
International Journal of Grid and Distributed Computing

Vol. 9, No. 5 (2016), pp.99-110

http://dx.doi.org/10.14257/ijgdc.2016.9.5.10

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2016 SERSC

Skewed Data Distribution for Active Storage Systems on

Hybrid Servers

Xiangyu Li
1,3

, Shuibing He
1,2,*

 and Xianbin Xu
1

1
Computer School, Wuhan University, Wuhan, Hubei 430072, China

2
 State Key Laboratory of High Performance Computing,

 National University of Defense Technology, Changsha, Hunan 410073, China
3
 Wuhan DonghubUniversity, Wuhan, Hubei 430212, China

*Corresponding author: heshuibing@whu.edu.cn

xylee@whu.edu.cn, xbxu@whu.edu.cn

Abstract

With the popularity of new storage technologies, hybrid active storage system provides

an efficient way to improve the performance of high-performance computing applications.

However, current active storage efforts have neglected the storage performance gap

between heterogeneous servers, largely affecting the overall system performance. In this

paper, we propose SDD, a Skewed Data Distribution scheme for hybrid active storage

systems. In contrast to traditional even data distribution schemes, SDD distribute data on

servers with skewed amount of data based on their performance. We have implemented a

prototype of our proposed data layout scheme in a parallel I/O system, and demonstrated

its benefits with a typical data processing application. Experimental results show our

proposed data placement scheme can significantly improve the overall active storage

system performance.

Keywords: Active Storage, Parallel I/O System, Data Distribution, Hybrid Servers

1. Introduction

Many scientific and engineering applications in the highperformance computing (HPC)

domains produce vast amounts of experimental and simulation data [1,2]. For example,

the applications in astrophysics, geographic systems, climate modeling, and medical

image processing, usually generate tens of terabytes simulation data [3, 4]. These data are

projected to be in excess of 1 Exabyte per year by 2018 [5]. The growing volumes of data

put unprecedented pressure on modern computer systems.

Transferring such tremendous amount of data between computing and storage nodes

takes a considerable amount of time. Even on today’s highest-performing computer

systems, the data movement is a critical performance bottleneck. Although the processor

performance improves with a high speed per year owing to the advancements of VLSI

technology, the network bandwidth and disk access latency still increase with a much

slower rate. Data transfer and storage have become a serious bottleneck for today’s data-

intensive HPC applications.
1

Active storage technology provides an efficient way to address the I/O bottleneck

problem [6-10]. By processing data on servers instead of on computing nodes, active

storage can largely reduce the data movement on I/O path and benefit from the aggregated

processing power on multiple storage servers. Due to these advantages, active storage has

attracted much attention as a new storage technology to accommodate growing volumes

of data [1, 11, 12].

1
 Shuibing He

is the corresponding author.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

100 Copyright ⓒ 2016 SERSC

In HPC domains, most of the current active storage systems rely on the file system data

distribution method to place data on multiple servers. Current parallel I/O systems usually

use an even data distribution scheme to distribute data on servers. While being simple and

effective for certain kinds of I/O workloads, this method is designed for homogeneous

severs. In this case, each server has the same storage performance as the others, so that it

could carry out the active storage operations at the same rate as other servers. For a big

active storage task, which is converted to multiple sub-tasks on servers, this even data

distribution scheme can make each server finish its sub-task at the same time, which can

remove the unnecessary waiting time among different servers.

With the emergence of new storage media, active storage systems may run on

heterogeneous servers. For example, with the rapid development of NAND flash

technology, solid state disks (SSD) are widely used in a parallel I/O system [13, 14].

Compared with HDDs, SSDs are famous for the much higher data transfer rate and lower

access latency. However, building a large I/O system solely on SSDs is too costly and

also loses the benefits of hard disks (HDD). For instance, HDDs can provide high

capacity and decent peak bandwidth for large sequential requests. Therefore, a parallel

I/O system with hybrid servers, namely HDD servers (HServer) and SSD servers

(SServer), is more cost-effective for practical storage systems [15-17].

