
Sova: A Software-Defined Autonomic
Framework for Virtual Network Allocations

Zhiyong Ye, Yang Wang , Shuibing He , Chengzhong Xu, Fellow, IEEE, and

Xian-He Sun , Fellow, IEEE

Abstract—With the rise of network virtualization, the workloads deployed on data center are dramatically changed to support diverse

service-oriented applications, which are in general characterized by the time-bounded service response that in turn puts great burden

on the data-center networks. Although there have been numerous techniques proposed to optimize the virtual network allocation in

data center, the research on coordinating them in a flexible and effective way to autonomically adapt to the workloads for service time

reduction is few and far between. To address these issues, in this article we propose Sova, an autonomic framework that can combine

the virtual dynamic SR-IOV (DSR-IOV) and the virtual machine live migration (VLM) for virtual network allocations in data centers.

DSR-IOV is a SR-IOV-based virtual network allocation technology, but its operation scope is very limited to a single physical machine,

which could lead to the local hotspot issue in the course of computation and communication, likely increasing the service response

time. In contrast, VLM is an often-used virtualization technique to optimize global network traffic via VM migration. Sova exploits the

software-defined approach to combine these two technologies with reducing the service response time as a goal. To realize the

autonomic coordination, the architecture of Sova is designed based on the MAPE-K loop in autonomic computing. With this design,

Sova can adaptively optimize the network allocation between different services by coordinating DSR-IOV and VLM in autonomic way,

depending on the resource usages of physical servers and the network characteristics of VMs. To this end, Sova needs to monitor the

network traffic as well as the workload characteristics in the cluster, whereby the network properties are derived on the fly to direct the

coordination between these two technologies. Our experiments show that Sova can exploit the advantages of both techniques to match

and even beat the better performance of each individual technology by adapting to the VM workload changes.

Index Terms—Virtual machine migration, dynamic SR-IOV, software-defined approach, autonomic computing, MAPE-K loop, network

allocation

Ç

1 INTRODUCTION

AS NUMEROUS applications are beingmigrated to the cloud,
the workloads in data centers tend to exhibit more

diverse characteristics in terms of execution behavior and
resource usage. Among these workloads, particularly rele-
vant is those supporting service-oriented applications, say
search service, game service, etc, which are typically featured
by the time-bounded service response that in turn puts great
burden on the data-center networks. Although it has been
greatly studied in recent years, the network allocation for
service time reduction in data centers is still hard to fulfill the
ever-increasing requirements on it, especially when these

time-bounded services are becoming data-driven andwidely
deployed to service people’s daily life.

To address this issue, many studies have been conducted
to optimize the network allocations for improving the quality
of service (QoS) in data centers [1], [2]. Some typical results
are those characterized by the virtualization technology for
flexible and cost-effective resource usages, each with its own
advantages and disadvantages [3], [4], [5]. For example,
Dynamic SR-IOV (DSR-IOV) [5] achieves the network perfor-
mance by carefully sharing network bandwidths among the
VMs via para-virtual Network Interface Card (vNIC) and SR-
IOV virtual functions (VFs) [2], [6]. DSR-IOV can adaptively
switch between the vNIC and the SR-IOVVFs for each virtual
machine (VM), according to its workload characteristics at
runtime, allowing the I/O-intensive VMs to have more net-
work resources. As a result, it is particularly amenable to
those I/O-intensive VMworkloads to optimize their response
time by reducing the network latency. Although its merits are
compelling, DSR-IOV is only a local optimization technique,
limiting its application scope to single physical server, and
thus, incapable of re-engineering the network traffic to miti-
gate the hotspot issue across the cluster.1

Another example is VM live migration (VLM), which is
also a well-studied technique to improve the performance

� Zhiyong Ye and Yang Wang are with the Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
E-mail: {zy.ye, yang.wang1}@siat.ac.cn.

� Shuibing He is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou, Zhejiang 310027, China.
E-mail: heshuibing@zju.edu.cn.

� Chengzhong Xu is with the State Key Laboratory of IoT for Smart City,
Faculty of Science and Technology, University of Macau, Macau 999078,
China. E-mail: czxu@um.edu.mo.

� Xian-He Sun is with the Department of Computer Science, Illinois
Institute of Technology, Chicago, IL 60616. E-mail: sun@iit.edu.

Manuscript received 25 June 2019; revised 21 July 2020; accepted 21 July 2020.
Date of publication 28 July 2020; date of current version 10 Aug. 2020.
(Corresponding author: Yang Wang.)
Recommended for acceptance by R. Tolosana.
Digital Object Identifier no. 10.1109/TPDS.2020.3012146

1. Informally, a hotspot is occurred if the aggregate CPU or network
utilization on the physical server exceeds a set threshold.

116 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0001-9438-6060
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-7075-4153
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
https://orcid.org/0000-0002-1093-0792
mailto:zy.ye@siat.ac.cn
mailto:yang.wang1@siat.ac.cn
mailto:heshuibing@zju.edu.cn
mailto:czxu@um.edu.mo
mailto:sun@iit.edu

of virtual network [4], [7] by moving a running VM between
different physical machines without disconnecting the cli-
ents. With the VLM, the network traffic in virtualized data
center can be well engineered to remove the hotspots
through carefully remapping or re-shuffling the running
VMs to a cluster of physical machines [7], which in turn
improves the QoS of the VMs in terms of response time.
However, VLM is a fairly expensive operation as it always
incurs bulk-data transfer, and much worse, service disrup-
tion. On the other hand, as a global optimization technique,
VLM lacks the fine tuning ability to provide the network-
intensive VMs with more local network resources.

Although the values of the proposed techniques, like
DSR-IOV and VLM, have been well evaluated, the research
on coordinating them in a flexible and effective way to auto-
nomically adapt to the workloads for service time reduction
is still few and far between in current literature.

Given the diversity of services encapsulated into differ-
ent VMs, the workloads of VMs tend to be dynamically
changed and would be severely interfered with each other
as well [8], [9], rendering the hotspots easy to occur in the
cluster. On the other hand, the network traffic between the
VMs is mixed with control messages and data messages,
both are highly varied and desired to have different trans-
ferring requirements as time goes by [10], leading to the net-
work optimization hard to make for QoS improvements. As
a result, no single technique, neither DSR-IOV nor VLM
alone, is likely to fit all cases of the network performance to
improve the QoS of the VMs, and thus combining them is a
viable way to exert each own strength for various network
problems. However, the combination is challenging as these
two techniques are orthogonal, which needs to recognize
different access scenarios, locally and globally, to coordinate
them in an effective way that can bring to bear on each one.

To address these issues, we propose Sova, an autonomic
framework for virtual network performance in data centers,
which orchestrates DSR-IOV and VLM in an autonomic way
to improve the quality of VM services in different scenarios.
With Sova, one can reduce the service response time not only
by optimizing the network allocations locally but also by get-
ting rid of the hotspot issue across the cluster. As such, it is
particularly beneficial to the virtual services such as the
three-tier applications deployed in the same cluster of physi-
cal machineswhere the fine grained communications between
VMs are frequently involved and the computational loads
are relatively heavywhen the request volume is high.

In order to have a more general perspective both in the
methodology and in the mechanisms and techniques to be
applied, we design Sova as an autonomic framework, which
is built around the MAPE-K loop—an often used architec-
ture in autonomic computing [11], [12]—to endow Sova
with the autonomic abilities to coordinate DSR-IOV and
VLM for adaptation to the dynamic changes of workloads
with minimizing the service response time as a goal.

In particular, we follow the idea of IOFlow [13] to com-
bine DSR-IOV and VLM in a software-defined way in which
the control plane of the network operation is decoupled from
the data plane used to access the network card. The control
plane in Sova as the Effector in MAPE-K loop is designed to
control how each VM is locally allocated either a SR-IOV VF
or the vNIC by performing DSR-IOV, or globally moved to

a target machine as an adaptation to its workload changes
by executing the informed migration instructions issued
from a controller–the centralized Autonomic Manager, which
is devised to maintain and analyze the global hotspot infor-
mation across the cluster with an attempt to make migration
plan selectively sent to each physical server. To this end,
Sova needs to monitor the network traffic as well as the
workload characteristics in the cluster, whereby the net-
work access patterns can be derived on the fly.

With this design, the autonomic manager can simplify its
work by only determining the source and target migration
servers while leaving the freedom to the pair of servers to
select the migrated VMs. Similarly, each physical server can
focus squarely on its local DSR-IOV, remaining unaware of
the global migration decisions to limit its performance cost.

We implemented Sova as a prototype based on Xen4.9
and evaluated its performance in different scenarios by
comparing with each individual technique, DSR-IOV and
VLM. Although each individual technique has been inten-
sively studied, Sova, to the best of our knowledge, is the first
attempt that tries to combine them as a holistic approach to
the network resource allocations in diverse situations. Our
experimental results show that Sova can exert the advan-
tages of both techniques to match and even beat the better
performance of each individual technology by adapting to
the VMworkload changes.

The remainder of this paper is organized as follows. We
first introduce some background knowledge on DSR-IOV
and analyze the challenges when integrating it with VLM in
Section 2. With these challenges in mind, we then describe
the design of Sova in Section 3 and its implementation in
Section 4. We make the performance evaluation of Sova in
Section 5, followed by reviewing some related work for
comparison studies in Section 6. Finally, we remark and
conclude the paper in the last section.

