
Timing Prediction for Dynamic Application
Migration on Multi-Core Embedded Systems

Zheng Li
School of Computer Sciences

Western Illinois University

Macomb, USA

Hao Wu
Department of Computer Science

Southern Connecticut State University

New Haven, USA

Shuibing He
School of Computing

Wuhan University

Wuhan, China

Abstract—To accommodate execution mode change and hard-
ware malfunction, dynamic system reconfiguration, which in-
vokes application migration across different processing cores,
needs to be supported on multi-core embedded systems. Different
application migration strategies will impact system’s timing
behaviors in different manners, it is important to select an
appropriate one such that the system’s timing performance
after the migration process is still acceptable. The focus of our
research is to predict the system’s timing change of possible
migration strategies and upon which to choose the optimal one.
Extensive experiments have been set up by running multiple
benchmarks and experimental results validate the effectiveness
of our proposed approach.

I. INTRODUCTION

Multi-processor system-on-chip (MPSoC) being widely

considered for embedded systems, such as automotive units

and avionics. To utilize the advance of tremendous computing

capacity and high degree of explicit parallelism of MPSoC,

mixed-criticality design with critical and non-critical appli-

cations integrated on shared hardware platform is deemed

to be the trend [1]. For safety and cost-efficiency purposes,

hardware resources are reserved for critical applications under

the worst case consideration, while non-critical applications

are designed to compete the available resources and run

simultaneously to provide best-effort service [2]. Though non-

critical applications are not safety-critical, their performance

degradation will impact system’s quality-of-service (QoS). In

traditional embedded system design, these applications are

statically mapped to processing cores and tremendous efforts

are spent on testing and verifying the possible use-cases in

order to achieve the desired system QoS.

However, embedded systems may work in hostile environ-

ment, if predefined use cases do not match the real-world

execution scenarios, the system may suffer performance degra-

dation. In addition to unprecedented execution scenario, hard-

ware malfunction is another challenge. In case of core wear-

out, the entire system may not function any more and hence

needs to be redesigned and reconfigured. If applications can

be dynamically migrated among different processing cores,

embedded systems will be able to reconfigured at run-time to

accommodate unprecedented execution scenario changes and

core malfunction.

However, different application migration strategies will

change affect the system’s timing behaviors in different man-

ners. If such timing changes can be foreseen, upon which

we can choose an appropriate migration strategy such that

the system performance after the migration process is still

acceptable. Application execution times are determined by

various factors and heavily influenced by scheduling policies.

As Operating systems based on the Linux kernel are widely

used in embedded systems, in this paper, we assume the

default scheduler in Linux kernel since 2.6.23 release, i.e. the

Completely Fair Scheduler (CFS) [3], is used to schedule non-

critical applications.

With the above discussion, we are to explore the predic-

tors and establish analytical models to dynamically predict

system’s timing changes incurred by an application migration

process on many-core embedded systems. Since critical ap-

plications run on dedicated resources and their services are

guaranteed, the focus of this paper is to predict the timing of

non-critical applications which simultaneously run on shared

multi-core processors scheduled by CFS.

The rest of the paper is organized as follows. We first

summarize the related work in Section II. An offline timing

prediction model is presented in Section III. To keep the

timing prediction mode always up-to-date at run-time, our

proposed online model update strategy is studied in Section IV.

Experimental settings and results are discussed in Section VI.

Finally we conclude our work in Section VII.

II. RELATED WORK

Multiple applications may be active simultaneously on

multi-core processors, to achieve system performance op-

timization, Benini [4] proposed a semi-static approach to

compute and store the applications allocation and schedul-

ing solutions for all possible use-cases offline. In order to

dynamically determine the application migration, the related

timing prediction techniques need to be studied first. There

were some existing work regarding to applying learning-based

prediction techniques to estimate a processor’s performance.

Joesph [5] applied regression-based approaches for perfor-

mance prediction. To predict a workload on another hardware

platform with different underlying architecture, Zheng [6] re-

cently developed an offline cross-platform prediction approach

under the assumption that application’s performance lied in a

linear relationship with the predictors. However, the prediction

performance may suffer if such assumption was not invalid.