Unfortunately, for such hybrid active storage systems, traditional even data distribution

schemes may face significant performance challenges. We assume that each active

storage operation works with the typical pattern as follows. It first reads data from the

local disk of the server, and then and processes the data in the memory. After that, the

result will be written to disk. With the even data distribution, each server will have the

same amount of data to process. As a result, the high-performance servers will finish the

I/O operation quickly while the low-performance nodes will finish slowly. Since each

server will finish their active storage operations with different rates and the overall data

processing time depends on the straggler of all storage nodes, traditional data placement

schemes will degrade the overall system performance.

In contrast to traditional even data distribution schemes, SDD distributes data on

servers with varied stripe sizes based on their performance. We have implemented a

prototype of our proposed data layout scheme in a parallel I/O system, and demonstrated

its benefits with two typical data processing applications. Experimental results show that

our proposed data placement scheme can significantly improve the overall active storage

system performance.

In this paper, we propose a SDD, a skewed data distribution scheme to allocate data on

servers for hybrid active storage systems. As SServers have higher data processing

capacity during active storage operations because they provide better storage performance

than HServers, SDD places data on SServers with a large amount of data than on

HServers. Compared to the traditional even data distribution, such skewed distribution

mitigates the load imbalance among hybrid servers. To determine the proper data amount

on each server, SDD relies on a cost model and a linear programming optimizing method.

Specially, we make the following key contributions:

 We introduce a cost model to evaluate the completion time of an active storage

operation in a hybrid active storage system.

 We propose a linear programming method to determine the proper data amount on

each server based on the cost model.

 We propose a skewed data distribution scheme with the optimal data amount for

hybrid active storage systems.

 We implemented a prototype of SDD under a parallel I/O system, and evaluated its

performance with a typical application. Experimental results show that SDD can

significantly improve the active storage system performance.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 101

The rest of this paper is organized as follows. In Section 2, we describe the related

work. Then we describe the design and implementation of SDD in Section 3. Section 4

gives the performance evaluation. Finally, we conclude the paper in Section 5.

2. Related Work

In this section, we briefly introduce the previous active storage researches and the data

distribution methods related to our work.

2.1. Active Storage on Disk Devices

To benefit from the under-utilized hardware source of computer system, active storage

technology is first proposed to exploit the computing intelligence inside disk drives.

These techniques are originally designed for database applications, such as CASSM [18]

and RAP [19]. Gradually, active storage technologies are proposed in other more general

fields, such as data mining, multimedia and image processing [7, 8, 20]. To promote its

development, new hardware architectures[20-22] and programming models [7] are

studied. However, these efforts are only dedicated to utilize the power of embedded

processor, thus the systems provide limited computation offloading capability.

2.2. Active Storage on File Systems

With the performance improvements on storage nodes, active storage is enabled in file

systems. These studies are conducted in the distributed file system called ScFS [23], the

parallel file system PVFS [2, 4, 24], the Lustre parallel file system [25], etc. Furthermore,

due to the popularity of objectbased storage, many efforts are devoted to integrate active

storage with the object-based storage systems [10, 26-29].

While all of the prior arts are effective, they are designed for homogeneous storage

clusters, thus cannot be directly applied to heterogeneous servers. As opposite to these

efforts, this work is designed for active storage systems with hybrid servers.

2.3. Data Distribution in Parallel I/O Systems

There are three representative data distribution schemes in parallel file systems [30].

One-dimensional horizontal distribution is the simple striping method that distributes a

process’s file across all available servers in a round-robin fashion; onedimensional

vertical distribution performs no striping at all, and instead places the file data on one

server; two-dimensional distribution distributes the file on a subset of servers. Each of

them works well for a particular kind of I/O access patterns. For complex patterns,

segment-level placement scheme logically divides a file into several segments such that

an optimal stripe size is assigned for each segment with non-uniform access patterns [31].

Server-level adaptive placement strategies adopt different stripe sizes on different file

servers to improve the overall I/O performance [32]. These efforts are devoted to

homogeneous systems. For heterogeneous file systems, recent studies [16, 17, 33] uses

variable stripes to place data on different servers.

The above studies focus on storage performance of each server, without considering

the CPU impact on the overall active storage system performance. In contrast, SDD uses a

holistic cost model considering both computation and storage factors to direct the data

distribution of the hybrid active storage system.