2 BACKGROUND AND MOTIVATIONS

In this section, we first introduce some background knowl-
edge regarding the used techniques of DSR-IOV and VLM,
and then describe the MAPE-K loop that is often-used in
autonomic computing to implement self-adaptive software.
Finally, we discuss the challenges behind Sova for adaptive
virtual network allocations.

2.1 Dynamic SR-IOV

Single-root I/O virtualization (SR-IOV) is a widely deployed
I/O virtualization technology to eliminate the hypervisor’s
intervention from the VM I/O paths via hardware supports
[2], [6]. The SR-IOV device contains one or more physical func-
tions (PFs) with full functionality of PCIe, and each PFmodule
has one or more virtual functions (VFs) which are “light-
weight” PCIe functions. The PF has access to all resources of
hardware in the SR-IOV device, while the VF contains only
the resources necessary for data transfer, such as the transmit
and receive registers and interrupt registers. All VFs are man-
aged and configured by the PF, and each VF can be assigned
to a VMas a standard PCIe device for efficient direct access.

Since the bandwidth allocation between multiple VFs is
based on hardware arbitration, the theoretical bandwidth
that a single VF can obtain is the average bandwidth among

YE ET AL.: SOVA: A SOFTWARE-DEFINED AUTONOMIC FRAMEWORK FOR VIRTUAL NETWORK ALLOCATIONS 117

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

the VFs. Consequently, when the number of VFs is large, the
bandwidth obtained by each individual VF will decrease
accordingly. As a result, the network-intensive VMs with
SR-IOV capable device driver are not guaranteed to have
sufficient bandwidths to improve their performance. To
maximize the potentials of SR-IOV, we have to carefully
allocate the network bandwidths among the competitive
VMs, either with granted SR-IOV VFs or not.

As with SR-IOV, the I/O para-virtualization is another
widely used network virtualization approach, which shares
the network bandwidths among the VMs via vNIC—a vir-
tual NIC based on the physical NIC. However, unlike the
SR-IOV as described, the I/O para-virtualization, i.e., vNIC,
optimizes the VM network performance in a pure software
way, leading to a long data I/O path and as well a hotspot
driver domain. Thus, it, though simple and cheap, suffers
from the degraded network performance.

Dynamic SR-IOV (DSR-IOV) is proposed to exploit the
advantages of both the vNIC and the SR-IOV in Raccoon – a
network I/O allocation algorithm for VM scheduling in vir-
tual environments [5] – to improve the network performance
of hybrid VMs as shown in Fig. 1, each with different kinds of
workloads, either compute-intensive or network-intensive.
The basic idea of DSR-IOV is to leverage the bonding driver
technique [14] that combines the vNIC and the SR-IOV to dis-
tribute the network bandwidths bias towards those network-
intensive VMs, which in turn improves the overall network
resource utilization. To this end, DSR-IOV first derives the
workload nature of each VM via some monitor mechanism
(e.g., XenMon inXen), and then figures out the bandwidth dis-
tribution between the VMs according to their workloads. In
particular, each of the network-intensive VMs is allocated a
SR-IOV VF, which can be accessed directly without the inter-
ference from the hypervisor, while other compute-intensive
VMs will share the vNIC, which is allocated a fixed quota of
the network bandwidths.

Since the VM workloads are dynamically changed over
time, DSR-IOV is also required to switch between the vNIC
and the SR-IOV VFs in an adaptive way by allocating and
deallocating the VFs among the VMs at runtime. Although
the DSR-IOV is amenable to the network-intensive VMs for
latency reduction, it leaves the hotspot issue untouched as it
lacks the ability to remap the VMs to different hosts and re-
engineer the network traffic.

2.2 VM Live Migration

VM live migration is a relatively mature technology often
used to remap physical resources to virtual servers by
moving all states and data of running VMs across different
physical machines. Clark et al. [4] proposed and imple-
mented a pre-copy approach that can accomplish an effi-
cient VM live migration based on Xen [15] in several steps.
First, the VLM copies all the volatile states of the VM from
the source machine to the destination. During this process,
the service may generate new dirty pages, which will be
iteratively copied to the destination to keep the memory con-
sistent. Next is the stop-and-copy phase where the source VM
is shut down and a small number of non-synchronizedmem-
ory pages are then copied to the destination. Lastly, the
migrated VM is restarted at the destination to resume the
service.

The pre-copy has become the predominant approach for
VM live migration, supported by various VM Monitors
such as Xen [16], VMWare [17], and KVM [18], whereby a
trade-off between service downtime and total migration time
can be well made to adapt to different situations [19].
Clearly, this migration strategy dose not fit nicely to mem-
ory intensive applications, where the VM has large page
change rates (relative to the available bandwidth). In this
case, post-copy live migration algorithm could be more
friendly [20].

By virtue of its flexibility, VLM has been proposed to
handle workload dynamics for different requirements in
data centers [21], [22], [23]. In all the cases, the migration
strategy regarding when to start migrating VMs and where
to migrate the VMs is very important for the effectiveness of
VLM. As such it is also an attractive research topic [24], [25],
[26]. For example, Wood et al. [7] present Sandpiper – a
framework designed to monitor, detect and get rid of hot-
spots across the data-center cluster. The essence of this
framework is the proposed Black-box and Gray-box strategies,
which can make migration decision by either simply observ-
ing each VM from the outside or investigating each VM
from its inside.

The idea of migration strategy as well as its implementa-
tion adopted by Sova are largely borrowed from the Grey-
box strategy in [7] with a customization to our combination
requirements.

2.3 Motivation Challenges

In this paper, we propose to coordinate DSR-IOV and VLM in
an autonomic way to revolving around the QoS required by
the production environments. To reason about this coordina-
tion, we made an experiment where a client VM leverages
Httperf [27] benchmark to make a sequence of requests at rate
of 2500=sec to a server VM for different sizes of data blocks.
Depending onwhether or not the two VMs are co-located, we
compared the server’s response times in different configura-
tions as shown in Fig. 2. One can observe that for both co-
located and non-colocated VMs, the response times under
DSR-IOV are consistently better than those in default (using
vNIC) as the data size increases over 128 KB, demonstrating
the value of DSR-IOV. Unfortunately, DSR-IOV cannot effec-
tively optimize the scenario when two communicating VMs
are co-located on the same host as in this case a hotspot
resulted from the network I/O contentions (via Dom0 in

Fig. 1. Dynamic SR-IOV architecture.

118 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

particular) could be incurred, motivating the integration of
VLM tomigrate out one VM for the QoS improvements.2

However, there are many challenges in making the coor-
dination between DSR-IOV and VLM in terms of mecha-
nism and strategy. In this research, we are particularly
motivated by the following challenges to design our auto-
nomic framework.

1) Combination of DSR-IOV and VLM. By the nature, DSR-
IOV and VLM are two orthogonal techniques, one (DSR-
IOV) primarily targets the local network optimization while
the other (VLM) is a global optimization method. As such,
they can work independently with each other, and it would
be very hard to exert their respective strength if an effective
combination approach between them is absent. DSR-IOV
and VLM are combined in our framework, which needs to
address two major challenges. Since DSR-IOV and VLM are
implemented with different technologies, we not only have
to analyze and deconstruct them but also need to synthesize
them to re-construct a mechanism that can unify their control
and support the dynamic switch between them with mini-
mum overhead.

2) Autonomic Coordination. In addition to the combination
mechanism, we also desire a generic framework that allows
the combination to work in an autonomic way to improve
the QoS of the VM services. As such, a closed control-loop
to drive the combination with informed feedback is highly
expected. To this end, an effective design for adaptive
switch strategy between these two techniques is indispens-
able. Of course, this is highly dependent on the availability
of local and global workload knowledge of VMs. However,
given the diversity of data services in data centers, the
workloads in VMs are not only very difficult to gather with
minimum overhead, but also fairly hard to predict in accu-
racy. Given the two integrated adaptive methods, we need
a more fined prediction model that can distinguish the cases

amenable to either DSR-IOV or VLM. We have to address
all these challenges in the first place to design our auto-
nomic framework.

3 SOVA DESIGN

In this section, we present the design of Sova, the autonomic
framework that combines the advantages of DSR-IOV and
VLM for the network allocation optimization with the
improvements of the QoS of VMs as the goal. We first intro-
duce our design principles and related techniques, and then
describe the Sova framework in more details with focus
squarely on how the two technologies are fruitfully com-
bined tomake an autonomic coordination in a closed loop.

3.1 Design Principles

Sova is designed to coordinate DSR-IOV and VLM in an
autonomic way, where the DSR-IOV is implemented locally
to optimize the network allocation to each VM and the VLM
is managed in a centralized fashion to remove the potential
hotspots across the cluster. The rationale behind this design
is that we need not only to well control the VM migration
process but also to substantially reduce the DSR-IOV over-
head otherwise incurred by the centralized control. To this
end, we divide the design of Sova into two parts as follows,
which corresponds to the solutions to the challenges we
identified in the last section.

1) Software-Defined Combination. With the design princi-
ples in mind, we are inspired by IOFlow [13] to exploit the
idea of software-defined technique to combine DSR-IOV
and VLMwhere the DSR-IOV is implemented as a local pro-
cess in each hypervisor to serve its VM communication and
the VLM is well controlled via a separate network compo-
nent (Sova controller) that disassociates the decision process
(control plane) with the migrating process (data plane). The
combination of the two techniques can not only re-balance
the network traffic and remove the hotspots across the clus-
ter but also prioritize those network-intensive VMs in a
much finer way.