159

2018 4th IEEE International Conference on Big Data Security on Cloud

978-1-5386-4399-0/18/$31.00 ©2018 IEEE
DOI 10.1109/BDS/HPSC/IDS18.2018.00044

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:43:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Performance Counters

ID Counter ID Counter
1 CPU-cycles 8 LLC-store-misses
2 Instructions 9 Page-faults
3 Cache-references 10 Context-switches
4 Cache-misses 11 Branch-instructions
5 LLC-loads 12 Branch-misses
6 LLC-load-misses 13 Stalled-cycles-frontend
7 LLC-stores 14 Stalled-cycles-backends

To explore the potential non-linear relation between the

target variable and its predictors, kernel-based regression

methods are commonly utilized [7], [8]. In this paper, we

will study how to apply kernel based regression techniques

to accurately predict timing behavior changes invoked by an

application migration on many-core embedded systems.

III. OFFLINE TIMING PREDICTION MODEL TRAINING

Consider an application migration scenario on a multi-core

system with app1 is being migrated from core i to core j,

not only the timing behavior of migrated application app1

(Mapp) will be significantly altered, execution times of all

the applications on destination core j (abbreviated as Dapp)

will inevitably be extended. In the following discussion, we

first focus on predicting the timing change of Mapp, and then

extend the discussion to Dapps.

Our proposed model-based timing prediction strategy con-

sists of two phases: offline model training and online model

update. The offline stage is to train an initial prediction model

during the system design stage; after the system is actually

in service, online update stage is to dynamically tune the

prediction model to keep it up-to-date. In the following, we

first present our proposed offline model training in details.

A. Training Data Profiling

A model-based prediction strategy is to discover the relation

between the outcome variable and predictors by learning from

collected data instances. Therefore, the foremost step is to

investigate potential predictors which may impact Mapp’s

execution time and trace the related data to be used for model

training.

A few simple facts reveal that an application’s execution

time is determined by various factors. For example, if mul-

tiple applications scheduled by CFS on the same processing

unit, each execution time will be extended. Things can be

more complicated on multi-core systems. As cores may have

dedicated processing elements and caches but share the main

memory, memory-access interferences from other cores will

also impact application’s timing behaviors as well. These

observations imply that, in order to accurately predict an

application’ execution time, the status of both the target

application and the deployed hardware platform need to be

taken into consideration.

As we know, performance counters listed in Table I are

implemented in computer systems, which can be profiled

to track the performance of a system as well as deployed

TABLE II: Application Performance Indicator

ID Counter ID Counter
1 CPU-cycles-app 14 Stalled-cycles-backends-app
2 Instructions-app 15 CPU-cycles-core
3 Cache-references-app 16 Instructions-core
4 Cache-misses-app 17 Cache-references-core
5 LLC-loads-app 18 Cache-misses-core
6 LLC-load-misses-app 19 LLC-loads-core
7 LLC-stores-app 20 LLC-load-misses-core
8 LLC-store-misses-app 21 LLC-stores-app-core
9 Page-faults-app 22 LLC-store-misses-core
10 Context-switches-app 23 Page-faults-core
11 Branch-instructions-app 24 Context-switches-core
12 Branch-misses-app 25 Cache-misses-other-cores
13 Stalled-cycles-frontend-app 26 App-execution-time

applications1 [9]. The counters measured at system level

provide information as to how well the system is performing;

while application level counters reveal the performance of

the target application2. For instance, the cache-references of

an application indicates the number of cache references only

invoked by this application; while the cache-references counter

measured for a processing core indicates total cache references

invoked by all the applications deployed on this core. As

an application’s execution time is determined by both the

application itself and how much resource to be provided by

the system, we trace performance counters for both the target

application and its processing core.

Table II lists the counters we have identified to quantify the

performance of an application running on a specific platform.