3. The Skewed Data Distribution Scheme

In this section, we first illustrate the basic idea of the skewed data distribution scheme.

We then introduce a data processing cost model in active storage system and describe the

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

102 Copyright ⓒ 2016 SERSC

determination of the proper data amount on each server. Finally, we present the

implementation of the proposed data distribution scheme.

3.1. The Basic Idea of SDD

The goal of the proposed data distribution scheme, SDD, is to optimize the data

distribution on hybrid servers based on each server’s processing performance. Instead of

allocating the same amount of data on each server, as traditional even data distribution

schemes do [30], SDD distributes a larger amount of data on SServers and a smaller

amount of data on HServers, so that all servers can finish their active storage operations

within the same time. As the active storage system performance depends on the straggler

of the servers, this scheme can mitigate the load imbalance issue among servers and can

significantly improve the overall system performance.

However, determining the proper amounts of data on heterogeneous servers is not easy

due to three reasons. First, the server performance can be impacted significantly by I/O

patterns, such as request size, I/O operation (read or write), number of processes, etc.

Second, server performance is also related with the storage media. Even under the same

I/O patterns, HServer and SServer have different performance behaviors. Third, in

addition to the storage performance, processor on each server can affect the data

processing time of the active storage operations.

Thus, we introduce a holistic cost model to evaluate the data processing time for active

storage operations in a hybrid active storage system, as we will discuss in the following

section.

3.2. Active Storage Data Processing Cost Model

Table 1. Parameters in Cost Analysis Model

Symbol Description

m Number of HServers

n Number of SServers

p Number of processes on each server

bh Number of blocks on HServer

bs Number of blocks on SServer

B Number of blocks in the parallel file

αh HServer storage startup time

βh HServer unit data transfer time

αs SServer storage startup time

βs SServer unit data transfer time

ph HServer unit data calculation time

ps SServer unit data calculation time

The cost is defined as the overall data processing time for each active storage

operation. Table 1 lists the related parameters. This model is designed for hybrid active

storage environments. Note that the storage parameters for hybrid servers are different to

evaluate the I/O processing time. Namely, the startup time and transfer time are different

between HServer and SServer. Especially, αS is much smaller than αH, and βS is much

larger than βH. This is because SSDs have no mechanical components, thus it has better

bandwidth and lower data latency. Moreover, it is worth pointing out thatthe model will

consider the data calculation time and data storage time during the data processing, which

is more comprehensive.

Before introducing the details of the model, we make the following reasonable

assumptions.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 103

1) We assume a parallel file is fully distributed on all the m+nservers, so that each

server can contribute to the aggregated data processing capacity. Due to

symmetry, we assume perfect load balance of data processing within SServers

and HServers (but not across the two types of servers). Assume there are B data

blocks in the parallel file, then

 m×bh+n×bs=B

(1)

2) We assume a large active storage task is divided into sub-tasks on all servers, and

each server carries out the sub-task concurrently. Therefore, the completion time of

the active storage task depends on the slowest sub-task among all servers.

3) For each server, we assume it only conducts the data processing with the data located

on itself. Therefore, no server will process data remotely from other servers, hence

we do not need to consider the network transfer time due to data migration.

4) We assume each server executes the active storage operation in the following pattern.

It first reads data from the storage device, and then performs the calculation in

memory. While many similar data processing patterns exist, we focus on this pattern

in this paper because it is widely used in practical active storage systems.

Furthermore, we assume each server calculating the data with a fixed speed because

many applications have this feature during their execution [34]. Therefore, ph and

pscan be a constant for the active storage operations.

The data processing cost is defined as the overall time to complete the active storage

operation, which mainly includes two parts: the data I/O time, TI/O, and the data

calculation time TC. Generally, TI/O consists of TS and TT. The former is the storage startup

time, and the latter is the actual data read/write time on storage media. TC is the time spent

on the data calculation in memory. In summary, the cost of one active storage operation

can be described as follows.