2) Autonomic Coordination. Based on the combination of
DSR-IOV and VLM, we further design Sova as a generic
framework that allows the combination to work in an auto-
nomic way to improve the QoS of the VM services. To this
end, Sova is built around the MAPE-K loop—a typical archi-
tecture in autonomic computing to implement adaptive soft-
ware [11], [12]. The rationale behind this choice lies in the fact
that the MAPE-K loop is not solely well suited to the auto-
nomic control of Sova but also aligned with the software-
defined architecture to coordinate the DSR-IOV and VLM for
reduced service response time. So, we require the prediction
model mentioned above be accurate, flexible, and scalable
enough, so that it can effectively select whichever the better
operation adaptive to theworkload changes.

3.2 Overview of Framework Architecture

By following the design principles, we design Sova as a soft-
ware-defined autonomic framework that exploits the
MAPE-K loop to coordinate DSR-IOV and VLM for virtual
network allocations with improved QoS of VM services as a
goal. The architecture of Sova framework is shown in Fig. 3,
where the cooperative components are designed according

Fig. 2. Response time comparisons between different configurations. A
client VM makes a sequence of requests at rate of 2500=sec to a VM
server for different block sizes.

2. While this result is counter-intuitive, our further investigation
demonstrated that the virtual network architecture of Xen creates a bot-
tleneck in local-to-local communications which is not present in local-
to-remote communications.

YE ET AL.: SOVA: A SOFTWARE-DEFINED AUTONOMIC FRAMEWORK FOR VIRTUAL NETWORK ALLOCATIONS 119

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

to the MAPE-K model. Specifically, there are four compo-
nents—Monitor, Analysis, Planning and Execution—that join
together with a shared Knowledge-base to construct an Auto-
nomic Manager who is coupled with the managed cluster—a
collection of machines as well as their hosted VMs to endow
them with autonomic behaviour.

Sensors, often called probes or gauges, collect the informa-
tion about the managed cluster, which may include the
response time to client requests, network and disk usage,
CPU andmemory utilization. Based on the gathered informa-
tion, Effectors either perform the DSR-IOV to optimize local
network allocation or carry out the VMmigrations across the
managed cluster to balance the VMworkload distribution.

The data collected by the sensors allows the Autonomic
Manager to monitor the managed cluster and execute the
migration instructions through Effectors. The Autonomic
Manager is a software component that ideally can be config-
ured by human administrators for high-level goals, say QoS
of VM services in our case, and exploits the monitored data
from the sensors and internal knowledge to plan and execute
the VM migrations. The internal knowledge of the frame-
work is a topological model of the managed cluster.

Next, we describe the Sova framework from the perspec-
tives of its managed cluster internals and autonomic man-
ager with special attention on how the software-defined
method is used to combine DSR-IOV and VLM, and then
the autonomic coordination in more details.

3.3 Managed Clusters

We design a Sensor and an Effector local to each hypervisor
where the Sensor is a software component to collect the data
from each VM and the Effector is a software-defined compo-
nent playing a dual role of a control plane and data plane in
the framework for the network allocations. First, by using a
prediction model for VM workload behaviors, the Effector
implements the function of DSR-IOV in hypervisor that can
prioritize the network-intensive VMs to have more network
resources. Second, it provides a mechanism that not only
translates the migration policy issued by Autonomic Manager
into the VM-specific operations (control plane), but also
coordinates the DSR-IOV and VLM to further adapt to the
network changes (data plane).

3.3.1 Runtime Information Collection

We exploit the monitoring mechanism in hypervisor (say
XenMon and /proc) to design a Sensor for the collection of
the data from each VM by sampling, and then share the
sampling data with the Effector in the hypervisor for the
DSR-IOV and also send them to the Autonomic Manager for
VM migration at the end of each sampling period. The sam-
pling frequency is set with an attempt to minimize the over-
head due to frequent read and write files. Specifically, there
are three kinds of information gathered by the sensor.

1) VM Workloads:It can be derived that network-inten-
sive VMs often have some common properties, such
as, their CPU times are usually short, and their wait-
ing time for network events are relatively long [5],
[28], [29]. Therefore, the workload characteristics of
the VMs, in terms of CPU usage, blocked time and wait-
ing time, should be obtained in order to make a dis-
tinguish between the network-intensive VMs.

2) Network Status: To accurately assign VFs to VMs with
intensive communication pattern, it is necessary to
obtain the network information of the VM. In our
design, the sensor acquires the network data of each
VM through a gray-box approach [7], which lever-
ages an installed lightweight monitoring daemon to
gather the OS-level statistics. The total sent (or
received) traffic minus the last sent (or received) traf-
fic is the total traffic transmitted during this sampling
period.

3) Host Statistics: The sensor also tracks the total
resource usages from each host by aggregating the
monitored data from all the resident VMs. As with
gathering the network data from each VM, the sensor
also gathers the memory usage through a monitoring
daemon. These data are sent to the Autonomic Man-
ager to detect if hotspot has occurred and to make
migration decision.

3.3.2 Local DSR-IOV Optimization

The purpose of DSR-IOV is to minimize the network latency
for those VMs exhibiting intensive network patterns so that
their QoS can be improved. It configures two NICs for each
VM via the bonding driver technique. One is vNIC automati-
cally assigned by the hypervisor when a VM is created, and
the other is SR-IOV VFwhose (de)allocation is determined by
the Effector. By default, each VM is configured with only the
vNIC andwhen the VMbecomes network intensive, the DSR-
IOVwould allocate a SR-IOVVF to the VM to improve its per-
formance. On the contrary, if the VM is no longer network-
intensive, its allocated VF will be deprived and granted to
other network-intensive VMs. Dynamic allocation of the SR-
IOV VFs can enable network-intensive VMs to have better
network performance, thereby improving the overall network
performance of the system.

As in [5], the Effector maintains two queues, Priority
Queue (PQ) and General Queue (GQ), for more efficient
accommodation of the hosted VMs. The PQ is designed for
network-intensive VMs while the GQ for the others, includ-
ing those VMs with disk I/O-intensive and CPU-intensive
workloads. The purpose of this classification is allowing the
Effector to quickly identify the types of VMs and efficiently

Fig. 3. Sova framework architecture.

120 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

allocate the SR-IOV VFs. As the bandwidth allocation across
multiple VFs is based on hardware arbitration and the
weighted average of VFs in the SR-IOV NIC, the VFs not
only need to be allocated to those network-intensive VMs,
but also desire to be granted sufficient bandwidth. This can
be achieved by limiting the number of the VFs (also the
length of the GQ) that share the finite network bandwidth.

Since the I/O-intensive VMs typically have shorter CPU
time, while waiting for some I/O events in a long-time
block state, we enable the Effector to combine I/O factor (IF)
and network factor (NF) as in [5] to determine the network
intensity of VM where

IF ¼
Pnum

0 blocked time=gotten time

num
; (1)

which represents a statistical average of the ratio blocked
time=gotten time, and num is the number of samplings.
Given the features of I/O-intensive VMs, its IF value will
be much larger than that of CPU-intensive VMs.

Although I/O factor IF can distinguish I/O-intensive
VMs, but it cannot judgewhether theVM isdisk I/O-intensive
or network I/O-intensive, so network factor (NF) is used to
determine the network intensity of VM

NF ¼ " � Traffic freq þ ð1� "Þ � Traffic avg; (2)

where Traffic freq indicates the busyness of the network
while Traffic avg reflects the weighted average of the total
traffic of VM network data, and parameter " is used to bal-
ance the weights between the two terms. The higher the net-
work intensity of VM, the larger network factor NF is

Traffic freq ¼ traffic num

num
(3)

Traffic avg ¼
Pnum

0
traffic�min
max�min

traffic num
; (4)

where traffic num is the number of samples that have net-
work transmissions in all samples, and traffic is the total
number of transmitted and received packets in one sam-
pling period, and minðmaxÞ is the smallest (largest) number
of the packets in the sample.

By following the definitions of IF andNF , theDSR-IOV can
determine the network intensity of eachVMbyfirst using IF to
classify VMs into either I/O-intensive or non-I/O-intensive
classes, and then exploiting NF to distinguish those network-
intensive VMs from the I/O-intensive VMs as in [5].

3.3.3 Software-Defined Combination

The combination of DSR-IOV and VLM is achieved via a
Operation Table maintained by the Effector in each host as
shown in Fig. 3. TheOperation Table is used to recordwhether
each VM in the host uses the DSR-IOV or the VLM opera-
tions. To reflect a host (or VM) that may become intensive in
one or more aspects in CPU, memory, and network, we bor-
row the idea from [26] to define a new metric for the Effector
that captures the sheer volume of CPU, memory, and net-
work tomeasure the hotness of host (or VM)

volume ¼
ffiXm
i¼1
ðri
r
� 1Þ2

s
; (5)

where ri is the utilization of the ith resource corresponding
to the host (or VM), and r is the average utilization of all m
resources in the physical server.

