Towards Cluster-wide Deduplication Based on Ceph

Jinpeng Wang'*, Yang Wang!, Hekang Wang'*,
Kejiang Ye', Chengzhong Xu'®, Shuibing He’, Lingfang Zeng!
tShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
YUniversity of Science and Technology of China
“University of Macau, China
®Zhejiang University, China
*Huazhong University of Science and Technology, China
yang.wangl @siat.ac.cn

Abstract—In this paper, we design an efficient deduplication
algorithm based on the distributed storage architecture of
Ceph. The algorithm uses on-line block-level data deduplication
technology to complete data slicing, which neither affects the
data storage process in Ceph nor alter other interfaces and
functions in Ceph. Without relying on any central node, the
algorithm maintains the characteristics of Ceph by design-
ing a special hash object to store the data fingerprint, and
uses the CRUSH algorithm to judge the data duplication
based on calculation, instead of global search. The algorithm
replaces the duplicate data with the deduplicated objects,
which storage their fingerprints with less storage space. We
compare the effects of different block sizes with respect to
the performance and deduplication rates through experimental
studies, and select the most appropriate block size in our
prototype implementation. The experimental results show that
the algorithm can not only effectively save the storage space
but also improve the bandwidth utilization when reading and
writing the duplicate data.

Keywords-deduplication; distributed storage system; Ceph

I. INTRODUCTION

Ceph [1] is an open source distributed storage system,
implementing object storage on a distributed computer clus-
ter, and providing interfaces for object-level, block-level and
file-level storage. By virtue of its stable operation mode,
Ceph is being used by more and more enterprise users,
and its decentralized control makes great contribute to its
excellent scalability. With the expansion of Ceph cluster as
well as the growth up of diverse data sets, there, as expected,
would be more and more duplicate data in the storage
cluster. Unfortunately, Ceph does not provide a solution
to duplicate data managements [2]. In order to solve this
problem, deduplication technology has been proposed [3].
However, traditional deduplication technologies often exploit
the features of stored data to maximize the deduplication
effects [4]-[6], ignoring the characteristics of the underlying
storage platform. For example, Chen et al. [4] introduced a
deduplication approach to duplicate images based on Haar
wavelet while Zeng et al. [5] propose an online framework
for VM image backup and recovery. In contrast to these
two studies focusing mostly on backup data, Meister et

al. [6] analyzed over one PB (1212 TB) of online file
system data, and presented the study on the potential of data
deduplication in HPC centers. All these methods, though
effective toward its own targeted data, lack the consideration
of the underlying platform features. To effectively solve
the problem of data duplication in the cluster, we argue
that the deduplication technique should not only leverage
the stored data nature but also take full advantage of the
platform features as the deduplication is a holistic system
and its effective implementation for the data availability is
highly platform-dependent. As such, given the complex data
processing-flow in Ceph, say its multi-layer data mapping
relationships, how to ensure the integrity of the data and
achieve efficient data accesses is one of the difficulties in
deduplication design for Ceph [7]. On the other hand, Ceph
guarantees the security of stored data by storing multiple
copies of data or using erasure code that require extra storage
space. Hence, the balance between the data security and
deduplication is also worth considering.

With these challenges in mind, we adopt FUSE tech-
nology [8], a most widely used user-space file system
framework, to design and implement deduplication algo-
rithm for Ceph in this paper. Although FUSE framework
is rather controversial in file system implementation due to
its performance overhead, it is still worthwhile to use this
technique to quickly prototype our deduplication technique
as a proof of concept. First, CephFS can be mount as a
FUSE in user space, ensuring that the client host has a
copy of the Ceph configuration file. As such, compared
with in-kernel approach, using FUSE dramatically simplifies
our development effort. Second, as more new features (e.g.,
zero-copying, writeback caching) are introduced to Ceph,
its performance has been substantially improved and even
comparable to that of in-kernel file systems when large,
sustained I/O is performed [9], [10], which entails FUSE to
be an adequate solution to the deduplication implementation
for Ceph.

In summary, we make the following contributions:

1) We design a deduplication algorithm for Ceph, which

fits to the architecture of Ceph distributed storage

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:56 UTC from IEEE Xplore. Restrictions apply.

system. The algorithm can complete the deduplication
in the process of storing data in Ceph without affecting
the object storage and block storage interface of Ceph.