T = TS + TT + TC(2)

The startup time TS is determined by the number of I/O operations on one server and

the storage device media. We assume p processes exist on one server, each process will

read the data from the disk to memory before data calculation, and then p startup

operations are needed. Therefore, the startup time can be calculated as

𝑇𝑆 = {
𝑝 × 𝛼ℎ , If the server is an HServer

𝑝 × 𝛼𝑠, If the server is an SServer
 (3)

The data transfer time TT of each server depends on the amount of data and the disk

data transfer rate. For HServer and SServer, the data transfer rate is different. According

to the parameters in Table I, TT can be described as

TT = {
bh × β

h
, If the server is an HServer

bs × β
s
 , If the server is an SServer

 (4)

TC is proportional to the amount of data needed to calculate. According to our

assumptions, each server will carry out the active storage operation with all the data

located on itself, then the amount of data are bh and bs for HServer and SServer to process

respectively. Assume the server unit data calculation time is ph and ps respectively, thus

TC can be defined as

TC = {
bh × p

h
, If the server is an HServer

bs × p
s
 , If the server is an SServer

 (5)

Based on Equation 3 to Equation 5, the overall cost of one active storage operation on

each server can be obtained. Since the overall active storage performance is determined

by the maximal completion time of each server, we can derive the final cost of the active

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

104 Copyright ⓒ 2016 SERSC

storage operation. This cost model provides a detailed analysis of completion time for

data processing in a hybrid active storage system. Although several parameters exist in

the model, for most applications, the runtime variables such as B, p, ph, and ps are fixed

for each run. In general, for a given system, m, n, α and β can be regarded as constants.

3.3. Determination of Data Amount on Each Server

The above cost model, show that T can be significantly impacted by the number

of blocks on HServer and SServer, namely stripe sizes bhand bs. In other words,

distributing different numbers of data blocks on servers leads to substantially

various access costs. An optimal data distribution scheme should choose the proper

bhand bsto get the best I/O performance. Thus, the optimization problem can be

described as minimizing function F described in Equation 6 while satisfying the size

constraints described in Equation 1.

F= max{p αh +bh𝛽
 ℎ

, p+bs} + max{bhph,bsps} (6)

According to the member values in the maximum expressions in Equation 6, this

problem can be translated into four linear programming (LP) optimizing problems

with two unknowns variables representing the number of data blocks on each

HServer and SServer, namely bhand bs. Finally, the problem is to choose the values

of bhand bsso as to minimize F as below. Case 1:
Case 1:

Minimize F = pαh+bhβh+bhph(7)

subject to {

𝑚𝑏ℎ + 𝑛𝑏𝑠 = 𝐵
𝑝𝛼𝑠 + 𝑏𝑠𝛽𝑠 ≤ 𝑝𝛼ℎ + 𝑏ℎ𝛽ℎ

𝑏𝑠𝑝𝑠 ≤ 𝑏ℎ𝑝ℎ

(8)

Case 2:

Minimize F = pαs+bsβs+bhph(9)

subject to {

𝑚𝑏ℎ + 𝑛𝑏𝑠 = 𝐵
𝑝𝛼ℎ + 𝑏ℎ𝛽ℎ < 𝑝𝛼𝑠 + 𝑏𝑠𝛽𝑠

𝑏𝑠𝑝𝑠 ≤ 𝑏ℎ𝑝ℎ

(10)

Case 3:

Minimize F = pαh+bhβh+bsps(11)

subject to {

𝑚𝑏ℎ + 𝑛𝑏𝑠 = 𝐵
𝑝𝛼𝑠 + 𝑏𝑠𝛽𝑠 ≤ 𝑝𝛼ℎ + 𝑏ℎ𝛽ℎ

𝑏ℎ𝑝ℎ < 𝑏𝑠𝑝𝑠

(12)

Case 4:

Minimize F = pαs+bsβs+bsps(13)

subject to {

𝑚𝑏ℎ + 𝑛𝑏𝑠 = 𝐵
𝑝𝛼ℎ + 𝑏ℎ𝛽ℎ < 𝑝𝛼𝑠 + 𝑏𝑠𝛽𝑠

𝑏ℎ𝑝ℎ < 𝑏𝑠𝑝𝑠

(14)

The finally optimized bhand bsare determined by the case where the objective

function F achieves the minimal value among the four cases. As the linear

programming optimization is expressed with two unknown variables, the search

space is very small and solving the program requires acceptable time cost.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 105

3.4. Skewed Data Distribution Scheme

Based on the optimalbh and bs, SDD is able to achieve the skewed data distribution

for hybrid active storage systems. However, this method requires that we have a

prior knowledge of applications access pattern. Fortunately, many HPC applications

access their files with either regular data access patterns or predictable behaviors

[35], thus it enables the proposed data distribution scheme based on an I/O profiling

procedure.