As the VM migration process also takes up a certain
amount of network bandwidth, it will affect the perfor-
mance of the application service if the migration consumes
too much bandwidth. On the other hand, when selecting a
VM to migrate, the Effector needs to consider not only
the heavy load, but also the memory size of the VM. There-
fore, the Effector defines the VM migration decision factor
MF ¼ volume=size, where size is the memory footprint of
the VM. The migration algorithm sorts MF in descending
order, and selects the VM with the largest MF to migrate.
This allows the largest volume (i.e, load) to be transmitted
per unit byte, which has proven to be the minimum migra-
tion overhead [7], [30].

Given the consideration above, we populate theOperation
Table with a coordinated scheduling algorithm as shown in
Algorithm 1.

Algorithm 1. Combination of DSR-IOV and VLM

Require: migration signal from Autonomic Manager;
r ¼< r1; . . . rm > ; size ¼< size1; . . . ; sizen > from Sensor;
the data to calculate IF and NF for each VM from Sensor;
Ensure: Operation[VMi]=VLM or DSR-IOV, i ¼ 1; . . . ; n;
1: Calculates IFi andNFi for VMi; i ¼ 1; . . . ; n;
2: Calculates volume according to Eq. (5);
3: if ðmigration:flag ¼ TrueÞ then
4: for (each VMi) do
5: MFi volume=sizei;
6: end for
7: VMk getMax(MF);
8: Operation[VMk� migration.targethost;
9: end if
10: // q and p: size of minheap (VM 0s numbers > q > p)
11: minIOHeap MinHeap(q);
12: minNetHeap MinHeap(p);
13: for (each VMi) do
14: if (Operation[VMi] = NULL) then
15: minIOHeap.insert(VMi, IFi);
16: end if
17: end for
18: for (VMj inminIOHeap) do
19: minNetHeap.insert(VMj, NFj);
20: end for
21: for (each VMi inminNetHeap) do
22: Operation[VMi] VF;
23: end for
24: for (each VMj not inminNetHeap) do
25: if (Operation[VMj] = NULL) then
26: Operation[VMj] vNIC;
27: end if
28: end for

In this algorithm, the Effector first receives the migration
signal flag from the Autonomic Manager, the utilization of
the ith resource ri corresponding to the host (or VM) and
the memory footprint size of each VM from the Sensor. For

YE ET AL.: SOVA: A SOFTWARE-DEFINED AUTONOMIC FRAMEWORK FOR VIRTUAL NETWORK ALLOCATIONS 121

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

each hosted VM, its volume value and IF and NF are calcu-
lated (Line 1-2). Afterwards, if flag is true, the algorithm cal-
culates MF for each VM, and then selects the VM with the
largest MF value in the host as the VLM operation (Line 3-
9). For other VMs, the algorithm uses a heap tree to prioritize
the network-intensive VMs (Line 11-12). Specifically, the
I/O-intensive VMs are obtained by using the minIOHeap,
and then the minNetHeap is used to obtain the network-
intensive VMs from them (Line 13-20) and selects and
marks them as using the VF operations in descending order
(Line 21-23), while leaving the non-network-intensive VMs
labeled as using the vNIC operations (Line 24-27). Based on
Algorithm 1, each VM in the host is marked by a unique
operation, either DSR-IOV (assigned VF/vNet) or VLM,
which is performed by the Effector via a synchronized back-
ground daemon process. Note that in this process as with
[26], only a single VMmigration is performed for the overall
QoS improvement. This design is reasonable because the
hotspot could be removed after a single migration with min-
imum cost, or otherwise, it could be removed in the next
decision run.

When the migration is triggered, the Effector would
migrate the VM with the largest MF to the physical server
with the smallest volume (that is, the least loaded server)
every time it is scheduled, until the migration is no longer
triggered. The server with the smallest volume is globally
determined by the Planner in the Autonomic Manager.

3.4 Autonomic Manager

The managed cluster carries out local network optimization
through DSR-IOV and delegates its plan of VM migration
via the Effector to the Autonomic Manager, who is crafted to
perform the global network optimization by leveraging the
VLM to re-engineer the network traffic. The central man-
ager has two main functions, hotspot detection and migration
planning, which are accomplished by Analysis and Planner
components, respectively, based on the gathered cluster-
wide information from Monitor and the network topology
from Knowledge.

3.4.1 Monitor and Knowledge

Since the availability of local and global workload knowl-
edge of VMs determines the quality of the framework in
exploiting the network resources for QoS improvements,
we design Monitor to monitor and collect resource usages
from the Sensor in each host and synthesize the gathered
data as the state information for the host, which, together
with a topology graph of the cluster, is maintained in
Knowledge.

3.4.2 Autonomic Coordination

The manager detects the hotspots across the cluster, and
predicts the future trends of workloads in each physical
server based on the proposed prediction model. As a result,
the manager should have global visibility to make its migra-
tion decision as shown in Algorithm 2 to command each
individual Effector to translate the migration plan into VM-
specific operations. In the following, we describe the algo-
rithm based on the components of MAPE-loop to specify its
functionality.

Algorithm 2. Autonomic Coordination

Require: r ¼< r1; . . . rm > fromMonitor;
volume ¼< volume1; . . . ; volumep�1 > from Knowledge;
Ensure: migration[Hosti� < True or False;Hostj > , i ¼ 1;
. . . ; n, j 6¼ i;
1: Calculates volumep forHosti; i ¼ 1; . . . ; n;
2: for (eachHosti) do
3: migration[Hosti� < False; NULL > ;
4: if (k out of p volume values are greater than a) then
5: v̂olumepþ1 mþ fðvolumep � mÞ þ d;
6: if (v̂olumepþ1 > a) then
7: Hostj getMinNotInDestination(volumep);
8: if (ðvolumep½Hostj� < aÞandðHostj 6¼ HostiÞ) then
9: migration[Hosti] < True;Hostj > ;
10: end if
11: end if
12: end if
13: send the migration[Hosti] signal to the Effectori;
14: end for

Hotspot Detection. We leverage the threshold detection as
the basic strategy for VLM, which means when the overall
workloads of the physical server exceeds a certain threshold,
the server is deemed to be overloaded and qualified to trig-
ger the migration. However, in order to have stable spikes
and avoid the unnecessary triggeredmigration, as with [7], a
hotspot is flagged only when the threshold is continuously
exceeded for a while. More specifically, if there are at least k
reports exceeding the threshold out of any n� 1 reports in
time series (gathered from all the monitors), and the next
report is also predicted to exceed the threshold, then amigra-
tion is triggered (Line 4). The values of n and k will directly
affect the network performance, making the decision to trig-
ger themigration either aggressive or conservative.

The Analysis component of the manager uses an auto-
regressive family [7], [31] of predictors to predict the future
data (Line 5-6). A pth order auto-regressive model, denoted
by ARðpÞ, means that the p prior observations in conjunc-
tion with other statistics of the time series to predict the
value of the next moment. For instance, for ARð1Þ, consider
the time series fx1; x2; . . . ; xpg, and predict the value of the
ðpþ 1Þth interval

x̂pþ1 ¼ mþ fðxp � mÞ þ d; (6)

where m is the mean value of the time series, parameter f is
used to capture the changes of the time series, and d is the
white Gaussian noise determined by the degree of fluctua-
tions of the current sequence.

Migration Plan. The migration plan is made by the Planner
component to get rid of the detected hotspot where only the
overloaded host is informed to offload some workloads to
underloaded hosts via the migration signal flag, leaving the
actual migrated VM selection to the corresponding Effector
itself (Line 13). Note that in order to ensure that the destina-
tion server also has sufficient resources to host the VM, the
Planner need to calculate the heaviness of the destination
server to discover the so-called cold spot as with [26], [32]
before each migration. If the destination server load itself is
heavy already (one or more resource usage exceeds thresh-
old a), the Planner will not conduct a migration to it (Line7-
10). With this design, we can grant much more freedom to

122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

the Effector, who can make its own coordination between
DSR-IOV and VLM (select the migrated VM) in reaction to
the setting changes.

Clearly, a simple yet effective way is to migrate the most
heavily loaded VMs to the least loaded server while mini-
mizing the amount of data transferred during the migration
process. As such, we can follow the same arguments in
Section 3.3.3 to select the host with the least workloads as
the destination host.

4 IMPLEMENTATION

We prototyped the Sova framework based on Xen4.9 run-
ning in a cluster in which all the VM storage is mounted to
the same shared storage server through the iSCSI protocol
so that it is not necessary to move the disk state when a VM
is migrated. The live migration mechanism adopted by Xen
is the pre-copy method [4], where the pure stop-and-copy and
pure demand-migration mechanism are combined to mini-
mize the downtime and the total migration time of the VM
by iteratively copying memory pages.

The overall architecture of the Sova implementation is
shown in Fig. 4 where the implementation of each compo-
nent of the MAPE-K loop as well as the control and data
flows are depicted. The Sensor residing in Dom0 obtains the
workload characteristics of the VM through XenMon [33],
which is a performance analysis tool designed to capture the
resource usage of each domain in Xen. TheXenMon reports a
variety of metrics for each VM, such as CPU usage, blocked
time andwaiting time. But as a real-time analysis tool, theXen-
Mon cannot profile the VM executions over a period of time,
instead only one CPU data is obtained at a time, so the sam-
pled data is not accurate. Therefore, we modified the Xen-
Mon to collect the data from all the CPUs, and stored each
sampled data into a log file for subsequent processing, and
solved the problem of the data redundancy by periodically
cleaning up the cache (i.e., sharedmemory) in xenbaked.