2) We propose a concept of hash object, which is based
on the Ceph data object. By using the data structure
of the hash object, the algorithm could store the
fingerprint of data distributed in the cluster nodes
without relying on any central node.

3) By leveraging the core CRUSH (Controlled Replica-
tion Under Scalable Hashing) algorithm in Ceph, our
deduplication algorithm could judge duplicated data
by calculation instead of searching.

The remainder of this paper is organized as follows. We
describe the background knowledge regarding Ceph storage
in Section II. We propose the deduplication algorithm based
on Ceph in Section III, and present the experimental results
in Section IV, followed by reviewing some related work
in Section V for comparison study. Finally, we remark and
conclude the paper in the last section.

II. Ceph DISTRIBUTED STORAGE

Ceph is an open source distributed storage system, built
on top of commodity components, demanding reliability to
the software layer. A Ceph storage cluster consists of at
least a MON (Monitor), MDS (Metadata Server),! and a
OSD (Object Storage Daemon) as shown in Fig. 1 [1]. The
MON managements the lifecycle of OSDs and is responsible
for managing the authentication between the daemons and
the clients. The MDS stores the metadata on behalf of the
Ceph file system while the OSD stores the data, handles the
data replication, recovery, rebalancing, and provides some
monitoring information as well to the MON by checking
other OSDs based on heartbeats.

Ceph offers three ways to use: Ceph file system (CephFS),
Ceph block device and Ceph object gateway. The CephFS
is a POSIX-compliant file system that uses a Ceph storage
cluster to store its data. A block is a sequence of bytes
block. Device interfaces makes a virtual block device an
ideal candidate to interact with a mass data storage system
like Ceph. Ceph object gateway is an object storage interface
providing applications with a RESTful gateway to Ceph
storage clusters.

The Ceph storage file process is shown in Figure 1. When
Ceph stores a file, the client requests a unique file number
ino (inode) from the MDS at first, and then divides the file
into a sequence of fixed-size chunks, according to the object
size set by user. After that, the client encapsulates the divided
data into data objects managed by Ceph. The object name is
composed of ino and ono (object number). Then the object
is mapped to PG (Placement Group) through a hash calcu-
lation, here the PG is a logical layer between the object and
the OSD map. Finally, the client calculates which OSD the

'MDS is only needed by CephFS.

ino

(ino,onc)->oid

e OO0 OO0 ‘ood
[B i [O o

i hash(oid)&mask->pgid

crushlpgid)-> (0sd1,05d2,...0sdn)

Figure 1: CephFS file storage process

object should be stored through the CRUSH algorithm [11],
and store the object into the mapped OSD [12]. This write
process is repeated for each object until all objects of the
file are stored.

By following this description, one can derive how read
and other file operations are processed. More details can be
found in [1].

III. DEDUPLICATION ALGORITHM DESIGN
A. Overview

Our deduplication algorithm is designed to solve the data
duplication problem in the CephFS with consideration of its
features. As such it needs to fit the Ceph storage architecture
and have no impact on the interface of Ceph block device
and Ceph object gateway. Ceph nodes are equal without
central control, and the data fingerprint storage is one of
the focuses in the algorithm. As stated, when it stores files,
Ceph would divide the files into a sequence of fixed-size
data objects and store them in the cluster. Therefore, this
storage process is very friendly to the fixed-size chunking
scheme in traditional deduplication technology. We borrow
the idea from the data block level deduplication algorithm in
our design, which centers around a concept of hash object.
The structure of this object helps the algorithm accomplish
the fingerprint storage and redundancy detection.

B. Data Object Structure Design

There are three basic functions to be implemented: 1)
recording the fingerprint of stored data; 2) recording the
number of times the data is accessed; 3) restoring the
deduplicated data. In order to accomplish these functions,
the algorithm designs three types of objects that modifies
name and content and adds extended attributes of the Ceph
object. The object design is shown in Figure 2.

1) Ceph object: we add some extended attributes based
on the original object structure in Ceph: flag, reference
count. The flag is used to identify the object as the
original data object while the reference count is used
to record the number of accesses to the object, with
an initial value of zero.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:56 UTC from IEEE Xplore. Restrictions apply.