Figure 1. The Procedure of Skewed Data Distribution Scheme

Figure 1 depicts the detailed procedure of the optimal data distribution scheme,

which includes three phases. In the Profiling phase, the related parameters in Table I

are estimated. The storage parameters, such as αh, βh, αs, βs, the system parameters,

such as m and n , and the application parameters, such as p, phand pscan be regarded

as constants. In the Analyzing phase, the cost model and the linear programming

method are used to calculate the optimal numbers of data blocks on HServers and

SServers. As the optimization is a two-variable linear programming problem, it only

requires a relatively small time cost and can run very fast for most computer system.

In the Distribution phase, the file is distributed on the hybrid servers with the

optimal bhand bs. This can be performed by creating new files for later runs of the

applications, or adjusting the file layout by copying operations in the existing

parallel file systems.

3.5. Implementation

We implement the proposed data distribution scheme for a hybrid active storage

system, which is based on MPICH2 [36] and OrangeFS [37] (A successor of PVFS). In

the profiling phase, we use a trace collector to obtain the run-time statistics of data

accesses during the application’s execution. Based on the I/O trace, we obtain the related

parameters to evaluate the data processing cost in a hybrid active storage system.

For the placement phase, we distribute the file data on hybrid servers with the optimal

numbers of data blocks. For ease of implementation, we assign different number of blocks

on servers by leveraging the existing varied-size stripping method supported by

OrangeFS. For example, if we define the size of a data block as 64kB, which is the default

stripe size of OrangeFS, a larger stripe size of 256KB will distribute four contiguous

blocks on one server. In OrangeFS, a parallel file can either be accessed by the PVFS2 or

the POSIX interface. For PVFS2 interface, we utilize the “pvfs2-xattr” command to set

the data distribution method of file directories where the application files are located. For

POSIX interface, we use the “setfattr” command to reach the same goal.

Profiling Phase

Parameter

Estimation

Cost Model
Linear

Programming

Optimal amount of

 data on each server

Distribution Phase

Data

Placement

Analyzing Phase

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

106 Copyright ⓒ 2016 SERSC

4. Performance Evaluation

4.1. Experimental Setup

We conduct the experiments on a Linux cluster, which consists of eight heterogeneous

nodes. Two nodes are used as the computing nodes, four nodes are used as HServers and

two nodes are used as SServers. The parameters of the nodes are summarized in Table 2.

All nodes are equipped with Gigabit Ethernet interconnection. The operating system is

Linux kernel 2.6.28.10, the MPI-IO library is MPICH21.4.1p1, and the parallel file

system is OrangeFS 2.8.6. In the experiments, the hybrid OrangeFS file system is built on

four HServers and two SServers unless otherwise specified.

Table 2. The Three Kinds of Nodes in a Linux Cluster

Node CPU Memory Disk

Computing node Two AMD Opteron 8GB 500GB HDD

HServer Intel i5 4GB 250GB HDD

SServer Intel i5 4GB 100GB SSD

To verify the efficiency of SDD, we compare it with the traditional data distribution

(TDD). We test the active storage system performance under SDD and TDD. In TDD, the

data is distributed on all servers with a default block size (64KB) in a round-robin way,

which is the default data distribution approach for most current active storage systems.

Obviously, this scheme does not consider the storage performance difference among

hybrid servers and leads to an even data distribution. In contrast, SDD distributes data on

hybrid servers with skewed data amount on each server.

Figure 2. Performance Comparison of Data Selection
Application under Different

We use a typical application, data selection, to evaluate the system performance. This

application is widely used to search the desired data under a given condition from a large

data set.