The Sensor gathers the network traffic information and
the memory usage of each VM by periodically reading inter-
face file /proc. Specifically, a daemon located in DomU

obtains the historical total traffic of the VM by reading the
information of the aggregated network card in file /proc/

net/dev. Then, the size of the memory being used by the

VM can be obtained by reading the file /proc/meminfo.
Finally, the daemon sends the VM’s network traffic data
and memory information to the Sensor located in Dom0

through Xenstore. Totally, the Sensor contains approxi-
mately 900+ lines of Python and C codes.

The Effector also runs in Dom0, which completes the func-
tionality of the DSR-IOV and the combination of DSR-IOV
and VLM by running Algorithm 1. The Sensor collects and
reports the measurements once every 10 seconds, which is
also the time interval for updatingOperation Table and sched-
uling the SR-IOV VFs in the Effector. When dynamically allo-
cating and removing the VFs, the Effector exploits ACPI
Hotplug technology [34] to minimize the adverse effects on
running VMs, and adopts the libxl_device_pci family of
functions to manage the VFs as shown in Fig. 4. In order
to facilitate the scheduling, the Effector also needs to record
if there are VM creation, destruction, shutdown and
other events by modifying function create_domain(),
destroy_domain() and shutdown_domain() and others
in xen-4.9.1/tools/xl/xl_vmcontrol.c file. In total,
the Effector includes 1300þ lines of C source codes.

The Autonomic Manager is simply implemented as a dae-
mon that runs on a control node of the cluster. It first acts
the role of the Monitor to listen to the Sensor from each
hypervisor for periodic usage reports and then uses these
statistics to detect the hotspots and make the migration plan
via Algorithm 2, which are the functions of the Analysis and
Planner components played by the manager. Currently the
migration is triggered when at least 3 out of the 5 most
recent observations and the next predicted value exceeds a
threshold. Totally, the Autonomic Manager comprises 700þ
lines of C source codes.

5 PERFORMANCE EVALUATION

Sova is evaluated based on our cluster that consists of 43
physical servers inter-connected over 10 Gigabit Ethernet,
among which 7 servers are installed Intel 82,599 network
cards (a dual-port SR-IOV). One of the 7 servers is used as a
shared storage server, while all the others run Linux 4.4.16
and Xen 4.9.1 and are equipped with 64 GB RAM. One node
in the cluster is designated as the control node that runs
Autonomic Manager, while each of the rest hosts one or more
VMs, and runs both Sensor and Effector in Dom0.

As the goal of Sova is designed to improve the QoS of VM
services by carefully allocating the network resources and
removing the hotspots across the cluster, we measure its
performance by comparing the service response time and
bandwidth utilization.

5.1 DSR-IOV Effectiveness

Our first experiment demonstrates the effectiveness of DSR-
IOV under different and dynamic workloads. Each VM
could be installed CPU-intensive, network-intensive and/or
hybrid workloads, which are mimicked by different bench-
marks, i.e., Lookbusy [35] for the CPU-intensive workloads,
Netperf [36] for the network-intensive workloads, and the
combination of the two for the hybrid workloads. We run
15 VMs simultaneously on the same physical server, VM1-
VM15, and the VMs are divided into three groups, each with
5 VMs, characterized by its hosted workloads.

Fig. 4. Sova implementation architecture.

YE ET AL.: SOVA: A SOFTWARE-DEFINED AUTONOMIC FRAMEWORK FOR VIRTUAL NETWORK ALLOCATIONS 123

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

The characteristics of Sova when running different work-
loads are shown in Table 1 where each workload runs in dif-
ferent percentage 10%� 100% of 10-minute test time. We can
observe from the table that the IF values of CPU-intensive
VMs are always smaller than those of network-intensive
VMs, and moreover, the longer the Lookbusy runs, the smaller
the IF value is. For the VMs hosting hybrid workloads, as
expected those with high CPU-intensive workloads often
have equally small IF values. Besides, the higher the network
intensity of the VM, the greater theNF value is, this observa-
tion also meets our expectation. Therefore, by using the IF
value, Sova can successfully exclude the CPU-intensive VMs
and those non-network-intensive VMs among the hybrid
VMs. Consequently, the network-intensive VMs can be
selected based on theirNF values for network optimization.

Next, we verified whether Sova can discriminate the
network-intensive VMs and dynamically allocate SR-IOVVFs
to those network-intensive VMs. To this end, we ran 8 VMs
on the physical server equipped with SR-IOV that has 4 VFs
and let the workloads of VMs change every 10minutes to see
how the VFs are allocated among the VMs. The workloads of
VM1-VM3 remain unchanged and simulate the network-inten-
sive, the CPU-intensive and the hybrid workloads, respec-
tively, while theworkloads of other VMs change over time.

Table 2 shows the trend of VM workloads over time and
the distribution of VFs among VMs. The time instance of
interest are 10 and 20, because the workload of the VM
changes only at those two instances. Prior to time instance
10, VM1, VM6, VM7, and VM8 have the highest network inten-
sity (i.e., the NF value is largest) and are assigned VFs. And
then, there is a VF scheduling at the time instance 10, as
VM7 and VM8 become CPU-intensive, their VFs are removed
and re-assigned to VM3 and VM5, both are highly network-
intensive. Later, in the moment of 20, there is a VF whose
owner changed, that is, the VF of VM3 is removed and re-
assigned to VM4, since the network intensity of VM4 is
increased to align with VM3, but its IF value is much smaller
than that of VM3. This is because for the hybrid VMs, Sova is
biased towards the allocation of VFs to those network-inten-
sive VMs. In summary, Sova is always able to dynamically
grant VFs to the VMs with high network intensity.

5.2 Migration Effectiveness

We demonstrated the migration effectiveness of Sova by
testing its migration hotspot detection and migration strate-
gies. To this end, we constantly made service requests to the
server and overload the server repeatedly to see how the
VMs migrate between physical servers. In the experiment
we used three physical servers and five VMs with memory
allocations as shown in Table 3. We used Netperf to generate
different workloads on different VMs in three stages, each
generating a hotspot at different physical servers. The time
percentages for each VM to run Netperf at different stages
(again 10 minutes each stage), together with its home
machine (HM), are shown in Table 3.

Fig. 5 shows a time series diagram of the system response
process when the migration is triggered by running the work-
loads on different VMs. In the first stage, as the network

TABLE 1
CPU-Intensive, Network-Intensive and Hybrid

Workloads Property Values

CPU-intensive(Lookbusy)

VMID VM1 VM2 VM3 VM4 VM5

Time 20% 40% 60% 80% 100%
IF 9.22 1.06 0.46 0.24 1.01
NF 0 0 0 0 0

Network-intensive(Netperf)

VMID VM6 VM7 VM8 VM9 VM10
Time 20% 40% 60% 80% 100%
IF 213.78 103.39 66.08 47.06 47.54
NF 0.056 0.237 0.285 0.743 0.952

Hybrid(Lookbusy & Netperf)

VMID VM11 VM12 VM13 VM14 VM15
Time 20% 40% 60% 80% 100%
IF 11.47 5.52 2.26 0.37 0.46
NF 0.081 0.139 0.226 0.945 0.936

TABLE 2
VMWorkload Changes Over Time in Minutes

Time(m) State VM1 VM2 VM3 VM4 VM5 VM6 VM7 VM8

0-10
netperf 50% 0 30% 20% 40% 60% 80% 100%
lookbusy 0 50% 30% 0 0 0 0 0
NIC VF vNIC vNIC vNIV vNIC VF VF VF

10-20
netperf 50% 0 30% 20% 40% 60% 0 0
lookbusy 0 50% 30% 0 0 0 20% 40%
NIC VF vNIC VF vNIC VF VF vNIC vNIC

20-30
netperf 50% 0 30% 30% 50% 70% 0 0
lookbusy 0 50% 30% 0 0 0 20% 40%
NIC VF vNIC vNIC VF VF VF vNIC vNIC

TABLE 3
VM’s Workloads at Different Phases, Memory Allocations,

and Initial Home Machines

VMID Stage1 Stage2 Stage3 RAM(MB) HM

VM1 50% 40% 40% 512 1
VM2 30% 70% 70% 512 1
VM3 30% 40% 30% 512 2
VM4 30% 30% 20% 512 2
VM5 20% 40% 40% 1024 3

124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

bandwidth utilization of HM1 continues to exceed the thresh-
old, the system detects a hotspot at t ¼ 50 seconds. Then, the
Effector calculates the migration factor MF across all the VMs
co-reside at HM1 and selects the candidate for migration in
descending orders ofMF . Since VM1 has the largestMF value,
it is chosen as a candidate. In addition, the Autonomic Manager
calculates the load status of the physical servers in the cluster
and selects the physical server with the smallest volume value
as the migration destination. Here, HM3 has the smallest
volume value and enough space to accommodate VM1, so VM1 is
migrated here to eliminate hotspot. This represents an ideal
case for migration algorithms: if possible, we choose the most
loaded VM from the overloaded physical server to migrate to
the serverwith enough free resources.

In the second stage, HM3 becomes overloaded due to the load
of VM5 increases. As the load of HM3 continues to exceed the
threshold, the system generates a hotspot at t ¼ 150 seconds,
but no VM migration occurs. This verifies that in order to
ensure that the destination server also has sufficient resources
to receive the VM, the Effector should calculate the heaviness of
the destination server before each migration. If the destination
server itself were overloaded, the Effectorwould terminate the
migration operation.