Among which, 1 - 14 are the counters of the target application.

As the application’s counters depend on its deployed platform,

the counters of its processing core (i.e. 15 - 24) are also traced.

To take the inter-core memory interferences into consideration,

the cache-miss rates of other processing cores are also profiled

as an indicator (i.e. 25). Our objective is to predict an applica-

tion’s execution time after future migration process, the current

execution time should also be a very informative predictor

to be traced (i.e. 26). For an Mapp, its execution time after

migration will also be determined by how much resource the

destination core can provide, therefore, performance counters

(ID 1- 10 listed in Table I) of the destination core are also

profiled as part of the predictors for Mapp.

Model based prediction approach is to discover the relation

between the outcome variable and predictors by training traced

data. Therefore, the traced data instances should be collected

as input-output data pairs (xi, yi), where xi and yi are the

observations for predictors and outcome variable, respectively.

As we discussed above, xi collected for Mapp consists of

its performance indicators on source core (i.e. counters in

Table II) and performance counters of the destination core,

while yi is the observation of the Mapp’s execution time after

the migration. Such xi and yi can be collected offline by

1To save the space, explanation of each counter is not included in this
paper, which can be found in [9].

2Performance counters with ID 11-14 in Table I are application specific
and will not be traced at system level.

160

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:43:14 UTC from IEEE Xplore. Restrictions apply.

conducting extensive testing of application deployment and

migration on the system before it is actually in service.

With the collected data instances (xi, yi), our next step is to

establish an analytical model to predict the Mapp’s execution

time after migration.

B. Offline Timing Prediction Model Training

Mathematically, modeling the relationship between an out-

come variable and its predictors belongs to regression problem.

Assuming the Mapp’s execution time lies in the linear relation

with its predictors, for an observation of the predictors x∗, the

corresponding execution time can be estimated using linear

regression technique [7], i.e.:

f(x∗) =
D∑

m=1

x∗(m)w(m) = xT
∗w (1)

where x∗ = [x∗(1), x∗(2), ..., x∗(D)], and w =
[w(1), w(2), ..., w(D)] is a coefficient vector to be determined

by training the collected observations.

Suppose the training data set consists of N collected data

pairs (x1, y1), (x2, y2), ..., (xN , yN), the coefficient vector w
can be obtained by minimizing the regression cost:

‖y −Xw‖2 + λ‖w‖2 (2)

where y is a vector with y = [y1, y2, ..., yN]T , X is matrix

with X = [xT
1 ,x

T
2 , ...,x

T
N], ‖w‖ indicates the L2-norm of

vector w, and λ is a regularization constant which imposes

smoothness of coefficients [10].

However, linear model assumption is too restrictive and

timing prediction performance may suffer. To explore the

potential nonlinear models, kernel based regression techniques

are commonly used and the key idea is to map the traced

predictors to a high-dimensional space with the expectation

that a non-linear relation between the predictors and the

outcome variable can be well formulated [10].

There exist different kernel functions, but Gaussian kernel

κ(xi,xj) = exp(−γ‖xi − xj‖2) (3)

which implies infinite dimension mapping, is widely used

in regression analysis [11]. Among which, γ is a problem-

specific parameter to indicate the covariance of Gaussian

kernel, i.e. how far of a single training data can influence

its surroundings [12].

With the kernel-based technique, given the training data set

as pairs (xi,yi), the unknown output corresponding to a new

observation x∗ can be estimated as [13]:

f(x∗) = k∗Tα (4)

where k∗ ∈ RN×1 and k∗(i) = κ(x∗,xi) and vector α ∈
RN×1 are the coefficients yet to be determined.

By training the collected data instances, the optimal α can

be obtained as [10]:

α = (K+ λI)−1y (5)

where I indicates an identity matrix, K ∈ RN×N is called the

kernel matrix with Ki,j = κ(xi,xj).
Solving formula (5) involves inverse of an N ×N matrix,

which is of O(N3) computation complexity and N is usually

large. To avoid the heavy computational matrix inversion,

recursive kernel-based regression method is often adopted

instead [13]. Rather than directly re-calculating (K + λI)−1,

recursive kernel-based regression method recursively updates

(K+ λI)−1 by training only one observations at a time.