4.2. Data Selection

In this test, the client first downloads the data selection code onto the servers, and then

executes the data selection operation on each server. The execution time of the application

consists of all the above parts. In our tests, the data set is a data sequence consisting of

millions of data, each of which is 0-9, and the large-scale sequence is stored as a 6GB

parallel file on multiple servers.

Figure 2 describes the application execution time under different data selection

conditions running TDD and SDD respectively. The percentage means how much data

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 107

should be selected from the original data set. The results show that SDD is always better

than the traditional data distribution scheme TDD. This is because SDD adopts storage-

aware data distribution scheme to allocate data on multiple servers, so that high-

performance SServers are assigned to process more data and low-performance HServers

are assigned less. This skewed data allocation can significantly eliminate the load-

imbalance issues among servers in current active storage systems. These results show that

our proposed data distribution scheme is an efficient way to improve the hybrid active

storage system performance for data-intensive applications.

To show the efficiency of our proposed scheme, we also evaluate SDD under various

server configurations. In these tests, we change the HServer and SServer ratio to 5:1

and2:4.

Figure 3 shows the active storage completion time with different server configurations.

As can be seen from the results, SDD can improve the performance compared to TDD.

When the ratio is 5:1, the system performance can be improved by 17.2% to 26.4%. When

the ratio is 2:4, the improvement is 21.4% to 32.3%. We can find that SDD obtains better

performance benefits as the number of SServers increases. The main reason is that

traditional data distribution schemes waste more hardware potential as more SServers are

added into the system, but SDD can make full utilization of them. By using the skewed

data distribution determined by the costmodel and linear programming method, SDD can

significantly improve the hybrid active storage system performance with various server

configurations.

Figure 3. Performance Comparison of Data Selection Application under
Different Schemes

5. Conclusion

Active storage technology provides an efficient way to improve the performance of

data-intensive high-performance computing applications. With the popularity of new

storage technologies, such as solid-state drives (SSD), hybrid active storage systems

become possible and feasible in storage system designs. In this paper, we propose SDD, a

skewed data distribution scheme to improve the performance of hybrid active storage

systems. SDD distributes data on different servers with skewed amount of data based on

their performance. To determine the proper data amount on each server, SDD relies on a

cost model and a linear programming optimizing method. Compared to even data

distribution schemes, SDD mitigates the load imbalance among hybrid servers. We have

implemented a prototype of SDD in a parallel I/O system. Experimental results show that

our proposed data distribution scheme can obtain considerable performance

improvements for hybrid active storage systems.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

108 Copyright ⓒ 2016 SERSC

Acknowledgements

This study is supported in part by the National Science Foundation of China under

Grant No.61572377, the NaturalScience Foundation of Hubei Province of China under

Grant No.2014CFB239, and the Open-fund from HPCL under Grant No.201512-02.

References

[1] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers, and Y. Solihin, “Active flash:

Towards energy-efficient, in-situ data analytics on extreme-scale machines,” in Proceedings of the 11th

USENIX Conference on File and Storage Technologies (FAST’13), (2013).

[2] C. Chen and Y. Chen, “Dynamic active storage for high performance i/o,” in Proceedings of the 41st

International Conference on Parallel Processing (ICPP), (2012), pp. 379–388.

[3] R. Latham, R. Ross, B. Welch, and K. Antypas, “Parallel i/o in practice,” Tech. Rep. Tutorial of the

International Conference for High Performance Computing, Networking, Storage and Analysis, (2013).

[4] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz, P. Kumar, W.-K. Liao, and A.

Choudhary, “Enabling active storage on parallel i/o software stacks,” in Proceedings of the IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST). IEEE, (2010), pp.1–12.

[5] Y. Kim, S. Atchley, G. R. Valle, and G. M. Shipman, “Lads: Optimizing data transfers using layout-

aware data scheduling,” in Proceedings of the 13th USENIX Conference on File and Storage

Technologies (FAST’15), (2015).

[6] M. Xiaonan and A. L. N. Reddy, “Mvss: An active storage architecture,” IEEE Transactions on Parallel

and Distributed Systems, vol. 14, no. 10, (2003),pp. 993–1005.