Name:oid Name:oid

Content:Ceph Object’s oid
Additional attributes:flag hash value
Dedup Object

Content:data

Additional attributes:flag,hash value
Ceph Object

Name:Ceph Object’'s Hash
Content:Ceph Object's oid

Additional attribute:reference count
Hash Object

Figure 2: Data object structure design

2) Hash object: The hash object is the key to the dedu-
plication algorithm, which is generated for each Ceph
object and used to record the hash value of the Ceph
object content. The hash object name is the hash value
of the content of the Ceph object, and its content is
the object name of the Ceph object. Since the CRUSH
algorithm can calculate the disk location of the object,
we use it to detect the redundant data. While writing
a new object, the hash value of the object content
is calculated. We only need to perform the CRUSH
algorithm on the hash value, and find if there is an
object named in the hash value exists in the obtained
disk location to finish the redundancy detection.

3) Deduplication object: if it is found that the current ob-
ject’s hash value already exists, then the current object
stores the data as redundant data. We thus replace the
content of the current Ceph object with the original
object’s oid that is duplicated to the object content,
and add the duplicate data object with an extended
attribute, flag, which is used to identify the current
object as a deduplication object. The deduplication
object and its hash object are only 205, which can
save a large storage space.

C. Storing procedure

The storing procedure of the deduplication algorithm
designed in this paper is shown in Figure 3. The storing
procedure proposed in this paper is similar to the original
one in Ceph. When obtaining the file to be stored, the client
requests a unique ino for the file from the MDS. Then, the
client divides the file into a sequence of fixed size data block,
according to the object size set by user. After that, the client
calculates the hash value of the current data block, and then
detects whether the current data block stores duplicate data
based on the hash value. The client creates a deduplicated
object or a Ceph object, according to the detection result.
The objects we created are compatible with the original data
structure of Ceph object. Ceph will store the deduplicated
object and its hash object as common Ceph objects in the
subsequent processing flow.

ino

(ino,ono)- >oid
hash(data)->oid

hash(oid)&mask- > pgid

crush(pgid)->(osd1,05d2....,0sdn)

Figure 3: File stored process with deduplication

D. File operations

This section introduces the specific process of the dedu-
plication algorithm with respect to file write, read and delete.
Note that all these operations are mainly designed for read-
only data, a commonplace in practice, and performed at the
CephFS client side. Update in place is a very complicated
operation in data deduplication, which is left as our future
study.

1) Writing files: The process of writing files is shown in
Figure 4, where four steps are followed:

« After reading the file information, the client divides the
file into a sequence of fixed size data blocks, according
to the file size and the pre-set block size, except for
the last data block, whose size is indeterministic. Then
the client encapsulates the data blocks into the Ceph
manageable data objects, called Ceph object.

o The client uses the SHA-1 algorithm to calculate the
hash value of each Ceph object content, then creates
an object, called hash object for each Ceph object. The
hash value is used as the hash object name, and the oid
of the original Ceph object is used as the hash object
content. The hash objects are also managed by Ceph.

o For each hash object, the client calculates its OSD
number by performing the CRUSH algorithm based
on the hash object name and the cluster state. The
calculated OSD is used to store the hash object. Then
the client tries to find if there is an object with the same
name. If not found, the content stored in the current
Ceph object is unique, then the following operations
will be performed:

— add an extended attribute “reference count” for the
hash object to record the access number of the
Ceph object, whose initial value is set to 1;

— add additional attributes “flag” and “hash value”
for the Ceph object, used to mark the current object
as a Ceph object and record the hash value of the
object content.

Otherwise, if there is an object that has the same
name, the the content stored in the current Ceph object
is redundant, then the following operations will be
performed:

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:56 UTC from IEEE Xplore. Restrictions apply.

@ Hash Calculate

[osps

Figure 4: File write process

— add a write lock to the hash object in the cluster,
increase the value of the reference count by 1 and
then release the write lock;

— replace the contents of the current Ceph object with
the content hash value, this Ceph object is called
a deduplicated object;

— add additional attributes “flag” and “hash value”
to the deduplicated object, which is used to mark
the current object as a deduplication object, and
record the hash value of the object content.