In the last stage, the load of the VMs is reduced in HM2,
which has sufficient resource capacity to receive the
migrated VM now. Therefore, the Effector triggers the migra-
tion to eliminate the hotspot in HM3 at t ¼ 200 seconds. How-
ever, unlike the first case where the candidate VMs had
identical memory footprints, VM1 has only half of the mem-
ory of VM5 in the HM3, but their network loads are almost the
same, so VM1 is selected for migration. This shows that by
selecting the VM with lower memory footprint, Sova can
maximize the reduction in the load per byte of data
transferred.

5.3 Effectiveness of Combination

Next, we demonstrated the effectiveness of Sova to combine
DSR-IOV and VLM. To this end, we used two physical serv-
ers equipped with a SR-IOV with 2 VFs and 5 VMs with the
same memory footprint to test the system’s response time
when the network loads change. VM1-VM4 are initially
placed in HM1, while VM5 is placed in HM2. The network
loads on VM1 steadily increase during the experiment, while

the others remain constant. Because the changes of the VM
workloads mainly occur in HM1, we focused on the system
response time of HM1. And as before, the VMs use Netperf to
simulate the changes of the network traffic.

Fig. 6 shows how Sova uses either the DSR-IOV or the
VLM to handle the network-intensive workloads. As shown
in Fig. 6a, the VFs are allocated to VM3 and VM4 initially as
they have the highest network intensity. However, with the
increase of VM1 workload, a VF scheduling occurs at the
time point t ¼ 140 seconds. Since VM1 has the highest net-
work intensity at this time, the VF of VM3 are removed and
re-assigned to VM1 to improve its network performance.

As the network loads of VM1 continue to increase, as
shown in Fig. 6b, the network of HM1 is overwhelmed and
the effects of using the DSR-IOV to optimize the network
performance is not significant at this time. Therefore, at t ¼
290 seconds, Sova detects the occurrence of a hotspot in HM1

and triggers the VMmigration. Because the migration factor
MF of VM1 is the largest, Sova picks it up as a migration can-
didate and revokes its granted VF. Later, VM1 is migrated to
HM2, which has a large number of network resources.
Through migration, the heavy network state in HM1 is allevi-
ated, and the free resources in HM2 are utilized to improve
the overall network performance.

5.4 Overall Performance

Now we are conducting experiments to evaluate the overall
performance of Sova by comparing it with DSR-IOV and
VLM in particular in terms of service response time. As
these two compared techniques are orthogonal, they are rel-
atively independent and, as building blocks, can be tested
separately under the control of Sova. Since both DSR-IOV
and VLM are derived from Raccoon [5] and Sandpiper [7],
respectively, as described in Section 2, they can represent
some existing technologies for comparisons.

To this end, we deployed 4 physical servers and 24 VMs.
HM1 and HM2 run 12 VMs (VM1-VM12) as servers, while the
other 12 VMs act as the clients in HM3 and HM4 and every
time all the client VMs access the corresponding server VMs
at the same time. Apache servers are installed on the server-
side VMs, and the client-side VMs use Httperf to continu-
ously send requests for accessing web pages in different
sizes. The initial placements of the server-side VMs and the

Fig. 5. Process of migrating VM across different physical servers to remove the hotspot where the shaded areas represent the migrating VM.

YE ET AL.: SOVA: A SOFTWARE-DEFINED AUTONOMIC FRAMEWORK FOR VIRTUAL NETWORK ALLOCATIONS 125

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

web page sizes in the VM are shown in Table 4. We gradu-
ally increased the request rates of Httperf in the client VM
from 1,000 requests/s to 2,600 requests/s and initiated a
total of 20,000 TCP connections when testing each request
rate, and on each connection, 200 HTTP calls are performed
(a call includes sending a request and receiving a response).
We recorded the response time which includes response
time and transfer time for the server-side VMs to serve the
requests at various rates.

Fig. 7 shows the average response time of the system
when different optimization strategies are used. As seen
from the figure, DSR-IOV and VLM have a certain degree of
optimization effects compared with the default strategy.
Moreover, we can also see from the figure that Sova can
combine the advantages of both DSR-IOV and VLM to
match and even beat the better performance of each individ-
ual technology.

When the request rate is less than 2; 300=s, the DSR-IOV
can optimize the network performance because it can
dynamically allocate VFs to network-intensive VMs to
reduce the network latency. However, as the request rate
continues to increase, the server-side network is over-
whelmed and the effects of using the DSR-IOV to optimize
network performance is not beneficial. Compared with the
DSR-IOV, the performance of the VLM is relatively better
since it as a global network traffic optimization technique
can balance the network loads on the server side. Fig. 8 illus-
trates the changes in the bandwidth utilization of the server-
side machines when either the default strategy or Sova is
used. As shown in Fig. 8a, the network loads of the default

strategy in HM1 is quickly overwhelming (when rate =
1; 300=s), which results in serious network performance
impairments. Then Sova is used, as shown in Fig. 8b, VM8 in
HM1 is migrated to HM2 at rate = 1; 200=s , which has rela-
tively large un-used network resources, to alleviate the net-
work loads in HM1.

Fig. 9 shows the distribution of service response times
with respect to different load sizes when the request rates
change. The VLM is amenable to the minimization of net-
work traffic in the coarse grained communication case that a
large amount of data tend to communicate between the local
and remote VMs. As a result, it reduces the possibility of
hotspot impact. As shown in Fig. 9b, the response time of
the coarse-grained load (128 and 256 KB) in the VLM is sig-
nificantly better than that of the default strategy shown in
Fig. 9a. In contrast, the DSR-IOV can effectively handle the
fine grained communication situation (8 and 32 KB) and
reduce the network delay of fine-grained communication
mode without obvious impact on the coarse-grained com-
munication mode, as shown in Fig. 9c. In comparison,
Fig. 9d shows that Sova has the best optimization effect

TABLE 4
Server-Side VM’s Workloads and Initial Home Machines

VMID VM1 VM2 VM3 VM4 VM5 VM6

load(KB) 8 8 32 32 128 128
Start HM 1 1 1 1 1 1
VMID VM7 VM8 VM9 VM10 VM11 VM12
load(KB) 256 256 8 32 128 256
Start HM 1 1 2 2 2 2

Fig. 7. Performance comparison of different optimizations.

Fig. 6. VF scheduling and migration to handle the network-intensive workloads.

126 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

given its combination of the advantages of DSR-IOV and
VLM.

5.5 System Overhead

In this section, we measured the system overhead of Sova
whose CPU and network overhead is dependent on the
number of HMs and VMs in the data center.

Network Overhead. In Sova, the network overhead mainly
occurs in the data exchange between the Sensors and the
Autonomic Manager and the control commands initiated by
theManager to the Effectors across cluster. Host statistics and
usage reports are sent from each Sensor to the Autonomic
Manager everymeasurement interval (10 seconds by default).
Table 5 a shows the breakdown of network overhead in

Fig. 8. The bandwidth utilization changes of server-side physical servers under different strategies.

Fig. 9. The response time distribution of different loads in different sizes when the request rate changes.

YE ET AL.: SOVA: A SOFTWARE-DEFINED AUTONOMIC FRAMEWORK FOR VIRTUAL NETWORK ALLOCATIONS 127

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

physical servers when running 12 concurrent VMs. Since
each physical server uses only 304 bytes of network overhead
every measurement interval, which could be negligible for
10 Gbs networks.

CPU Overhead. To evaluate the CPU overhead, we com-
pared the performance of the CPU benchmark with and
without Sova optimization. Table 5 b shows the CPU over-
head incurred during running multiple VMs on a single
physical server at the same time. We compared the major
overhead coming from XenMon [33], which appears to have
extra 1� 2% CPU overhead. This demonstrates the avail-
ability of our approach.

6 RELATED WORK

Given the inherent difficulties, improving the QoS of VM-
based services in data center with response time reduction
as a goal generally needs holistic approaches that can take
advantages of various techniques to optimize the virtual
network allocation and the computational workload sched-
uling. However, most of existing techniques work in piece-
meal fashion, either focusing on the networking [5], [37],
[38] or delving into the compute resources [32], short of the
notion of the combination to exert respective strengths to
address both the local and global computation issues.

Networking. There are tremendous studies on network opti-
mization to improve the QoS of VM-based services in virtual
environments [10], [39], [40], [41], [42]. For example, Kaushik
et al. [43] proposed a hardware-supported method to reduce
the overhead of driver domain in Xen so that a multi-queue
network interface could be exploited for networkperformance.
In contrast, Bourguiba et al. [37] presented an aggregation-
based mechanism to facilitate the transfers of packets from
driver domain to user domains with overcoming the network
performance bottleneck as the goal.

Unlike the foregoing studies, which focus on the packet
processing, other studies optimize the virtualization model
itself [39], [44]. Gordon et al. [39] designed ELI (Exit-Less
Interrupts) to remove the hypervisor from the interrupt proc-
essing path and transfer the physical interrupts directly to its
VM for response time reduction. Agesen et al. [44] identified
instruction clusters that would usually result in multiple
exits and translated them together with an attempt to reduce
the frequency of VM exits. In contrast, Guan et al. [10] pre-
sented aworkload-aware scheduler that limits the total num-
ber of credits and allocates more credits to I/O-intensive

VMs to improve bandwidth and reduce response time.
Although these efforts can more or less improve the QoS of
the VM-based services, they are largely limited to a single
physical server, which could cripple the performance when
hotspots occur.