[7] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming model, algorithms and evaluation,”

ACM SIGPLAN Notices, vol. 33, no. 11, (1998),pp.81–91.

[8] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for large-scale data mining and multimedia,”

in Proceedings of the 24rd International Conference on Very Large Data Bases, (1998), pp. 62–73.

[9] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang, and L. Chu, “The panasasactivescale storage

cluster-delivering scalable high bandwidth storage,” in Proceedings of the ACM/IEEE SC2004

Conference on Supercomputing, (2004), pp. 53–62.

[10] S. He, X. Xu, and Y. Yang, “Oasa: An active storage architecture for object-based storage system,”

International Journal of Computational Intelligence Systems, vol. 5, no. 6, (2012),pp. 1173–1183.

[11] Y. Xie, K. Muniswamy-Reddy, D. Feng, D. Long, Y. Kang, Z. Niu, and Z. Tan, “Design and evaluation

of oasis: An active storage framework based on t10 osd standard,” in MSST. IEEE, (2011), pp. 1–12.

[12] B. Rich and D. Thain, “Datalab: Transactional data-parallel computing on an active storage cloud,” in

Proceedings of the 17th International Symposium on High Performance Distributed Computing, (2008),

pp.233–234.

[13] A. Caulfield, L. Grupp, and S. Swanson, “Gordon: Using flash memory to build fast, power-efficient

clusters for data-intensive applications,” in Proceedings of the Fourteenth International Conference on

Architectural Support for Programming Languages and Operating Systems, (2009).

[14] J. Ou, J. Shu, Y. Lu, L. Yi, and W. Wang, “Edm: An enduranceaware data migration scheme for load

balancing in ssd storage clusters,” in Proceedings of 28th IEEE International Parallel and Distributed

Processing Symposium, (2014).

[15] M. Zhu, G. Li, L. Ruan, K. Xie, and L. Xiao, “Hysf: A striped file assignment strategy for parallel file

system with hybrid storage,” in Proceedings of the IEEE International Conference on Embedded and

Ubiquitous Computing, (2013), pp. 511–517.

[16] S. He, X.-H. Sun, and A. Haider, “HAS: Heterogeneity-Aware Selective Data Layout Scheme for

Parallel File Systems on Hybrid Servers,”inProceedings of 29th IEEE International Parallel and

Distributed Processing Symposium, (2015), pp. 613–622.

[17] S. He, X.-H. Sun, Y. Wang, A. Kougkas, and A. Haider, “AHeterogeneity-Aware Region-Level Data

Layout Scheme for Hybrid Parallel File Systems,” in Proceedings of the 44th International Conference

on Parallel Processing, (2015).

[18] E. A. Ozkarahan, S. A. Schuster, and K. C. Smith, “Rap: An associative processor for data base

management,” in Proceedings of the AFIPS Joint Computer Conferences. ACM New York, NY, USA,

(1975), pp. 379–387.

[19] S. Y. W. Su and G. J. Lipovski, “Cassm: A cellular system for very large data bases,” in Proceedings of

the International Conference on Very Large Data Bases (VLDB), (1975), pp. 456–472.

[20] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for intelligent disks (idisks),” ACM SIGMOD

Record, vol. 27, no. 3, (1998), pp. 42–52.

[21] S. Chiu, W.-k. Liao, and A. Choudhary, “Design and evaluation of distributed smart disk architecture

for i/o-intensive workloads,” in Proceedings of International Conference on Computational

Science.Springer, (2003), pp. 230–241.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 109

[22] M. Franklin, R. Chamberlain, M. Henrichs, B. Shands, and J. White,“An architecture for fast processing

of large unstructured data sets,” in Proceedings of the IEEE International Conference on Computer

Design, (2004), pp. 280–287.

[23] M. Sivathanu, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Evolving rpc for active storage,” in

ACM SIGPLAN Notices, vol. 37. ACM, (2002), pp. 264–276.

[24] C. Chen, Y. Chen, and P. C. Roth, “Dosas: Mitigating the resource contention in active storage

systems,” in Proceedings of the IEEE International Conference on Cluster Computing, (2012), pp. 164–

172.