« For the object generated in Step3, calculating the OSD

number that the object should be stored based on the
object name, the cluster information, and the CRUSH
algorithm. Then the client directly communicates with
the corresponding OSD, and stores the object into the
OSD until all the files are divided and the divided
objects are stored.

| Client

(@ Chunking and Calculate 1
HEEEEE

@ Read Every Object 1 T @ Return Object

{ 0SDs

@ Get Object or Real Object

Figure 5: File read process

« When receiving a request to delete a file, the client

obtains the ino of the file from the MDS, according to
the user request, and calculates the oids of all the file
objects.

e The client calculates the numbers of OSDs where the

file objects are stored, and then sends a deletion request
to those OSDs, finally deletes the metadata of the file.

o After the MDS deletes the metadata of the file and the

OSD receives the deletion request, the OSD marks all
the objects to be deleted, and returns the deletion suc-
cess response to the client. The OSD will accomplish
the object deletion in due course.

o The OSD deletes the marked objects in due course.

2) Reading files: The process of reading files is shown in
Figure 5 where the specific processing steps are as follows:

Different operations are performed on the objects of
different types and states. Four operations determined

o After receiving the request for reading an file, the client by the extended attribute of objects are shown in

obtains the file’s ino from the metadata server MDS
according to the storage location of the file, and then
calculate the oid of all the objects that store all the file
contents.

For each object the client wants to read, the client
directly establishes a connection with the corresponding
OSD.

The OSD reads the extended attribute of the object. If
the extended attribute identifies that the current object
is the original object, the content of the object is read
directly and return to the client. Otherwise, the current
object is a duplicate object, and the content stored in
the duplicate object is read, which is the oid of the
original object. Then the content of the original object
is read and return to the client, according to its oid.
After reading all the object contents, the client concate-
nates the contents together into a file and returns it to

Figure 7:

1) The object is the original data object and its
reference count is 0: Find the location where the
hash object is stored, according to the hash value
of the current object, and delete the data object
after the deletion of the hash object,;

2) The object is the original data object and the
reference count is not 0: Add a write lock to the
hash object, and decrements the reference count
by 1 and then release the write lock.

3) The object is a duplicated object, and the cor-
responding original data object has a reference
count of 0: First, find and delete its hash ob-
Jject, according to the hash value stored in the
duplicated object. Then, find and delete the Ceph
object by its oid, which is the contents stored in
duplicated object, and delete the duplicated object

the user. eventually.
3) Deleting files: As with the write and read operations, 4) The object is a duplicated object and the original
the process of deleting files shown in Figure 6 is described data object reference count is not 0: First, find the
as follows: hash object, according to the hash value stored in

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:56 UTC from IEEE Xplore. Restrictions apply.

(@ Chunking and Calculate

(" Client

A 1A S

@ Finish Removal

@ Remove Objects l

0SDs ™\

@ Handle
Objects |
Later |

Figure 6: File read process

Casel:Remove Ceph object and reference count is 0

- Remove Ceph object
Remove hash object

Case2: Remove Ceph object and reference count is not 0

==y

Case3 : Remove dedup object and reference count is 0

===

Case4: Remove dedup object and reference count is not 0

’ Reference count @

minus one
Figure 7: Object deletion with four different states.

Reference count
minus one

Remove Ceph object
Remove hash object

Remove dedup object

Remove dedup object

the duplicated object, then add a write lock to
the hash object, and release the write lock after
decrementing the reference count by 1. Finally,
delete the deduplicated object.

IV. PERFORMANCE EVALUATION
A. Experimental environment

The network topology of the experimental environment is
shown in Figure 8. All nodes are with the same configuration
as shown in Table I. The Ceph storage cluster is built using
three nodes. In terms of role assignment, three nodes are
used as the MON, two nodes as the MDS, and four hard

[Clientl] [Client2]

a A

Network

y A

VL y A 4

Server 2 Server 3

o || e || o
s s || o s || o o

Figure 8: Test environment network topolog.