Compute Resources. Dynamic VM placements for load bal-
ancing in the data center via VLM is a well-studied approach
to optimizing the compute resource utilization for the QoS
improvement of VM-based services [45], [46], [47], [48].
Wood et al. [7] proposed Sanpiper, a system that can automat-
ically monitor and detect hotspots, using black-box and
gray-box strategies to guide the dynamic remapping of VMs
to physical servers, so that the hotspots in the system can be
eliminated. Xiao et al. [26] adopted a similar idea to prevent
hotspots in the system effectively while saving energy by
minimizing the number of used servers as a goal.

As opposed to the previous studies, which focus squarely
on local optimization in clusters, Hermenier et al. [49] pro-
posed Entropy that exploits the constraint programming to
perform global optimizations and takes the migration costs
into account to further improve the remapping effects.
Although the dynamic provisioning of virtual services in
clusters can effectively improve the QoS to a certain degree,
it lacks the ability to fine-tune the resource allocation for the
optimal QoS.

Holistic Methods. In contrast to the aforementioned works,
which are piecemeal per se, the proposed Sova is a holistic
method that combines the advantages of DSR-IOV and
VLM to improve the QoS of VM-based services in data cen-
ter. Of course, the combination idea is not new and it can be
found in or achievable from some literature [32], [50]. For
example, Giurgiu et al. [32] proposed a concept of cold spot
with an aim at addressing the defects that most existing
methods experience by integrating all factors together and
making the problem of virtual infrastructure placement
effective and manageable. However, the resulted placement
is static in nature, not adaptive to the dynamic environment
changes. As for the combination of DSR-IOV and VLM, one
naive solution is the software-based switch such as Open
vSwitch [50], which could enable not only the state tracking
at the per-flow level but also the VM migration if there is
any detected hotspot. However, this technique requires the
hypervisor to remain inline to bridge the traffic between
VMs and the outside world, which is different from using
SR-IOV in Sova that can bypass the hypervisor with respect
to the network operations.

In design, Sova has two notable features, compared with
the existingmethods that are built on top of similar technolo-
gies [13], [51], [52], [53], [54]. First, it leverages the software-
defined method to combine DSR-IOV and VLM as with
IOFlow [13], which is a software-defined storage architecture
that enables end-to-end I/O policies in data center, and sec-
ond, it exploits the MAPE-K loop to coordinate these two
operations in an autonomic way to self-adapt to the environ-
ment changes, which also bears some similarities to the
designs of both [51], [54] where the MAPE-K loop is applied
either to the autonomic management of cloud infrastruc-
ture [51] or to the service-based cloud application itself when
combined with reinforcement learning algorithm [54]. Sova
unifies these two technologies for response time reduction to
improve the QoS of VM-based service, making it distinct

TABLE 5
System Overheads for HM

128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

from the existing works. A similar autonomic framework
design with the same performance goal, yet for data streams
is the work presented by Tolosana-Calasanz et al. [53]. How-
ever, it is a feedback-control and queuing theory-based con-
troller to elastically provision VMs for the goal, different
from theMAPE-K loop adopted by Sova.

7 CONCLUSION

In this paper, we presented Sova, an autonomic framework
to combine the strengths of DSR-IOV and VLM to improve
the QoS of VM services by optimize the network allocations.
On the one hand, the DSR-IOV can improve the network
performance of network-intensive VMs by granting more
network resources, and on the other hand, the VLM opera-
tions can complement the DSR-IOV to cope with the hotspot
issues by re-engineering the network traffic.

Sova is designed as a generic framework by following the
model of MAPE-K loop in autonomic computing to central-
ize the control intelligence in a separate network component
(Autonomic Manager) through a software-defined method.
With Sova, the migrating process of VMs (data plane) is dis-
associated from the decision process (control plane). More-
over, the controlled VLM is also adaptively coordinated
with the locally performed DSR-IOV, enabling a holistic
approach to the network allocations. We prototyped Sova
based on Xen4.9 and conducted experiments to show that
Sova can combine the advantages of both DSR-IOV and
VLM with acceptable overhead to match and even beat the
better QoS of each individual technology by adapting to the
VMworkload changes.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their invaluable feedback. This work was supported
in part by National Key R&D Program of China (No.
2018YFB1004804), National Natural Science Foundation
of China (61672513) and also in part by Science and Tech-
nology Planning Project of Guangdong Province (No.
2019B010137002), Shenzhen Oversea High-Caliber Person-
nel Innovation Funds (KQCX20170331161854), and Shenz-
hen Basic Research Program (JCYJ20170818153016513).

REFERENCES

[1] J. Liu, “Evaluating standard-based self-virtualizing devices: A
performance study on 10 BbE NICs with SR-IOV support,” in
Proc. IEEE Int. Symp. Parallel Distrib. Process., 2010, pp. 1–12.

[2] PCI-SIG, “PCI I/O Virtualization,” 2013. [Online]. Available:
http://www.pcisig.com/ specifications/iov/

[3] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High per-
formance network virtualization with SR-IOV,” J. Parallel Distrib.
Comput., vol. 72, no. 11, pp. 1471–1480, 2012.

[4] C. Clark et al., “Live migration of virtual machines,” in Proc. 2nd
Conf. Symp. Netw. Syst. Des. Implementation, 2005, pp. 273–286.

[5] L. Zeng, Y. Wang, X. Fan, and C. Xu, “Raccoon: A novel network
I/O allocation framework for workload-aware VM scheduling in
virtual environments,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 9, pp. 2651–2662, Sep. 2017.

[6] Y. Dong, Z. Yu, and G. Rose, “SR-IOV networking in Xen: Architec-
ture, design and implementation,” in Proc. 1st Conf. I/O Virtualiza-
tion, 2008, Art. no. 10.

[7] T. Wood et al., “Black-box and gray-box strategies for virtual
machine migration,” in Proc. USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2007, pp. 17–17.

[8] X. Bu, J. Rao, and C.-Z. Xu, “Interference and locality-aware task
scheduling for MapReduce applications in virtual clusters,” in
Proc. 22nd Int. Symp. High-Perform. Parallel Distrib. Comput., 2013,
pp. 227–238.

[9] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. 8th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2008, Art. no. 7.

[10] H. Guan, R. Ma, and J. Li, “Workload-aware credit scheduler for
improving network I/O performance in virtualization environ-
ment,” IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 130–142, Second
Quarter 2014.

[11] M. Parashar and S. Hariri, “Autonomic computing: An overview,”
in Proc. Int. Workshop Unconventional Program. Paradigms, 2004,
pp. 257–269.

[12] M. C. Huebscher and J. A. McCann, “A survey of autonomic com-
puting-degrees, models, and applications,” ACM Comput. Surv.,
vol. 40, no. 3, 2008, Art. no. 7.

[13] E. Thereska et al., “IOFlow:A software-defined storage architecture,”
in Proc. 24th ACMSymp. Operating Syst. Princ., 2013, pp. 182–196.

[14] T. Davis, W. Tarreau, C. Gavrilov, C. N. Tindel, J. Girouard, and
J. Vosburgh, “Linux ethernet bonding driver howto,” Linux Chan-
nel Bonding project, 2011. [Online]. Available: http://sourceforge.
net/projects/bonding/

[15] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS
Operating Syst. Rev., vol. 37, no. 5, pp. 164–177, 2003.

[16] Xen, “Xen Project,” 2020. [Online]. Available: https://xenproject.
org/

[17] VMware, 2020. [Online]. Available: https://www.vmware.com
[18] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM:

The Linux virtual machine monitor,” in Proc. Linux Symp., 2007,
pp. 225–230.

[19] N. Tziritas, T. Loukopoulos, S. U. Khan, C. Xu, and A. Y. Zomaya,
“Online live VMmigration algorithms to minimize total migration
time and downtime,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2019, pp. 406–417.

[20] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migra-
tion of virtual machines,” ACMSIGOPS Operating Syst. Rev., vol. 43,
no. 3, pp. 14–26, 2009.

[21] A.Zhou, S.Wang, X.Ma, andS. S. Yau, “Towards service composition
aware virtual machine migration approach in the cloud,” IEEE Trans.
Services Comput., to be published, doi: 10.1109/TSC.2019.2962128.

[22] D. Basu, X.Wang, Y. Hong, H. Chen, and S. Bressan, “Learn-as-you-
go with Megh: Efficient live migration of virtual machines,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 8, pp. 1786–1801, Aug. 2019.

[23] H. Zhao, J. Wang, F. Liu, Q. Wang, W. Zhang, and Q. Zheng,
“Power-aware and performance-guaranteed virtual machine place-
ment in the cloud,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 6,
pp. 1385–1400, Jun. 2018.

[24] K. Ye, X. Jiang, D. Huang, J. Chen, and B. Wang, “Live migration of
multiple virtual machines with resource reservation in cloud com-
puting environments,” in Proc. IEEE 4th Int. Conf. Cloud Comput.,
2011, pp. 267–274.

[25] J.Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling strategy on load bal-
ancing of virtual machine resources in cloud computing environ-
ment,” in Proc. 3rd Int. Symp. Parallel Archit. Algorithms Program.,
2010, pp. 89–96.