Denoting Kn as the n-th iteration of K + λI, the general

idea of recursive regression method is to obtain K−1
n from

previous calculated K−1
n−1 with minimal extra effort. Recursive

regression method trains one data instance at a time and the

nth iteration is to train xn, according to the definition of Kn,

we have [13]:

Kn =

[
Kn−1 b
bT d

]

where b = {κ(xn,x1), κ(xn,x2), ..., κ(xn,xn−1)}T , d =
κ(xn,xn) + λ.

Following algebra theory, K−1
n can be calculated as [13]:

K−1
n =

[
K−1

n−1 + geeT −ge
−geT g

]
(6)

where e = K−1
n−1b and g = 1/(d− bT e).

By applying formula (6) recursively on collected data in-

stances x1, x2, ..., xN one at a time, the finally obtained K−1
N

will be plugged in to formula (5) to get the α, which is used

in formula (4) for timing prediction.

The above recursive regression method can be adopted to

establish an initial prediction model by training the offline

traced data instances. However, after the embedded system

is in service, it may experience unprecedented environment

change and hence new observations should be continuously

collected and trained to keep the timing prediction model up-

to-date. However, embedded systems have limited hardware

resources, in the next section, we are to present our online

model update strategy under storage and computing constrains.

IV. ONLINE TIMING PREIDCTION MODEL UPDATE

The initial prediction model and training data instances

obtained during the offline stage are saved in the storage

first. As embedded applications are usually periodic, after the

system is in service, the new training data instances will be

traced periodically to update the model at run-time. However,

an embedded system’s storage is limited, eventually, some

training data instances must be removed before accepting

new observations. However, removing different training data

instances may impact the timing prediction performance in a

different manner.

Formula (4) is to predict the execution time, which can

also be viewed as a linear combination of κ(x∗,xi) and α(i).
Larger α(i) indicates more contribution of the observed data

instance xi to the timing prediction. Therefore, a straightfor-

ward approach is to remove the data instance associated with

minimal weight, i.e. the one with smallest absolute value of

161

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:43:14 UTC from IEEE Xplore. Restrictions apply.

α(i) [8]. To further reduce the approximation error introduced

by the data removal, the adjusted minimal weight strategy is

also proposed in [8], which is to remove the one with smallest

value of αi/[(K
−1
n)]ii, where [(K−1

n)]ii is the ith diagonal

element of K−1
n .

As illustrated in Fig. 1, after the storage limit M is reached,

either minimal weight or adjusted minimal weight strategy

will have to take the following two steps for each incoming

data instance: first, calculate K−1
n and α to determine which

data pair to be removed; second, remove the selected data

pair from the training set and recalculate the corresponding

matrix K′−1
n in order to use recursive regression method,

i.e. formula (6) to train the next incoming data. We use a

fast calculation algorithm presented in [11] to calculate K′−1
n

based on K−1
n . The time complexity of this calculation is

of O(M2). Following the procedure in Fig. 1, training each

incoming data instance with O(M2) time cost can keep the

prediction model always up-to-date.

As we mentioned, embedded systems have limited re-

sources and we should also minimize the computation over-

head to the utmost. Suppose new data pairs come in order

as {(x′1, y′1), (x′2, y′2), (x′3, y′3), ..., (x′N , y′N)}, following the

above data pruning procedure, it is possible that (x′1, y
′
1) is

first trained and added in the training data set but immediately

replaced by (x′2, y
′
2), and then replaced by (x′3, y

′
3) and so on,

until (x′N , y
′
N). If such case happens, the first N − 1 data

instances are trained first but then removed immediately from

the training data set, therefore, the computing effort spent

on these short lived data instances is wasted as it does not

contribute to the model update at all.

To save the computation cost for these short lived data

instances, our delayed model update approach is proposed.