Server 1

Table I: Cluster node configuration

[Testbed [[Configuration
CPU E5-2630 v3
Memory 64GB
Network Bandwidth 10Gbps
Hard Disk Seagate ES.3: 4TB *4
Operating System Centos 7.2
Linux Kernel Version || 4.4.13
Ceph Version Jewel 10.2.0
Fuse Version 292

disks of three nodes as the OSDs. The other two nodes are
used as client nodes, and the network between the client
nodes and the Ceph cluster is 10 Gigabit network.

B. Experimental method

The client mounts the Ceph cluster to the local file system
through FUSE, and conducts the performance tests of file
reading and writing through the FIO test tool [13]. The
storage cluster adopts a dual-copy mode To ensure the data
security where two copies of the file are reserved each time
the file stored. We first use the Ceph native client to perform
file read and write tests, and then exploit the modified Ceph
client with the deduplication function for comparison.

The file in the experiments is a selected Linux im-
age file: Cent0S-7-x86_64-DVD-1511.1iso. When
enabling the original Ceph to write or read a file, the tests
are made in the experiments by using FIO based different IO
block sizes. In comparison, when writing or reading a file
by the deduplication client, the test file is repeatedly written
three times in different block sizes via FIO. The following
experiments demonstrate the bandwidth when reading and
writing files and the CPU utilization of the client nodes.

C. Experimental results and analysis

1) Storage usage: How the storage is used to access the
test file is shown in Figure 9 where the first bar in each
group represents the total storage in the cluster, including
the file data, replicas and the metadata, that is occupied by
the default client when different I/O data block sizes are

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:56 UTC from IEEE Xplore. Restrictions apply.

. 9000 8271 8271 8271

g 5000 8308 $334 8208 Fs276

2 7000

Z 6000

3 5000

2 4000

g

23000

%2000 2 1707

£ 67 684

£ 1000 HH 56 153

2 S S =
256k 512k M AM

DO Original client write file @Dedup client write file for the first time

B Dedup client write file for the second time O Dedup client write file for the third time

Figure 9: Storage usage while writing the same file multiple
times with different block sizes.

configured, while the other three bars in each group are
from the deduplication clients using different block sizes
for comparison. Specifically, the second bar represents the
storage used by the deduplicate client in the first time. The
results indicate the redundant data are quite rare and the
overhead incurred by the deduplication (say the hash object)
is marginal since the total used storage is only increased
slightly. The third and fourth bars represents two consecutive
writes of the file after the first time, in which the deduplicate
client deletes the redundant data so that the file takes up less
storage space. As we can see from the figure, the smaller
the block size, the larger the total cluster space occupied.
These results are easy to understand as the smaller objects
are divided, the more hash objects are generated, which will
take up more extra space. In particular, when the block size
is 256KB, it can on average save 79.7% of the cluster storage
space, while when the block size is increased to 4MB, it can
save up to 99.6% of the cluster storage space.

2) Bandwidth usage: The bandwidth results of the written
file is shown in Figure 10. The blue line is the bandwidth
change when the original client writes the file by defaults
with different I/O data block sizes while the other three
lines, similar to in storage experiment, are the results of
the deduplication client, which runs three times, each with
a different block size. It can be seen from the figure
that the bandwidth differences between the blue line and
the brown line are approximately a small constant, which
demonstrates the network overhead due to the deduplication
is small. Moreover, the yellow and grey lines represent the
duplication client writes, and their bandwidths are substan-
tially increased when the block sizes grow up from 1MB
to 8MB, demonstrating the effectiveness of the proposed
deduplication algorithm. These results are consistent to the
previous storage observations. The smaller the writes, the
more data objects are segmented. And thus, it takes more
time to calculate the hash value for each data object, spends
more time to transmit these small data objects to the cluster.
When the file is written in the second time (grey line), the
data in the current file are duplicate. The client will perform
the deduplication on the data, and not write the duplicated

180

é o 159.58 162.63
140
£ 10 14188 146.67
£ 100
54
& 80 70.45
= oo 5203 7222
& 4352 , - 156.
§ 40 331//0—/ 75242 5593 5645
2 20) = 3201
I 145 2285

256K 512K 1M 4M &M

=== Original client write file ¥ Dedup client write file for the first time

Dedup dlient write file for the second time Dedup client write file for the third time

Figure 10: Network bandwidth while writing the same file
multiple times with different block sizes.

