, stores multi-
version data in flash memory, and compacts multiple partial
pages to a flash page, to circumvent write amplification and
additional reads in the critical I/O path. Using the Filebench
benchmark we show that WAFLASH provides up to 125%
performance improvement.

ACKNOWLEDGMENT

This research was supported by US National Science Foun-
dation under CNS 1906541. This work was also supported in
part by the National Key Research and Development Program
of China No.2021ZDOll0700, the National Science Founda-
tion of China No. 62172361, and the Program of Zhejiang
Province Science and Technology No.2022COlO44.

REFERENCES

[I] Fusion-io, "Fusion-io ioDrive," https:llwww.sandisk.com/business/
datacenter/productslflash-devices/pcie-flashlsx350 .

[2] "Report: SSD Market Doubles, Optical Drive Shipment Rapidly
Down," http://www.myce.comlnews/report-ssd-market-doubles-optical-
drive-shipment-rapidly-down-70415, 2014.

[3] A. Caulfield, L. Grupp, and S. Swanson, "Gordon: Using Flash Memory
to Build Fast, Power-efficient Clusters for Data-intensive Applications,"
in Proc. ASPLOS'09, 2009.

[4] M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A.A. Chien,
and H. S. Gunawi, "The Tail at Store: A Revelation from Millions of
Hours of Disk and SSD Deployments," in Proc. of FAST'16, 2016.

[5] L. Harbaugh, "How Storage Solutions Are Rising to Meet Edge Com-
puting Needs," https:/linsights.samsung.coml2018/05/09/how-storage-
solutions-are-rising-to-meet-edge-computing-needs/, 2018.

[6] S.-M. Wu, K.-H. Lin, and L.-P. Chang, "Integrating Ism trees with multi-
chip flash translation layer for write-efficient kvssds," IEEE Transactions
on Computer-AidedDesign of Integrated Circuits and Systems, vol. 40,
no. I, pp. 87-100, 2020.

[7] J. Seol, H. Shim, J. Kim, and S. Maeng, "A Buffer Replacement
Algorithm Exploiting Multi-Chip Parallelism in Solid State Disks," in
Froc. of CASES '09, 2009.

[8] N. Elyasi, M. Arjomand, A. Sivasubramaniam, M. T Kandemir, C. R.
Das, and M. Jung, "Exploiting Intra-Request Slack to Improve SSD
Performance," in Proc. of ASPLOS'17, 2017.

[9] Y. Lu, J. Shu, and W. Zheng, "Extending the Lifetime of Flash-based
Storage through Reducing Write Amplification from File Systems," in
Froc. of FAST'13, 2013.

[10] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choil, S. Yoon, and J. Cha,
"VSSIM: Virtual machine based SSD simulator," in Proc. of MSST'13,
2013.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

N. Agrawal, V. Prabhakaran, T Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, "Design Tradeoffs for SSD Performance," in Proc. of
ATC'08, 2008.
"SNIA 10TTA: Storage Networking Industry Association's Input/Output
Traces, Tools, and Analysis," http://iotta.snia.org.
D. Zhou, W. Pan, W. Wang, and T Xie, "1/0 characteristics of smart-
phone applications and their implications for emmc design," in Proc. of
llSWC'I5, 2015.
Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, "Performance
Impact and Interplay of SSD Parallelism Through Advanced Commands,
Allocation Strategy and Data Granularity," in Proc. of ICS'll, 2011.
H. Kim and S. Ahn, "BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage," in Proc. ofFAST'08, 2008.
"NAND Flash 101: An Introduction to NAND Flash and How to
Design It In to Your Next Product," https:llwww.micron.comlresource-
details/feaScfd9-ee93-47f4-b2af-cd494d329Ic3.
Intel Corporation, "Intel X25-M SATA Solid-State Drive Specification,"
http://download.intel.comldesignlflashlnand Imainstrearnlmainstream-
sata-ssd-datasheet.pdf.
A. Gupta, Y. Kim, and B. Urgaonkar, "DFTL: A Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address
Mappings," in Proc. of ASPLOS'09, 2009.
S.-w. Lee, D.-J. Park, T-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,
"A Log Buffer-Based Flash Translation Layer Using Fully-Associative
Sector Translation," ACM Transactions on Embedded Computing Sys-
tems (TECS), vol. 6, no. 3, 2007.
Micron Technology, Inc., "NAND Flash Memory MLC Data
Sheet, MT29E512G08CMCCBH7-6 NAND Flash Memory,"
http://www.micron.coml.
"Filebench," http://filebench.sourceforge.net/wiki/index.php/Main_Page.
E. Lee, H. Bahn, and S. H. Noh, "Unioning of the Buffer Cache and
Journaling Layers with Non-Volatile Memory," in Proc. of FAST'13,
2013.
Y. Lu, J. Shu, and W. Wang, "ReconFS: A Reconstructable File System
on Flash Storage," in Proc. of FAST'I4, 2014.
J. Kwak, S. Lee, K. Park, J. Jeong, and Y. H. Song, "Cosmos+ openssd:
Rapid prototype for flash storage systems," ACM Trans. Storage, vol. 16,
no. 3, Jul. 2020. [Online]. Available: https:lldoi.orgIl0.1145/3385073
F. J. Corbato, "A Paging Experiment with the Multics System," Report
MIT Project MAC Report MAC-M-384, 1968.
S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, "DULO: An
Effective Buffer Cache Management Scheme to Exploit Both Temporal
and Spatial Locality," in Proc. of FAST'05, 2005.
S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee, "CFLRU: A
Replacement Algorithm for Flash Memory," in Proceedings of the
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), 2006, pp. 234-241.
Y. Lv, B. Cui, B. He, and X. Chen, "Operation-Aware Buffer Manage-
ment in Flash-Based Systems," in Proc. of SIGMOD'll, 2011.
H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee, "FAB: Flash-
Aware Buffer Management Policy for Portable Media Players," IEEE
Transactions on Consumer Electronics (TCE), vol. 52, no. 2, pp. 485-
493, 2006.
G. Wu, B. Eckart, and X. He, "BPAC: An Adaptive Write Buffer
Management Scheme for Flash-Based Solid State Drives," in Proc. of
MSST'1O, 2010.
Q. Wei, C. Chen, and J. Yang, "Cbm: A cooperative buffer management
for ssd," in Proc. of MSST'I4, 2014.
K. Ganesh, Y. Kim, M. Debnath, S. Park, and J. Lee, "LAWC: Opti-
mizing Write Cache using Layout-Aware 1/0 Scheduling for All Flash
Storage," IEEE Transactions on Computers (TC), vol. 66, pp. 1890-
1902, 2017.
X. Zhang, K. Liu, K. Davis, and S. Jiang, "iBridge: Improving Unaligned
Parallel File Access with Solid-State Drives," in Proc. of IPDPS'13,
2013.
M. Chiang, P. C. Lee, and R. Chang, "Using Data Clustering to
Improve Cleaning Performance for Flash Memory," Software: Practice
and Experience (SPE), vol. 29, no. 3, pp. 267-290, 1999.
J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, "A Space-Efficient
Flash Translation Layer for CompactFlash Systems," IEEE Transactions
on Consumer Electronics (TCE), vol. 48, no. 2, pp. 366-375, 2002.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:41:16 UTC from IEEE Xplore. Restrictions apply.