[25] J. Piernas, J. Nieplocha, and E. J. Felix, “Evaluation of active storage strategies for the lustre parallel

file system,” in Proceedings of the 2007 ACM/IEEE conference on Supercomputing. ACM New York,

NY, USA, (2007), pp. 1–10.

[26] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan, G. R. Ganger, E. Riedel, and A.

Ailamaki, “Diamond: A storage architecture for early discard in interactive search,” in Proceedings of

the 3rd USENIX Conference on File and Storage Technologies. USENIX Association, (2004), pp. 73–

86.

[27] R. O. Weber, “Information technology–scsi object-based storage device commands-2 (osd-2), revision

5,” Tech. Rep. Technical report, INCITS Technical Committee T10/1729-D, Jan (2009).

[28] A. Devulapalli, I. Murugandi, D. Xu, and P. Wyckoff, “Design of an intelligent object-based storage

device,” (2009).

[29] T. M. John, A. T. Ramani, and J. A. Chandy, “Active storage using object-based devices,” 2008 Ieee

International Conference on Cluster Computing, (2008), pp. 472–478.

[30] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A Cost-IntelligentApplication-Specific Data Layout Scheme

for Parallel File Systems,” inProceedings of the 20th International Symposium on High Performance

Distributed Computing, (2011), pp. 37–48.

[31] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A Segment-LevelAdaptive Data Layout Scheme

for Improved Load Balance in Parallel File Systems,” in Proceedings of the 11th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid), (2011) , pp. 414–423.

[32] H. Song, H. Jin, J. He, X.-H. Sun, and R. Thakur, “A Server-Level Adaptive Data Layout Strategy for

Parallel File Systems,” in Proceedings of the IEEE 26th International Parallel and Distributed

Processing Symposium Workshops and PhD Forum, (2012), pp. 2095–2103.

[33] S. He, X.-H. Sun, B. Feng, and F. Kun, “Performance-aware data placement in hybrid parallel file

systems,” in Proceedings of the 14 th International Conference on Algorithms and Architectures for

Parallel Processing, (2014), pp. 563–576.

[34] X. Jiong, Y. Shu, R. Xiaojun, D. Zhiyang, T. Yun, J. Majors, A. Manzanares, and Q. Xiao, “Improving

MapReduce Performance through Data Placement in Heterogeneous Hadoop Clusters,” in Proceedings

of the 19th International Heterogeneity in Computing Workshop, 19-23 April (2010), pp. 1 – 9.

[35] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “AutomaticIdentification of Application I/O

Signatures from Noisy Server-SideTraces,” in Proceedings of the 12th USENIX conference on File and

Storage Technologies, (2014), pp. 213–228.

[36] A. N. Lab, “MPICH2:A High Performance

andWidelyPortableImplementationofMPI.”[Online].Available:http://www.mcs.anl.gov/research/project-

detail.php?id=2

[37] “Orange File System,” http://www.orangefs.org/.

Authors

Xiangyu Li, is a Ph.D. candidate of the Computer School, Wuhan

University, Wuhan, China. He received a B.A. degree from

Huazhong University of Science and Technology, China, in 2003and

a M.S. degree in computer science and technology from Wuhan

University, China, in 2008. He is especially interested in file and

storage systems, high performance computing, distributed system,

and computer network.

Shuibing He, received the Ph.D. degree in computer science and

technology from Huazhong University of Science and Technology,

China, in 2009. He is now an assistant professor at Computer School

of Wuhan University, China. His current research areas include

parallel I/O systems, file and storage systems, high-performance

computing, and distributed computing.

http://www.mcs.anl.gov/research/project-detail.php?id=2
http://www.mcs.anl.gov/research/project-detail.php?id=2

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

110 Copyright ⓒ 2016 SERSC

XianbinXu, graduated from the department of computer

architecture in Huazhong University of science and technology and

worked at Huazhong University of science and technology from 1977

to 1985.He got the Ph.D. degree from Computer School of Wuhan

University. He is now a professor at Computer School of Wuhan

University, China. His research interests focus on network storage,

data grid, and distributed system.