=
o

152

12.85
14 ., 128 1238
12 1202 114 113
@ 06 129
<10 106 _ 111
g g ’ 917
S 6.17
D o6 6.04" f
5 . 32 38
3 *__—-."__*_\‘——_‘
5 23 34
0
256K 512K 1M 4M 8M

=4 Original client write file Dedup client write file for the first time

Dedup client write file for the second time Dedup client write file for the third time

Figure 11: CPU utilization while writing the same file
multiple times with different block sizes.

data, so the bandwidth is significantly improved.

3) CPU utilization: The CPU utilization in the writing
of the file is shown in Figure 11, where the blue line is the
change of the client CPU utilization made by the original
client, according to the different sizes of the I/O blocks while
the other three lines are the CPU utilization changes when
the client performs the file write three times with different
sizes based on the deduplication client. As can be seen from
the figure, the CPU utilization of the deduplication client
is higher than that of the original client since the client
need to calculate the fingerprint of the data block every time
the file is written. Moreover, when using the deduplication
client to write the file in the first time, the CPU utilization
gradually decreases as the block size increases. This is
because when the data block size is large, the same file can
be divided into a small number of data objects, and thus it
performs less hash calculations. Consequently, although the
amount of data is not changed, the number of calculations
is less, so the computing resources consumed by the client
nodes are decreased. When the duplicated files are written
mulitple times, there would be more data and hash objects
in the system. Therefore, it requires more calculations when
judging the data duplication.

4) Read performance: Now we evaluate the performance
of read operation with respect to the proposed deduplication.
The bandwidth results are shown in Figure 12. As with the
previous experiments, the blue line is the bandwidth change
when the original client is used to read the file based on

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:56 UTC from IEEE Xplore. Restrictions apply.

1200
1025.7 1044.6
1000
$33.79 971.478

779.532 814.788

File Reading Bandwidth (MB/S)

256K 512K 1M 4M 8M
=== Original client read file
Dedup dlient read duplicate file

Dedup dlient read non-duplicate file

Figure 12: Network bandwidth while reading the duplicate
or non-duplicate file.

different I/O block sizes. The brown and grey lines are the
bandwidth changes when the deduplication client reads the
test file and its deduplicated version in different block sizes,
respectively. For all these cases, one can observe that the
bandwidths are gradually increased as the block sizes grow
up from 256KB to 8MB, the performance of the original
client is the best among the three, and the deduplication
client is the worst.

These results are not difficult to understand. When the file
write is smaller, the bandwidth of the deduplicated client
reads the file is lower since when reading the file, each
data object needs to first read the extended attribute of the
object to determine what the current object is, and then to
read the original object again based on the hash value if
the current object is a deduplicated object, which leads to a
lower bandwidth. As the read size is increased to 4MB, the
performance is also improved. This is because the deletion
operation in the deduplication client only manipulates the
reference counter information in the hash object.

5) Deletion performance: We evaluated the deletion per-
formance by using the deduplication client to write the test
file three times in 4MB block size, and then measuring the
time and space used when one of them is deleted, and
other two are read back. Our experimental results show
the deletion cost is comparable to the case in the original
client, and the read performance is consistent with that in
our previous experiments.

V. RELATED WORK

The deduplication algorithm in general follows the same
workflow to reduce the redundant data in the storage, which
consists of chunking, hashing, indexing, and storage man-
agement. In this section, we briefly overview some related
work on the data deduplication techniques, especially its
design and implementation based on the underlying platform
features. A more thorough survey can be referred to [3].

The fixed-size chunking (FSC) is the simplest data par-
titioning method, whose advantage is simplicity and effi-
ciency. The boundaries of the data block containing the mod-

ified part and all subsequent data block would be affected
when deletion or insertion occurs in the file, which leads
to the follow-up data block is quite different with that all
of before. Thus, the FSC recognition rate of duplicate data
is significantly reduced. To solve the problem of boundary
transfer, content-defined chunking (CDC) was proposed by
Quinlan [14] and Muthitacharoen [15], which determine the
data block boundary dividing by calculating data fingerprint
in the window and matching them, while the sliding window
technology is used. The CDC can increase the rate of data
deduplication. But QuickSync [16] showed that calculation
of the synchronization of cloud storage cost is very high in
the data deduplication algorithm based on the CDC. In the
process of Ceph storing files, the Ceph client will package
the files with fixed size into objects, and then the objects are
stored in the corresponding OSD . In order to fit the Ceph
storage process and not affect the Ceph storage efficiency
too much, we choose the FSC technique.