[26] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[27] D. Mosberger and T. Jin, “httperf—A tool for measuring web server
performance,” ACM SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3,
pp. 31–37, 1998.

[28] Y.Mei, L. Liu, X. Pu, S. Sivathanu, andX.Dong, “Performance analy-
sis of network I/O workloads in virtualized data centers,” IEEE
Trans. Services Comput., vol. 6, no. 1, pp. 48–63, First Quarter 2013.

[29] U. Vallamsetty, P. Mohapatra, R. Iyer, and K. Kant, “Improving
cache performance of network intensive workloads,” in Proc. Int.
Conf. Parallel Process., 2001, pp. 87–94.

[30] V. Sundaram, T. Wood, and P. Shenoy, “Efficient data migration in
self-managing storage systems,” in Proc. IEEE Int. Conf. Autonomic
Comput., 2006, pp. 297–300.

[31] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control. Hoboken, NJ, USA:Wiley, 2015.

[32] I. Giurgiu, C. Castillo, A. Tantawi, andM. Steinder, “Enabling effi-
cient placement of virtual infrastructures in the cloud,” in Proc.
ACM/IFIP/USENIX Int. Conf. Distrib. Syst. Platforms Open Distrib.
Process., 2012, pp. 332–353.

YE ET AL.: SOVA: A SOFTWARE-DEFINED AUTONOMIC FRAMEWORK FOR VIRTUAL NETWORK ALLOCATIONS 129

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

http://www.pcisig.com/ specifications/iov/
http://sourceforge.net/projects/bonding/
http://sourceforge.net/projects/bonding/
https://xenproject.org/
https://xenproject.org/
https://www.vmware.com
http://dx.doi.org/10.1109/TSC.2019.2962128

[33] D. Gupta, R. Gardner, and L. Cherkasova, “XenMon: QoS moni-
toring and performance profiling tool,” Hewlett-Packard Labs,
Palo Alto, CA, USA, Tech. Rep. HPL-2005–187, 2005, pp. 1–13.

[34] L. Brown, “ACPI in Linux,” in Linux Symp., vol. 51, pp. 51–67,
2005.

[35] D. Carraway, “Lookbusy—A synthetic load generator,” Look Busy.
Accessed: Aug., vol. 18, 2013, Art. no. 2017.

[36] “Netperf,” 2020. [Online]. Available: https://hewlettpackard.
github.io/netperf

[37] M. Bourguiba, K. Haddadou, I. El Korbi, and G. Pujolle, “Improving
network I/O virtualization for cloud computing,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 25, no. 3, pp. 673–681,Mar. 2014.

[38] J. Li et al., “When I/O interrupt becomes systembottleneck: Efficiency
and scalability enhancement for SR-IOV network virtualization,”
IEEETrans. CloudComput., vol. 7, no. 4, pp. 1183–1196, FourthQuarter
2019.

[39] A. Gordon et al., “ELI: Bare-metal performance for I/O
virtualization,” in Proc. 17th Int. Conf. Architect. Support Program.
Lang. Operating Syst., 2012, pp. 411–422.

[40] J. Jose, M. Li, X. Lu, K. C. Kandalla, M. D. Arnold, and D. K. Panda,
“SR-IOV support for virtualization on InfiniBand clusters: Early
experience,” in Proc. 13th IEEE/ACM Int. Symp. Cluster Cloud Grid
Comput., 2013, pp. 385–392.

[41] J. Pfefferle, P. Stuedi, A. Trivedi, B. Metzler, I. Koltsidas, and
T. R. Gross, “A hybrid I/O virtualization framework for RDMA-
capable network interfaces,” ACM SIGPLAN Notices, vol. 50, no. 7,
pp. 17–30, 2015.

[42] F.-F. Zhou, R.-H. Ma, J. Li, L.-X. Chen, W.-D. Qiu, and H.-B. Guan,
“Optimizations for high performance network virtualization,”
J. Comput. Sci. Technol., vol. 31, no. 1, pp. 107–116, 2016.

[43] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner,
“Achieving 10 Gb/s using safe and transparent network interface
virtualization,” in Proc. ACM SIGPLAN/SIGOPS Int. Conf. Virt.
Execution Environ., 2009, pp. 61–70.

[44] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon, “Software tech-
niques for avoiding hardware virtualization exits,” in Proc. USE-
NIX Annu. Tech. Conf., 2012, pp. 373–385.

[45] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement
of virtual machines for managing SLA violations,” in Proc.
10th IFIP/IEEE Int. Symp. Integr. Netw. Manage., 2007,
pp. 119–128.

[46] B. Jennings and R. Stadler, “Resource management in clouds: Sur-
vey and research challenges,” J. Netw. Syst. Manage., vol. 23, no. 3,
pp. 567–619, 2015.

[47] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic
resource scaling for multi-tenant cloud systems,” in Proc. 2nd
ACM Symp. Cloud Comput., 2011, pp. 1–14.

[48] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo, “Dynamic resource
management using virtual machine migrations,” IEEE Commun.
Mag., vol. 50, no. 9, pp. 34–40, Sep. 2012.

[49] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
“Entropy: A consolidation manager for clusters,” in Proc. ACM
SIGPLAN/SIGOPS Int. Conf. Virt. Execution Environ., 2009,
pp. 41–50.

[50] B. Pfaff et al., “The design and implementation of open vSwitch,”
in Proc. USENIX Conf. Netw. Syst. Des. Implementation, 2015,
pp. 117–130.

[51] M. Maurer, I. Breskovic, V. C. Emeakaroha, and I. Brandic,
“Revealing the MAPE loop for the autonomic management of
cloud infrastructures,” in Proc. IEEE Symp. Comput. Commun.,
2011, pp. 147–152.

[52] M. Liu et al., “ACIC: Automatic cloud I/O configurator for HPC
applications,” in Proc. Int. Conf. High Perform. Comput. Netw. Stor-
age Anal., 2013, pp. 1–12.

[53] R. Tolosana-Calasanz, J. Diaz-Montes, O. F. Rana, and M. Parashar,
“Feedback-control & queueing theory-based resource management
for streaming applications,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 4, pp. 1061–1075, Apr. 2017.

[54] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An auto-
nomic resource provisioning approach for service-based cloud
applications: A hybrid approach,” Future Gener. Comput. Syst.,
vol. 78, pp. 191–210, 2018.

Zhiyong Ye received the BSc degree in communi-
cation engineering from Nanchang University,
Nanchang, China, in 2016, and the MS degree in
electronics and communications engineering from
Chongqing University, Chongqing, China, in 2019.
He was an intern with the Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sci-
ences from 2017 to 2019, where he worked on net-
work virtualization technology. He is currently
working with Baidu, Shanghai as a software engi-
neer. He is interested in system software and virtu-
alization technology in cloud computing.

Yang Wang received the BSc degree in applied
mathematics from the Ocean University of China,
Qingdao, China, in 1989, the MSc degree in com-
puter science from Carleton University, Ottawa,
Canada, in 2001, and the PhD degree in computer
science from the University of Alberta, Edmonton,
Canada, in 2008. He currently works with the
Shenzhen Institutes of Advanced Technology, Chi-
nese Academy of Sciences, as a professor. His
research interests include cloud computing, big
data analytics, and Java virtual machine on multi-

cores. He is an Alberta Industry R&D associate (2009–2011), and a Cana-
dian Fulbright Scholar (2014–2015).

Shuibing He received the PhD degree in computer
science and technology from the Huazhong Univer-
sity of Science and Technology, Wuhan, China, in
2009. He worked with Wuhan University, China, as
an associate professor from2015 to 2018 and a pro-
fessor with the College of Computer Science and
Technology, ZhejiangUniversity, China, afterwards.
His current research areas include parallel I/O sys-
tem, file and storage system, high-performance
computing, and distributed computing.

Chengzhong Xu (Fellow, IEEE) received the PhD
degree from the University of Hong Kong, Hong
Kong, in 1993. He is currently the dean of Faculty
of Science and Technology, University of Macau,
China, and the director of the Institute of Advanced
Computing and Data Engineering, Shenzhen Insti-
tutes of Advanced Technology, Chinese Academy
of Sciences. His research interests include parallel
and distributed systems and cloud computing. He
has published more than 200 papers in journals
and conferences. He serves on a number of journal

editorial boards, including the IEEE Transactions on Computers, IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on
Cloud Computing, Journal of Parallel and Distributed Computing, and
China Science Information Sciences.

Xian-He Sun (Fellow, IEEE) received the BS
degree in mathematics from Beijing Normal Uni-
versity, Beijing, China, in 1982, and the MS and
PhD degrees in computer science from Michigan
State University, East Lansing, Michigan, in 1987
and 1990, respectively. He is a distinguished pro-
fessor with the Department of Computer Science,
Illinois Institute of Technology (IIT), Chicago. He
is the director of the Scalable Computing Soft-
ware Laboratory, IIT, and is a guest faculty with
the Mathematics and Computer Science Division,

Argonne National Laboratory. His research interests include parallel and
distributed processing, memory and I/O systems, software systems, and
performance evaluation and optimization.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

Authorized licensed use limited to: Zhejiang University. Downloaded on March 13,2023 at 01:42:33 UTC from IEEE Xplore. Restrictions apply.

https://hewlettpackard.github.io/netperf
https://hewlettpackard.github.io/netperf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