Instead of directly updating the model for each incoming data

instance, we save these data instances to a replacement map

first and delay the model update process until the map size

reach a predefined limit. In a replacement map, the key is the

index of the to-be-removed data instance in the training set

and the value is the new observation to be added in.

The objective of using replacement map is to filter out short

lived data instances before model update and hence avoid

unnecessary computation overhead. The remaining question is,

how to update such replacement map and filter out the incom-

ing short lived data instances. Obviously, the above mentioned

minimal weight and adjusted minimal weight approaches can

be adopted, but with tremendous computation overhead. In

following, we present a fast map update strategy instead.

As we know, the data instance selected for removal is ex-

pected to cause least effect on model training. Since redundant

data is usually least informative and hence it should be the

optimal candidate. Recapping the definition of Gaussian kernel

function given in formula (3), a larger value of κ(xi,xj)
indicates xi and xj are more similar to each other, i.e. more

redundancy between xi and xj .

To quantify how much a data instance xi can be represented

by the rest in the training data set, we define a new metric θ(i)

as follows:

θ(i) = max
j∈{1,...,M}∧j �=i

κ(xi,xj) +

∑
j∈{1,...,M}∧j �=i

κ(xi,xj)

M − 1
(7)

The first term of the right hand side indicates the maximum

similarity of xi with a single instance and the second term

indicates the average similarity of xi with the other training

instances. The data instance with the largest θ(i) is the least

informative and hence will be replaced by the incoming one.

To simplify the representation, we introduce a new notation

x̃i, which indicates the valid training data instance at index i.
Suppose the replacement map is denoted as Ω and the key list

is key(Ω), if i ∈ key(Ω), x̃i is the new data instance with

key value as i in the replacement map; if i /∈ key(Ω), x̃i is

ith data instance in the training data set, i.e. xi.

With the above notations, our proposed maximum redun-

dancy based map update strategy for each incoming data

(x′∗, y
′
∗) is illustrated in Algorithm 1. Among which, we first

find the indexes of all the data instances (ψ) having the

maximum redundant value (line 1). If any k ∈ ψ is already

set as a key in the replacement map, the corresponding value

Ω(k) will be a short lived data instance and should be replaced

by (x′∗, y
′
∗) (line 2); otherwise, add a new mapping entry to

store (x′∗, y
′
∗) in the replacement map (line 6). Lines 8 - 11

are to update the array θ, which will be used as the input of

the algorithm to process next incoming data instance.

ALGORITHM 1: Max R Map Update(Ω,S,θ, (x′∗, y
′
∗))

1 find ψ = {i|argmaxi∈{1,...,M}θ(i)};
2 if ∃k ∈ ψ ∧ key(Ω) then
3 update Ω(k) = (x′∗, y

′
∗);

4 end
5 else
6 randomly select a k ∈ ψ and set Ω(k) = (x′∗, y

′
∗);

7 end
8 Update θ(k) using formula (7);

9 for i ∈ {1...M} ∧ i �= k do
10 update θ(i) using formula (7);

11 end
12 return {Ω, θ}.

Though updating the replacement map may take O(M)
computation cost, short lived data instances will be removed

from the map (line 2) before actually joining the training data

set, which could save O(M2) time cost.

When the replacement map reaches predefined limit, we

first remove all the data instances indexed by key(Ω) from

training data set. After that, recursive regression method can

be used to update the model by training the new instances

stored as value in the replacement map Ω.

V. DISCUSSION

Our proposed timing prediction strategy can also be applied

to predict the execution times of Dapp, but with different

162

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:43:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Data Pruning Procedure

predictors traced in the training data instances. The predictors

for Mapp have been explained in Section III. To predict the

execution time of Dapp, the performance indicators of both

the Mapp and targeted Dapp are traced as the training data.

VI. EVALUATION

In this section, we evaluate our proposed strategy to predict

application execution times.