The fingerprint technology simplifies the process of iden-
tifying the redundant data. In some early data compression
methods (such as LZ compression [17] and Xdelta [18]),
the weak hash keys and byte-by-byte comparison were used
to confirm data duplication. and the fingerprint matching
means that the data content may be the same. According to
the birthday paradox, the collision probability of the SHA-1
algorithm is less than 10~2° for the EB-level data set if SKB
block size is used. In the storage system, the probability
of a hardware error is 10712 ~ 10715, which is several
orders of magnitude higher than that of the data collision.
The SHA-1 has been used in LBFS, Venti [15] and DDFS
deduplication systems [14], [15], [19]. As with these studies,
the deduplication algorithm we designed also use the SHA-1
algorithm.

After the data fingerprint algorithm has been determined,
the storage mode of data fingerprint should be considered.
Venti [15] stored all the block fingerprints index in memory,
to quickly and completely identify duplicate data. However,
with the explosive growth of data volume, it is difficult
to store all the fingerprint index in memory, resulting in
frequent access to low-speed disk to query the fingerprint
index. Zhu et al. [19] first proposed and utilized the locality
of the backup stream in the DDFS system to improve the
performance of data deduplication and speed up fingerprint
searching. However, the index memory of this method is
still very expensive, costing almost 125GB memory for
1P B backup data. In recent years, some scholars proposed
a new architecture, Cache Deduplication [20], based on
the flash memory as the main storage, which separates the
data cache and the metadata cache for data deduplication.
The metadata cache includes a source address index and
a fingerprint storage, and the data cache is stored on the
flash device. The cache replacement algorithms for duplicate
data awareness (such as D-LRU, D-ARC) are proposed for
further optimization of the cache space.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:56 UTC from IEEE Xplore. Restrictions apply.

Myoungwon et al. [21] proposed a double hashing algo-
rithm to exploit the hashes used by the underlying scale-
out storage. A global deduplication framework for shared
nothing storage systems has been proposed, which is suitable
for the Ceph distributed file system [22]. However, these
two framework uses database to store data block fingerprint
centrally, which has a large cost in fingerprint computing and
storage. And there is a single node bottleneck problem for
the database node. We designed the data fingerprint object
based on the characteristics of Ceph, stored the fringerprints
of data blocks distributedly in the cluster without any single
node bottleneck.

VI. CONCLUSION

In this paper, we introduced an online deduplication
algorithm to Ceph distributed storage. The essence of this
algorithm is to achieve the deduplicated distributed storage
at block level, and the data block is indexed by means of a
hash object data structure, which is defined for fingerprint
storage and redundant data reduction. By using different
block sizes to read and write files, we compare the band-
width, storage space and CPU utilization with respects to
file reads and writes, and determine the optimal block size
for the deduplication. Our experimental results show that if
an appropriate block size is well selected, the use of the
deduplication can save up to 99.6% of the storage space,
and in the meanwhile, increasing the network bandwidth
for write operation more than 2 times, compared to the
original Ceph in absence of the deduplication. Currently, the
proposed deduplication only works for read-only data, fails
to update the stored data in place. In the future work, we
will address the update operation and apply the algorithm to
the Ceph object gateway interface to solve the problem of
data duplication in the object storage.

ACKNOWLEDGMENT

This work was supported in part by the Research Center
for Ecology and Environment of Central Asia, Chinese
Academy of Sciences, Shenzhen Basic Research Program
(JCYJ20170818153016513), and the CAS Light of West
China Program (2016-QNXZ-A-5).

REFERENCES

[1] A. Sage, A. Scott, L. Ethan, and D. E. Darrell, “Ceph: a
scalable, high- erformance distributed file system,” vol. n/a,
pp. 307-320, 2010.

[2] Z. Sun, J. Shen, and J. Yong, “Dedu: Building a deduplication
storage system over cloud computing,” in Proceedings of the
2011 15th International Conference on Computer Sy, lported
g’fgopggcsltive Work in Design (CSCWD). I%EE 2({) 1, pp.