A. Experimental Settings

Our testbed is configured with four Intel processing cores

with 3MB cache each, 6 GB shared main memory and 500

GB solid state drive. The applications deployed on the testbed

come from three commercially representative benchmark

suites: MiBench [14], MediaBench [15] and SD-VBS [16].

The MiBench consists of selected applications representing six

specific areas of embedded market: Automotive and Industrial

Control, Consumer Devices, Office Automation, Networking,

Security, and Telecommunications; MediaBench contains 19

applications selected from image processing, communications

and digital signal processing; SD-VBS is a suite of diverse

vision applications, which includes 9 applications and each

has 3 different configurations and 5 distinct input testing data

sets. Ubuntu operating system with the 3.13 kernel version

is installed on the testbed and deployed applications are

scheduled by CFS scheduler.

The training data instances for Mapp can be traced through

the following steps:

1) Randomly select some of the above applications and

deploy them on different cores, keep all of them running

periodically on the deployed cores;

2) Randomly choose one application as the Mapp and a

processing core other than the deployed one as the

destination, trace the counters listed in Table II of the

Mapp and the ones in Table I of the destination for one

period as a xi;

3) Migrate the Mapp to the selected destination and then

trace its execution time as a yi.

The counters and execution times are traced using PERF [9],

which is a performance analyzing tool in linux. By repeating

the above steps and varying the input workload of selected

applications, about 300 different data instances are collected.

A training set is used to discover the prediction model,

which is to predict unseen data. Training data pairs have been

learned and hence can not be claimed as unseen, to evaluate

the performance of obtained prediction models, we have to

use data instances not included in the training data sets. In

addition, two hyper-parameters γ (in formula (3)) and λ (in

formula 2) are problem specific, which need to be chosen

by extensive experimental search. Therefore, we partition the

collected data set into three sub sets: training data set (Dr),

verification data set (Dv) and test data set (Dt). Among which,

Dr, composed of 80% of the collected data, is used for model

training; Dv , 10% of the data set, is utilized to iteratively

search the optimal γ and λ; and Dt, the remaining 10% of

the data set, is for performance evaluation.

B. Offline Timing Prediction Performance Evaluation

To quantify the prediction accuracy, the following metric is

to measure the prediction error:

Err =
|Traced-Exe-Time - Predicted-Exe-Time|

Traced-Exe-Time

In order to give an overall statistics of our prediction,

we calculate the cumulative distribution function (CDF) of

prediction error on the entire test data set Dt as follows:

CDFErr(x) = P (Err < x)

where CDFErr(x) represents the cumulative probability that

the prediction error less than or equal to x.

The timing prediction model is trained and CDF of the cor-

responding prediction error is illustrated in Fig. 2a. According

to Fig. 2a, we can see that over 60% of tested Mapps have

prediction error less than 0.2, 90% of which are less than 0.45.

C. Online Timing Prediction Performance

To evaluate the performance of our proposed online mod-

eling strategy, we assume the collected data instances arrive

sequentially. In addition, the storage limit and replacement

map size are set to 100 and 20, respectively. Therefore, the first

100 data instances will be trained one by one using recursive

regression method. The subsequent ones will be filtered by the

replacement map first and then trained recursively once the

map is full. As we mentioned, the replacement map can be

updated by three algorithms, i.e. minimal weight (m-wt) [8],

adjusted minimal weight (adj-m-wt) [8] and maximum redun-

dancy based algorithm implemented in Algorithm 1 (max-r).

In our experiments, all these three algorithms are implemented

for performance comparison.

We first train the model to predict the execution time of

Mapp and calculate the training cost formula (2) on data set

Dr. As illustrated in Fig. 2b, the overall trend of training cost

keeps decreasing by processing more observations. Different

algorithms will be applied to update the replacement map after

the storage limit is reached, therefore, only after 100 iterations

the three lines exhibit differently, but within a very small

range. After training all the data instances in Dr, the prediction

163

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:43:14 UTC from IEEE Xplore. Restrictions apply.

(a) Offline Test CDF (b) Online Convergence of Cost (c) Online Test CDF

Fig. 2: Experimental Results

error of obtained models on test data set Dt is depicted in

Fig. 2c, from which we can see that the our proposed max-r

approach has very close prediction performance with max-wt

and max-adj-wt algorithms. From Fig. 2b and Fig. 2c, we can

conclude that, although max-r based algorithm has much lower

computation cost, it still can achieve similar timing prediction

performance with the other two compared approaches. It is

worth pointing out that we also conducted experiments to

validate the performance of our proposed strategy to predict

the execution times of Dapp, however, the results are not

presented due to page limitation.

VII. CONCLUSION

In this paper, we studied kernel regression based prediction

approach to predict the system’s timing change incurred by

a given application migration process. We first investigated

potential predictors and then proposed a two-stage approach

to set up timing prediction models. The offline stage was used

to train the initial model and online stage was to dynamically

update the model to keep it up-to-date.

The experiments were conducted on Intel CPU and our next

step is to extend the evaluation to AMD and ARM processors

equipped with more processing cores. In addition, further

improvement of our proposed regression strategies to achieve

timing prediction accuracy and less computation complexity

will also be part of the future work.

REFERENCES

[1] A. Burns and R. I. Davis, “Mixed criticality systems: A review,”
Department of Computer Science, University of York, East Lansing,
Michigan, Tech. Rep. MCC-1(b), February 2013.

[2] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and
D. M. Johnson, “Rtos support for multicore mixed-criticality systems,” in
2012 IEEE 18th Real Time and Embedded Technology and Applications
Symposium, April 2012, pp. 197–208.

[3] C. S. Wong, I. Tan, R. D. Kumari, and F. Wey, “Towards achieving
fairness in the linux scheduler,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5,
pp. 34–43, Jul. 2008.

[4] D. B. L. Benini and M. Milano, “Resource management policy handling
multiple use-cases in mpsoc platforms using constraint programming,”
in ICLP, March 2008, pp. 470–484.

[5] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictive per-
formance model for superscalar processors,” in Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2006, pp. 161–170.

[6] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer, “Learning-
based analytical cross-platform performance prediction,” in Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
2015 International Conference on. IEEE, 2015, pp. 52–59.

[7] E. Alpaydin, Introduction to Machine Learning. [Sl]. The MIT Press,
2010.

[8] B. J. de Kruif and T. J. A. de Vries, “Pruning error minimization in
least squares support vector machines,” IEEE Transactions on Neural
Networks, vol. 14, no. 3, pp. 696–702, May 2003.

[9] A. C. de Melo, “The new linuxperftools,” in Slides from Linux Kongress,
vol. 18, 2010.

[10] S. Van Vaerenbergh and I. Santamarı́a, Online Regression with Kernels.
New York: Chapman and Hall/CRC, 2014, no. Machine Learning &
Pattern Recognition Series, ch. 21, pp. 477–501.

[11] S. Van Vaerenbergh, I. Santamarı́a, W. Liu, and J. C. Prı́ncipe, “Fixed-
budget kernel recursive least-squares,” in Acoustics Speech and Signal
Processing (ICASSP), 2010 IEEE International Conference on. IEEE,
2010, pp. 1882–1885.

[12] A. Müller and S. Guido, Introduction to Machine Learning with Python:
A Guide for Data Scientists. O’Reilly Media, 2016.

[13] S. V. Vaerenbergh, J. Via, and I. Santamaria, “A sliding-window kernel
rls algorithm and its application to nonlinear channel identification,” in
2006 IEEE International Conference on Acoustics Speech and Signal
Processing Proceedings, vol. 5, May 2006, pp. V–V.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3–14.

[15] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: A
tool for evaluating and synthesizing multimedia and communicatons
systems,” in Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, ser. MICRO 30. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 330–335.

[16] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “Sd-vbs: The san diego vision benchmark
suite,” in 2009 IEEE International Symposium on Workload Character-

ization (IISWC), Oct 2009, pp. 55–64.

164

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:43:14 UTC from IEEE Xplore. Restrictions apply.