[3] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua,
M. Fu, Y. Zhang, and Y. Zhou, “A comprehensive study of the
past, present, and future of data deduplication,” Proceedings
of the IEEE, vol. 104, no. 9, pp. 1681p—1710, Sep. 2016.

[4] M. Chen, Y. Wang, X. Zou, S. Wang, and G. Wu, “A
duplicate image deduplication approach via haar wavelet
technology,” in 2012 IEEE 2nd International Conference on
Cloud Computing and Intelligence Systems, vol. 02, Oct 2012,
pp. 624-628.

(3]

(6]

(71

(8]
(9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

L. Zeng, S. Xu, and Y. Wang, “VMBackup: An efficient
framework for online virtual machine image backup and
recovery,” Concurr. Comput. : Pract. Exper., vol. 28, no. 9,
pp. 2630-2643, Jun. 2016.

D. Meister, J. Kaiser, A. Brinkmann, T. Cortes, M. Kuhn,
and J. Kunkel, “A study on data deduplication in hpc storage
systems,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis. 1EEE Computer Society Press, 2012, p. 7.

A. Prahlad, M. S. Muller, R. Kottomtharayil, S. Kavuri,
P. Gokhale, and M. Vijayan, “Data object store and server for
a cloud storage environment, including data deduplication and
data management across multiple cloud storage sites,” 2012,
uS Patent 8,285,681.

“FUSE: Fileystem in Userspace,” 2017. [Online]. Available:
http://sourceforge.net/

A. Rajgarhia and A. Gehani, “Performance and extension of
user space file systems,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10, 2010, pp.
206-213.

B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To fuse
or not to fuse: Performance of user-space file systems,” in
Proceedings of the 15th Usenix Conference on File and
Storage Technologies, ser. FAST’17, 2017, pp. 59-72.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn,
“Crush: Controlled, scalable, decentralized placement of
replicated data,” in SC ’06: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, Nov 2006, pp.

M. Poat, J. Lauret, and W. Betts, “Posix and object distributed
storage systems performance comparison studies with real-life
scenarios in an experimental data taking context leveraging
openstack swift & ceph,” in Journal of Physics: Conference
Series, vol. 664, no. IOP Publishing, 2015, p. 042031.

“FIO Flexible 1/O tester,” 2019. [Online]. Available:
https://fio.readthedocs.io/en/latest/fio_doc.html

S. Quinlan and S. Dorward, “Venti: A new approach to
archival storage.” in FAST, vol. 2, 2002, pp. 89-101.

A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system,” in ACM SIGOPS Operating
Systems Review, vol. 35, no. 5. ACM, 2001, pp. 174-187.

Y. Cui, Z. Lai, X. Wang, and N. Dai, “Quicksync: Improving
synchronization efficiency for mobile cloud storage services,”
1EEE Transactions on Mobile Computing, vol. 16, no. 12, pp.
3513-3526, 2017.

J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transactions on information theory,
vol. 23, no. 3, pp. 337-343, 1977.

J. MacDonald, “File system support for delta compression,”
Ph.D. dissertation, Masters thesis. Department of Electrical
Engineering and Computer Science , 2000.

B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk
bottleneck in the data domain deduplication file system.” in
Fast, vol. 8, 2008, pp. 1-14.

A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and
S. Sengupta, “Primary data deduplicationtlarge scale study
and system design,” in Presented as part of the 2012 USENIX
E\éigzu%gechnical Conference (USENIX ATC’12), 2012, pp.

M. Oh, S. Park, J. Yoon, S. Kim, K.-w. Lee, S. Weil, H. Y.
Yeom, and M. Jung, “Design of global data deduplication for
a scale-out distributed storage system,” in 2018 IEEE 38th
International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018, pp. 1063-1073.

A. Khan, C.-G. Lee, P. Hamandawana, S. Park, and Y. Kim,
“A robust fault-tolerant and scalable cluster-wide dedupli-
cation for shared-nothing storage systems,” in 2018 IEEE
26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS). 1EEE, 2018, pp. 87-93.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:56 UTC from IEEE Xplore. Restrictions apply.

